Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Science ; 373(6559): 1122-1125, 2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34516833

RESUMO

Nematicity is ubiquitous in the electronic phases of iron-based superconductors. The order parameter that characterizes the nematic phase has been investigated in momentum space, but its real-space arrangement remains largely unexplored. We use linear dichroism (LD) in a low-temperature laser­photoemission electron microscope to map out the nematic order parameter of nonmagentic FeSe and antiferromagnetic BaFe2(As0.87P0.13)2. In contrast to structural domains, which have atomic-scale domain walls, the LD patterns in both materials show peculiar sinusoidal waves of electronic nematicity with wavelengths more than 1000 times as long as the unit cell. Our findings put strong constraints on the theoretical investigation of electronic nematicity.

2.
Sci Rep ; 4: 7292, 2014 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-25465027

RESUMO

We report peculiar momentum-dependent anisotropy in the superconducting gap observed by angle-resolved photoemission spectroscopy in BaFe2(As(1-x)P(x))2 (x = 0.30, Tc = 30 K). Strongly anisotropic gap has been found only in the electron Fermi surface while the gap on the entire hole Fermi surfaces are nearly isotropic. These results are inconsistent with horizontal nodes but are consistent with modified s ± gap with nodal loops. We have shown that the complicated gap modulation can be theoretically reproduced by considering both spin and orbital fluctuations.

3.
Nat Commun ; 5: 5657, 2014 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-25430419

RESUMO

In superconductors with unconventional pairing mechanisms, the energy gap in the excitation spectrum often has nodes, which allow quasiparticle excitations at low energies. In many cases, such as in d-wave cuprate superconductors, the position and topology of nodes are imposed by the symmetry, and thus the presence of gapless excitations is protected against disorder. Here we report on the observation of distinct changes in the gap structure of iron-pnictide superconductors with increasing impurity scattering. By the successive introduction of nonmagnetic point defects into BaFe2(As(1-x)P(x))(2) crystals via electron irradiation, we find from the low-temperature penetration depth measurements that the nodal state changes to a nodeless state with fully gapped excitations. Moreover, under further irradiation the gapped state evolves into another gapless state, providing bulk evidence of unconventional sign-changing s-wave superconductivity. This demonstrates that the topology of the superconducting gap can be controlled by disorder, which is a strikingly unique feature of iron pnictides.

4.
Science ; 332(6029): 564-7, 2011 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-21474714

RESUMO

The origin of superconductivity in the iron pnictides has been attributed to antiferromagnetic spin ordering that occurs in close combination with a structural transition, but there are also proposals that link superconductivity to orbital ordering. We used bulk-sensitive laser angle-resolved photoemission spectroscopy on BaFe(2)(As(0.65)P(0.35))(2) and Ba(0.6)K(0.4)Fe(2)As(2) to elucidate the role of orbital degrees of freedom on the electron-pairing mechanism. In strong contrast to previous studies, an orbital-independent superconducting gap magnitude was found for the hole Fermi surfaces. Our result is not expected from the superconductivity associated with spin fluctuations and nesting, but it could be better explained invoking magnetism-induced interorbital pairing, orbital fluctuations, or a combination of orbital and spin fluctuations. Regardless of the interpretation, our results impose severe constraints on theories of iron pnictides.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA