Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3182, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609352

RESUMO

Huntington's disease (HD) is a dominant neurological disorder caused by an expanded HTT exon 1 CAG repeat that lengthens huntingtin's polyglutamine tract. Lowering mutant huntingtin has been proposed for treating HD, but genetic modifiers implicate somatic CAG repeat expansion as the driver of onset. We find that branaplam and risdiplam, small molecule splice modulators that lower huntingtin by promoting HTT pseudoexon inclusion, also decrease expansion of an unstable HTT exon 1 CAG repeat in an engineered cell model. Targeted CRISPR-Cas9 editing shows this effect is not due to huntingtin lowering, pointing instead to pseudoexon inclusion in PMS1. Homozygous but not heterozygous inactivation of PMS1 also reduces CAG repeat expansion, supporting PMS1 as a genetic modifier of HD and a potential target for therapeutic intervention. Although splice modulation provides one strategy, genome-wide transcriptomics also emphasize consideration of cell-type specific effects and polymorphic variation at both target and off-target sites.


Assuntos
Doença de Huntington , Humanos , Doença de Huntington/genética , Éxons/genética , Perfilação da Expressão Gênica , Heterozigoto , Homozigoto , Proteínas MutL , Proteínas de Neoplasias
3.
Clin Rheumatol ; 41(7): 2233-2237, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35314925

RESUMO

There have been hundreds of reports on mutations in the NLRP3 gene related to NLRP3-associated autoinflammatory disease, but few of these mutations have occurred as both germline and somatic mosaic mutations. In this case-based review, we report a 68-year-old man with an NLRP3-associated autoinflammatory disease. He developed secondary amyloidosis, including a renal and colorectal presentation in his 50 s. Sequencing of the NLRP3 gene revealed an I574F somatic mosaic mutation, which has up to now only been reported in germline mutations. The patient was treated with canakinumab, which had great efficacy not only on the NLRP3-mediated inflammation, but also on the chronic renal failure and proteinuria provoked by secondary renal amyloidosis. To evaluate the effectiveness of canakinumab, we conducted a literature research on renal amyloidosis related to NLRP3-associated autoinflammatory disease treated with canakinumab. Although our patient had a relatively long medical history and greater amounts of proteinuria than other reported cases, canakinumab had great efficacy on renal impairment, in similar to other reported cases. Along with the first report of a late-onset I574F somatic mosaic mutation in NLRP3-associated autoinflammatory disease, this report demonstrates the effectiveness of canakinumab on renal amyloidosis, probably through the way that IL-1ß blockade minimizes podocyte injury.


Assuntos
Amiloidose , Síndromes Periódicas Associadas à Criopirina , Idoso , Amiloidose/complicações , Amiloidose/tratamento farmacológico , Amiloidose/genética , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais Humanizados , Síndromes Periódicas Associadas à Criopirina/genética , Humanos , Masculino , Mutação , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteinúria/complicações , Proteína Amiloide A Sérica
4.
Nat Genet ; 50(4): 581-590, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29507423

RESUMO

Epilepsy is a common neurological disorder, and mutations in genes encoding ion channels or neurotransmitter receptors are frequent causes of monogenic forms of epilepsy. Here we show that abnormal expansions of TTTCA and TTTTA repeats in intron 4 of SAMD12 cause benign adult familial myoclonic epilepsy (BAFME). Single-molecule, real-time sequencing of BAC clones and nanopore sequencing of genomic DNA identified two repeat configurations in SAMD12. Intriguingly, in two families with a clinical diagnosis of BAFME in which no repeat expansions in SAMD12 were observed, we identified similar expansions of TTTCA and TTTTA repeats in introns of TNRC6A and RAPGEF2, indicating that expansions of the same repeat motifs are involved in the pathogenesis of BAFME regardless of the genes in which the expanded repeats are located. This discovery that expansions of noncoding repeats lead to neuronal dysfunction responsible for myoclonic tremor and epilepsy extends the understanding of diseases with such repeat expansion.


Assuntos
Expansão das Repetições de DNA , Epilepsias Mioclônicas/genética , Repetições de Microssatélites , Proteínas do Tecido Nervoso/genética , Motivo Estéril alfa/genética , Adulto , Idade de Início , Autoantígenos/genética , Sequência de Bases , Epilepsias Mioclônicas/etiologia , Epilepsias Mioclônicas/patologia , Feminino , Instabilidade Genômica , Fatores de Troca do Nucleotídeo Guanina/genética , Humanos , Íntrons , Masculino , Linhagem , Células de Purkinje/patologia , Proteínas de Ligação a RNA/genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA