Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Food Chem ; 448: 139085, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38518444

RESUMO

The effects and underlying molecular mechanisms of binary probiotics (Lactiplantibacillus plantarum subsp. plantarum CGMCC 1.5953 and Lacticaseibacillus casei CGMCC 1.5956) on the quality of wolfberry fermented beverages (WFB) were investigated. The results indicated that binary probiotics increased the number of probiotics, anthocyanin (89.92 ± 1.64 mg/L), polyphenol content (283.04 ± 3.81 µg/mL), and odor score (24.19) in WFB. Metabolomics found that they could enhance signal exchange (cyclic AMP) between binary probiotics and improve the utilization of citrulline, d-proline, d-glucose, and d-galactose through galactose metabolism and amino acid biosynthesis pathway to promote probiotics growth. Furthermore, HS-SPME-GC-MS and GS-IMS revealed that the improvement in flavor was mainly due to an increase in the content of the aromatic flavor substances 3-heptanol, glutaraldehyde, and 2-heptanone, and a decrease in the content of the off-flavor substances methyl isobutyl ketone-D and 2-undecanone. This is strategically important for the development of WFB with high probiotic content and unique flavor.


Assuntos
Antocianinas , Fermentação , Odorantes , Polifenóis , Probióticos , Polifenóis/metabolismo , Polifenóis/análise , Polifenóis/química , Odorantes/análise , Antocianinas/análise , Antocianinas/metabolismo , Probióticos/metabolismo , Probióticos/análise , Probióticos/química , Aromatizantes/metabolismo , Aromatizantes/química
2.
J Sci Food Agric ; 104(2): 1107-1115, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37736877

RESUMO

BACKGROUND: Goose liver oil (GLO) is a solid-liquid mixture, rich in polyunsaturated fatty acids and high in nutritional value, but poor in fluidity and easily oxidized. Therefore, oil-in-water (O/W) Pickering emulsions of three polysaccharides and soy protein isolate (SPI) with GLO were prepared to improve the stability of it. RESULTS: Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), Fourier-transform infrared spectroscopy, and zeta potential revealed that the SPI and complexes with konjac glucomannan, pectin, and guar gum (GG) ranged from 17 to 75 kDa, with the site of action being the -OH stretch and the amide group, and bound by hydrogen bonding. Adding konjac glucomannan and GG significantly increased the water contact angle of the SPI to 74.1° and 59.0°, respectively. Therefore, the protein-polysaccharide complexes could enhance the emulsion stability. In addition, the O/W Pickering emulsions with GLO had near-Newtonian fluid rheological properties with a significant increase in apparent viscosity and viscoelasticity, forming a dual network structure consisting of a ductile and flexible protein network and a rigid and brittle polysaccharide network. The microstructure observation indicated that the O/W emulsions were spherical and homogeneous. The highest emulsification activity was observed for the SPI-GG-GLO emulsions, without significant delamination or flocculation and high oxidative stability after 7 days in storage. CONCLUSION: These results demonstrate that the construction of SPI-GG-GLO O/W Pickering emulsions can stabilize GLO even at high temperatures that promote oxidation. © 2023 Society of Chemical Industry.


Assuntos
Gansos , Proteínas de Soja , Animais , Emulsões/química , Proteínas de Soja/química , Temperatura , Polissacarídeos/química , Fígado , Água/química
3.
Front Nutr ; 9: 1041655, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36438739

RESUMO

Dairy-derived peptides and corn-derived peptides have been identified as essential ingredients for health promotion in the food industry. The hydrolysis based on lactic acid bacteria (LAB) protease system is one of the most popular methods to prepare bioactive peptides. The objectives of this paper are to develop antioxidant fermented milk and to obtain natural antioxidant peptides. In our study, LAB with antioxidant capacity were screened in vitro, and the corn fermented milk with antioxidant capacity was achieved by the traditional fermentation method. Fermented milk was purified by ultrafiltration and molecular sieve, and identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Our findings demonstrate that Limosilactobacillus fermentum L15 had a scavenging capacity of more than 80% of DPPH radicals, Trolox equivalent antioxidant capacity (TEAC) of 0.348 ± 0.005 mmol/L. Meanwhile, the peptide content of corn fermented milk prepared with L. fermentum L15 was 0.914 ± 0.009 mg/mL and TAEC of 0.781 ± 0.020 mmol/L. Particularly important, IGGIGTVPVGR and LTTVTPGSR isolated and extracted from fermented milk were found to have antioxidant capacity for the first time. The synthetic peptides IGGIGTVPVGR and LTTVTPGSR demonstrated a scavenging capacity of 70.07 ± 2.71% and 70.07 ± 2.77% for DPPH radicals and an antioxidant capacity of 0.62 ± 0.01 mmol/L and 0.64 ± 0.02 mmol/L Trolox equivalent, respectively. This research provides ideas and basis for the development and utilization of functional dairy products.

4.
J Exp Bot ; 69(5): 1011-1025, 2018 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-29365162

RESUMO

Ethylene perception is regulated by receptors, and the downstream protein CONSTITUTIVE TRIPLE RESPONSE1 is a key suppressor of ethylene signalling. The non-conserved tomato (Solanum lycopersicum) microRNA1917 (Sly-miR1917) mediates degradation of SlCTR4 splice variants (SlCTR4sv) but the molecular details of this pathway remain unknown. Sly-miR1917 and the targeted SlCTR4sv are ubiquitously expressed in all tomato organs. Overexpression of Sly-miR1917 enhances ethylene responses, including the triple response in etiolated seedlings, in the absence of ethylene, as well as epinastic petiole growth, accelerated pedicel abscission, and fruit ripening. Enhanced ethylene signalling in Sly-miR1917-overexpressing plants (1917-OE) is accompanied by up-regulation of ethylene biosynthesis and signalling genes, and increased ethylene emission. These phenotypes were recovered by repressing the positive ethylene regulator EIN2. Moreover, the Sly-miR1917-targeted SlCTR4 splice variant SlCTR4sv3, expressed specifically in the abscission zone, exhibited the opposite expression pattern to Sly-miR1917. Complementation of the Arabidopsis thaliana ctr-1 mutant and yeast two-hybrid and bimolecular fluorescence complementation assays suggested that SlCTR4sv3 functions in ethylene signalling. Co-expression of Sly-miR1917 and SlCTR4sv3 in Nicotiana benthamiana further suggested that Sly-miR1917 cleaves SlCTR4sv3 in vivo. Database homology searching revealed a Solanum tuberosum CTR-like splice variant containing a Sly-miR1917 binding sequence, and a homologue of mature Sly-miR1917 in potato, indicating a conserved function for miR1917 and the regulatory miRNA-mediated ethylene network in solanaceous species.


Assuntos
Etilenos/metabolismo , Regulação da Expressão Gênica de Plantas , MicroRNAs/genética , Proteínas Quinases/genética , Solanum lycopersicum/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Solanum lycopersicum/metabolismo , MicroRNAs/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Proteínas Quinases/metabolismo , Splicing de RNA , RNA de Plantas/genética , RNA de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA