Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 166
Filtrar
1.
J Proteome Res ; 23(1): 130-141, 2024 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-38104258

RESUMO

Many attempts have been made to develop new agents that target EGFR mutants or regulate downstream factors in various cancers. Cell-based screening showed that a natural small molecule, Ertredin, inhibited the growth of EGFRvIII mutant cancer cells. Previous studies have shown that Ertredin effectively inhibits anchorage-independent 3D growth of sphere-forming cells transfected with EGFRvIII mutant cDNA. However, the underlying mechanism remains unclear. In this study, we investigated the target protein of Ertredin by combining drug affinity-responsive target stability (DARTS) assays with liquid chromatography-mass spectrometry using label-free Ertredin as a bait and HepG2 cell lysates as a proteome pool. NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 12 (NDUFA12) was identified as an Ertredin-binding protein that was responsible for its biological activity. The interaction between NDUFA12 and Ertredin was validated by DARTS and cellular thermal shift assays. In addition, the genetic knockdown of the identified target, NDUFA12, was shown to suppress cell proliferation. NDUFA12 was identified as a biologically relevant target protein of Ertredin that is responsible for its antitumor activity, and these results provide insights into the role of NDUFA12 as a downstream factor in EGFRvIII mutants.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Proteômica/métodos , Proteínas/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , NADPH Desidrogenase
2.
EMBO J ; 42(22): e114032, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37781951

RESUMO

Bone marrow-derived cells (BMDCs) infiltrate hypoxic tumors at a pre-angiogenic state and differentiate into mature macrophages, thereby inducing pro-tumorigenic immunity. A critical factor regulating this differentiation is activation of SREBP2-a well-known transcription factor participating in tumorigenesis progression-through unknown cellular mechanisms. Here, we show that hypoxia-induced Golgi disassembly and Golgi-ER fusion in monocytic myeloid cells result in nuclear translocation and activation of SREBP2 in a SCAP-independent manner. Notably, hypoxia-induced SREBP2 activation was only observed in an immature lineage of bone marrow-derived cells. Single-cell RNA-seq analysis revealed that SREBP2-mediated cholesterol biosynthesis was upregulated in HSCs and monocytes but not in macrophages in the hypoxic bone marrow niche. Moreover, inhibition of cholesterol biosynthesis impaired tumor growth through suppression of pro-tumorigenic immunity and angiogenesis. Thus, our findings indicate that Golgi-ER fusion regulates SREBP2-mediated metabolic alteration in lineage-specific BMDCs under hypoxia for tumor progression.


Assuntos
Monócitos , Neoplasias , Humanos , Monócitos/metabolismo , Medula Óssea , Colesterol/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 2/genética , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo , Hipóxia
3.
J Clin Invest ; 133(20)2023 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-37651195

RESUMO

Endothelial phospholipase Cγ (PLCγ) is essential for vascular development; however, its role in healthy, mature, or pathological vessels is unexplored. Here, we show that PLCγ was prominently expressed in vessels of several human cancer forms, notably in renal cell carcinoma (RCC). High PLCγ expression in clear cell RCC correlated with angiogenic activity and poor prognosis, while low expression correlated with immune cell activation. PLCγ was induced downstream of vascular endothelial growth factor receptor 2 (VEGFR2) phosphosite Y1173 (pY1173). Heterozygous Vegfr2Y1173F/+ mice or mice lacking endothelial PLCγ (Plcg1iECKO) exhibited a stabilized endothelial barrier and diminished vascular leakage. Barrier stabilization was accompanied by decreased expression of immunosuppressive cytokines, reduced infiltration of B cells, helper T cells and regulatory T cells, and improved response to chemo- and immunotherapy. Mechanistically, pY1173/PLCγ signaling induced Ca2+/protein kinase C-dependent activation of endothelial nitric oxide synthase (eNOS), required for tyrosine nitration and activation of Src. Src-induced phosphorylation of VE-cadherin at Y685 was accompanied by disintegration of endothelial junctions. This pY1173/PLCγ/eNOS/Src pathway was detected in both healthy and tumor vessels in Vegfr2Y1173F/+ mice, which displayed decreased activation of PLCγ and eNOS and suppressed vascular leakage. Thus, we believe that we have identified a clinically relevant endothelial PLCγ pathway downstream of VEGFR2 pY1173, which destabilizes the endothelial barrier and results in loss of antitumor immunity.


Assuntos
Permeabilidade Capilar , Carcinoma de Células Renais , Neoplasias Renais , Animais , Humanos , Camundongos , Permeabilidade Capilar/genética , Carcinoma de Células Renais/imunologia , Neoplasias Renais/imunologia , Óxido Nítrico Sintase Tipo III/genética , Óxido Nítrico Sintase Tipo III/metabolismo , Fosfolipase C gama/genética , Fosfolipase C gama/metabolismo , Fosforilação , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Proteína Tirosina Quinase CSK/metabolismo
4.
Exp Cell Res ; 424(1): 113500, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36720378

RESUMO

The Fms-like tyrosine kinase-1 (FLT1) gene is expressed in various types of cells, including vascular endothelial cells and placental trophoblasts, and regulates angiogenesis, inflammation, and pregnancy. However, the basal transcriptional machinery of FLT1 is still not well understood. In this study, we first examined FLT1 promoter activity in three different types of cells, that is, trophoblast-derived cells, vascular endothelial-related cells, and HEK293 cells, using plasmid-based luciferase reporter assays, and showed that a cAMP-response element (CRE) and an ETS-binding site (EBS) are important for FLT1 expression in all cell types. To further examine the importance of these sites at the chromosomal level using HEK293 cells, we introduced CRISPR/Cas9-mediated mutations in these sites on the genomic DNA. HEK293 cells carrying these mutations clearly showed a significant decrease in endogenous FLT1 gene expression. These results suggest that CRE and EBS transcription regulatory elements are crucial for FLT1 gene expression in human tissues.


Assuntos
Placenta , Receptor 1 de Fatores de Crescimento do Endotélio Vascular , Feminino , Humanos , Gravidez , Sítios de Ligação/genética , Sistemas CRISPR-Cas/genética , Células Endoteliais/metabolismo , Expressão Gênica , Células HEK293 , Mutação/genética , Placenta/metabolismo , Elementos de Resposta , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo , AMP Cíclico/metabolismo
5.
Diabetes ; 71(12): 2685-2701, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36203331

RESUMO

Intraretinal hyperreflective foci (HRF) are significant biomarkers for diabetic macular edema. However, HRF at the vitreoretinal interface (VRI) have not been examined in diabetic retinopathy (DR). A prospective observational clinical study with 162 consecutive eyes using OCT imaging showed significantly increased HRF at the VRI during DR progression (P < 0.01), which was reversed by anti-vascular endothelial growth factor (VEGF) therapy. F4/80+ macrophages increased significantly at the VRI in Kimba (vegfa+/+) or Akimba (Akita × Kimba) mice (both P < 0.01), but not in diabetic Akita (Ins2+/-) mice, indicating macrophage activation was modulated by elevated VEGF rather than the diabetic milieu. Macrophage depletion significantly reduced HRF at the VRI (P < 0.01). Furthermore, BrdU administration in Ccr2rfp/+Cx3cr1gfp/+vegfa+/- mice identified a significant contribution of M2-like tissue-resident macrophages (TRMs) at the VRI. Ki-67+ and CD11b+ cells were observed in preretinal tissues of DR patients, while exposure of vitreal macrophages to vitreous derived from PDR patients induced a significant proliferation response in vitro (P < 0.01). Taken together, the evidence suggests that VEGF drives a local proliferation of vitreous resident macrophages (VRMs) at the VRI during DR. This phenomenon helps to explain the derivation and disease-relevance of the HRF lesions observed through OCT imaging in patients.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Edema Macular , Camundongos , Animais , Retinopatia Diabética/metabolismo , Fator A de Crescimento do Endotélio Vascular , Macrófagos/metabolismo , Estudos Prospectivos , Tomografia de Coerência Óptica , Diabetes Mellitus/patologia , Receptor 1 de Quimiocina CX3C/genética
6.
Sci Rep ; 11(1): 20613, 2021 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-34663835

RESUMO

In normal pregnancy, the soluble form of FMS-like tyrosine kinase-1 (sFLT1)/ vascular endothelial growth factor receptor-1 (sVEGFR-1), a VEGF-trapping protein, is expressed in trophoblasts of the placenta, suggesting that it plays an important role in the physiological barrier between fetal and maternal angiogenesis, when stimulated with VEGF-A. In pathological conditions such as preeclampsia (PE), sFLT1 protein is abnormally overexpressed in trophoblasts and secreted into the serum, which could cause hypertension and proteinuria on the maternal side and growth retardation on the fetal side. Detection of an abnormal increase in serum sFLT1 during the early to middle stages of PE is essential for proper initiation of medical care. To carry out this screening for sFLT1, we developed an easier and relatively low-cost sandwich-type ELISA method using a single mixture of human serum sample with an anti-FLT1 antibody and heparin-beads, namely heparin-beads-coupled ELISA (HB-ELISA). This method takes only about 2 h, and the sFLT1 values were similar levels with commercially available recent ELISA kits: the serum sFLT1 protein was approximately 4.3-fold increased in severe PE compared with those in normal pregnancy.


Assuntos
Ensaio de Imunoadsorção Enzimática/métodos , Pré-Eclâmpsia/metabolismo , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/análise , Adulto , Feminino , Humanos , Placenta/metabolismo , Pré-Eclâmpsia/sangue , Pré-Eclâmpsia/genética , Gravidez , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/sangue , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo
7.
Mol Hum Reprod ; 27(12)2021 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-34665260

RESUMO

Placental hypoxia and increased levels of maternal blood anti-angiogenic protein, soluble fms-like tyrosine kinase-1 (sFLT1), are associated with the pathogenesis of pre-eclampsia. We have demonstrated that hypoxia-inducible factor (HIF)-2α mediates the upregulation of the hypoxia-induced FLT1 gene in trophoblasts and their cell lines. Here, we investigated the involvement of HIF-1ß, which acts as a dimerization partner for HIF-α, in the upregulation of the FLT1 gene via hypoxia. We confirmed the interactions between HIF-1ß and HIF-2α in the nuclei of BeWo, JAR and JEG-3 cells under hypoxia via co-immunoprecipitation. We found that hypoxia-induced upregulation of the FLT1 gene in BeWo cells and secretion of sFLT1 in human primary trophoblasts were significantly reduced by siRNAs targeting HIF-1ß. Moreover, the upregulation of the FLT1 gene in BeWo cells induced by dimethyloxaloylglycine (DMOG) was also inhibited by silencing either HIF-2α or HIF-1ß mRNA. It was recently shown that DNA demethylation increases both basal and hypoxia-induced expression levels of the FLT1 gene in three trophoblast-derived cell lines. In the demethylated BeWo cells, siRNAs targeting HIF-2α and HIF-1ß suppressed the further increase in the expression levels of the FLT1 gene due to hypoxia or treatment with DMOG. However, luciferase reporter assays and bisulfite sequencing revealed that a hypoxia response element (-966 to -962) of the FLT1 gene is not involved in hypoxia or DMOG-induced upregulation of the FLT1 gene. These findings suggest that HIF-1ß is essential for the elevated production of sFLT1 in the hypoxic trophoblasts and that the HIF-2α/HIF-1ß complex may be a crucial therapeutic target for pre-eclampsia.


Assuntos
Translocador Nuclear Receptor Aril Hidrocarboneto/metabolismo , Trofoblastos/metabolismo , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Aminoácidos Dicarboxílicos/farmacologia , Translocador Nuclear Receptor Aril Hidrocarboneto/genética , Hipóxia Celular , Linhagem Celular Tumoral , Metilação de DNA , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Gravidez , Trofoblastos/efeitos dos fármacos , Regulação para Cima , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/genética
8.
J Antibiot (Tokyo) ; 74(10): 734-742, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34282315

RESUMO

A series of analogs of vegfrecine, a natural quinone vascular endothelial growth factor receptor (VEGFR) tyrosine kinase inhibitor, was synthesized via oxidative amination of 2,5-dihydroxybenzamide with functionalized arylamine followed by ammonolysis and substitution of the quinone ring. The inhibitory activities of the analogs against the VEGFR-1 and -2 tyrosine kinases were assayed in vitro with the aim to identify a compound suitable to treat cancer and inflammatory diseases. Alterations of the functionality of the phenyl group, substitution of the quinone ring, and oxidative cyclization of the 1-carboxamide-2-aminoquinone moiety to form an isoxazole quinone ring were examined. Introduction of halo- and alkyl-substituents at the 5'-position of the phenyl ring resulted in potent inhibition of the VEGFR-1 and -2 tyrosine kinases. In particular, structural modification at C-5' on the phenyl ring was shown to significantly affect the selectivity of the inhibition between the VEGFR-1 and -2 tyrosine kinases. Compound 8, 5'-methyl-vegfrecine, showed superior selectivity toward the VEGFR-2 tyrosine kinase over the VEGFR-1 tyrosine kinase.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Benzoquinonas/química , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Animais , Antineoplásicos/química , Benzoquinonas/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Descoberta de Drogas , Camundongos , Simulação de Acoplamento Molecular , Estrutura Molecular , Células NIH 3T3 , Relação Estrutura-Atividade
9.
Proc Natl Acad Sci U S A ; 118(19)2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33941693

RESUMO

Along with blood vessels, lymphatic vessels play an important role in the circulation of body fluid and recruitment of immune cells. Postnatal lymphangiogenesis commonly occurs from preexisting lymphatic vessels by sprouting, which is induced by lymphangiogenic factors such as vascular endothelial growth factor C (VEGF-C). However, the key signals and cell types that stimulate pathological lymphangiogenesis, such as human cystic lymphangioma, are less well known. Here, we found that mouse dermal fibroblasts that infiltrate to sponges subcutaneously implanted express VEGF-D and sushi, Von Willebrand factor type A, EGF, and pentraxin domain containing 1 (SVEP1) in response to PDGFRß signal. In vitro, Pdgfrb knockout (ß-KO) fibroblasts had reduced expression of VEGF-D and SVEP1 and overproduced Amphiregulin. Dysregulation of these three factors was involved in the cyst-like and uneven distribution of lymphatic vessels observed in the ß-KO mice. Similarly, in human cystic lymphangioma, which is one of the intractable diseases and mostly occurs in childhood, fibroblasts surrounding cystic lymphatics highly expressed Amphiregulin. Moreover, fibroblast-derived Amphiregulin could induce the expression of Amphiregulin in lymphatic endothelial cells. The dual source of Amphiregulin activated EGFR expressed on the lymphatic endothelial cells. This exacerbation cascade induced proliferation of lymphatic endothelial cells to form cystic lymphangioma. Ultimately, excessive Amphiregulin produced by fibroblasts surrounding lymphatics and by lymphatic endothelial cells per se results in pathogenesis of cystic lymphangioma and will be a fascinating therapeutic target of cystic lymphangioma.


Assuntos
Anfirregulina/metabolismo , Anfirregulina/farmacologia , Linfangiogênese/efeitos dos fármacos , Linfangiogênese/fisiologia , Linfangioma Cístico/metabolismo , Anfirregulina/genética , Animais , Proliferação de Células/efeitos dos fármacos , Células Endoteliais/metabolismo , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Linfangioma Cístico/genética , Linfangioma Cístico/patologia , Vasos Linfáticos/metabolismo , Masculino , Camundongos , Camundongos Knockout , Receptor beta de Fator de Crescimento Derivado de Plaquetas/genética , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Fator C de Crescimento do Endotélio Vascular/metabolismo , Fator D de Crescimento do Endotélio Vascular
10.
J Pharmacol Sci ; 143(4): 255-263, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32487450

RESUMO

Lymphangiogenesis is related to the growth of endometriosis. Here, we examined whether vascular endothelial growth factor (VEGF) receptor 1 (VEGFR1) signaling plays a role in lymphangiogenesis during endometriosis. Endometrial fragments from wild-type (WT) mice transplanted into the peritoneal wall of host WT mice (WT→WT) developed well and displayed enhanced lymphangiogenesis associated with increases in mRNA levels of VEGF-C and VEGF-D. Compared with WT mice, the implant size and lymphangiogenesis were reduced, when endometrial fragments from mice lacking the VEGFR1 tyrosine kinase (TK) domain (TK-/-) were transplanted into host TK-/- mice (TK-/-→TK-/-). Treatment of WT→WT mice with the VEGFR3 kinase inhibitor suppressed the size of implants and lymphangiogenesis. Immunofluorescence analyses demonstrated that VEGF-C and VEGF-D were expressed in both CD11b+ and S100A4+ cells. TK-/-→TK-/- mice had lower numbers of CD11b+ and S100A4+ cells than WT→WT mice. When isolated bone marrow (BM)-derived macrophages or culture murine fibroblasts were stimulated with placental growth factor (PlGF), a specific agonist of VEGFR1, the levels of VEGF-C and VEGF-D were increased in a VEGFR1-dependent manner. These results suggest that VEGFR1 signaling in macrophages and fibroblasts contributes to the growth of endometrial implants and lymphangiogenesis.


Assuntos
Endometriose/etiologia , Linfangiogênese/genética , Transdução de Sinais , Receptor 1 de Fatores de Crescimento do Endotélio Vascular , Animais , Progressão da Doença , Feminino , Camundongos , Camundongos Endogâmicos C57BL
11.
BMC Cancer ; 20(1): 112, 2020 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-32041578

RESUMO

BACKGROUND: Soluble Fms-like tyrosine kinase-1 (sFLT1) as an anti-angiogenic factor is abundantly expressed in placental trophoblasts. Choriocarcinoma, a malignant tumor derived from trophoblasts, is known to be highly angiogenic and metastatic. However, the molecular mechanism underlying angiogenesis in choriocarcinoma pathogenesis remains unclear. We aimed to investigate the mRNA expression and DNA methylation status of the FLT1 gene in human choriocarcinoma cells and trophoblast cells. METHODS: qRT-PCR, Western blotting and ELISA were conducted to evaluate the mRNA and protein expression levels of sFLT1. 5-aza-2'-deoxycytidine (5azadC) treatment and bisulfite sequencing were used to study the FLT1 gene promoter methylation. The effect of sFLT1 on choriocarcinoma growth and angiogenesis was evaluated in a xenograft mouse model. RESULTS: Expression of the FLT1 gene was strongly suppressed in choriocarcinoma cell lines compared with that in the primary trophoblasts. Treatment of choriocarcinoma cell lines with 5azadC, a DNA methyltransferase inhibitor, markedly increased in mRNA expression of three FLT1 splice variants and secretion of sFLT1 proteins. Bisulfite sequencing revealed that the CpG hypermethylation was observed at the FLT1 promoter region in choriocarcinoma cell lines and a human primary choriocarcinoma tissue but not in human trophoblast cells. Interestingly, in 5azadC-treated choriocarcinoma cell lines, sFLT1 mRNA expression and sFLT1 production were further elevated by hypoxic stimulation. Finally, as expected, sFLT1-expressing choriocarcinoma cells implanted into nude mice showed significantly slower tumor growth and reduced microvessel formation compared with GFP-expressing control choriocarcinoma cells. CONCLUSIONS: Inhibition of sFLT1 production by FLT1 silencing occurs via the hypermethylation of its promoter in choriocarcinoma cells. The stable expression of sFLT1 in choriocarcinoma cells resulted in the suppression of tumor growth and tumor vascularization in vivo. We suggest that the FLT1 gene may be a cell-type-specific tumor suppressor in choriocarcinoma cells.


Assuntos
Coriocarcinoma/genética , Coriocarcinoma/metabolismo , Metilação de DNA , Regulação Neoplásica da Expressão Gênica , Regiões Promotoras Genéticas , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/biossíntese , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/genética , Animais , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Coriocarcinoma/patologia , Ilhas de CpG , Modelos Animais de Doenças , Feminino , Humanos , Hipóxia/genética , Hipóxia/metabolismo , Camundongos , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Isoformas de Proteínas , Splicing de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Ensaios Antitumorais Modelo de Xenoenxerto
12.
J Cell Physiol ; 235(6): 5305-5317, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31875985

RESUMO

Although degenerative disc disease (DDD) and related low back pain (LBP) are growing public health problems, the underlying disease mechanisms remain unclear. An increase in the vascular endothelial growth factor (VEGF) levels in DDD has been reported. This study aimed to examine the role of VEGF receptors (VEGFRs) in DDD, using a mouse model of DDD. Progressive DDD was induced by anterior stabbing of lumbar intervertebral discs in wild type (WT) and VEGFR-1 tyrosine-kinase deficient mice (vegfr-1TK-/- ). Pain assessments were performed weekly for 12 weeks. Histological and immunohistochemical assessments were made for discs, dorsal root ganglions, and spinal cord. Both vegfr-1TK-/- and WT mice presented with similar pathological changes in discs with an increased expression of inflammatory cytokines and matrix-degrading enzymes. Despite the similar pathological patterns, vegfr-1TK-/- mice showed insensitivity to pain compared with WT mice. This insensitivity to discogenic pain was related to lower levels of pain factors in the discs and peripheral sensory neurons and lower spinal glial activation in the vegfr-1TK- /- mice than in the WT mice. Exogenous stimulation of bovine disc cells with VEGF increased inflammatory and cartilage degrading enzyme. Silencing vegfr-1 by small-interfering-RNA decreased VEGF-induced expression of pain markers, while silencing vegfr-2 decreased VEGF-induced expression of inflammatory and metabolic markers without changing pain markers. This suggests the involvement of VEGFR-1 signaling specifically in pain transmission. Collectively, our results indicate that the VEGF signaling is involved in DDD. Particularly, VEGFR-1 is critical for discogenic LBP transmission independent of the degree of disc pathology.


Assuntos
Disco Intervertebral/metabolismo , Dor Lombar/genética , Vértebras Lombares/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/genética , Animais , Modelos Animais de Doenças , Gânglios Espinais/metabolismo , Gânglios Espinais/patologia , Regulação da Expressão Gênica/genética , Humanos , Disco Intervertebral/lesões , Disco Intervertebral/patologia , Dor Lombar/patologia , Vértebras Lombares/lesões , Vértebras Lombares/patologia , Camundongos , Medição da Dor , Transdução de Sinais/genética
13.
Cell Rep ; 29(1): 89-103.e7, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31577958

RESUMO

Tolerance to severe tumor microenvironments, including hypoxia and nutrient starvation, is a common feature of aggressive cancer cells and can be targeted. However, metabolic alterations that support cancer cells upon nutrient starvation are not well understood. Here, by comprehensive metabolome analyses, we show that glutamine deprivation leads to phosphoethanolamine (PEtn) accumulation in cancer cells via the downregulation of PEtn cytidylyltransferase (PCYT2), a rate-limiting enzyme of phosphatidylethanolamine biosynthesis. PEtn accumulation correlated with tumor growth under nutrient starvation. PCYT2 suppression was partially mediated by downregulation of the transcription factor ELF3. Furthermore, PCYT2 overexpression reduced PEtn levels and tumor growth. In addition, PEtn accumulation and PCYT2 downregulation in human breast tumors correlated with poor prognosis. Thus, we show that glutamine deprivation leads to tumor progression by regulating PE biosynthesis via the ELF3-PCYT2 axis. Furthermore, manipulating glutamine-responsive genes could be a therapeutic approach to limit cancer progression.


Assuntos
Regulação para Baixo/genética , Etanolaminas/metabolismo , Glutamina/metabolismo , RNA Nucleotidiltransferases/genética , Inanição/metabolismo , Animais , Linhagem Celular , Linhagem Celular Tumoral , Progressão da Doença , Células HeLa , Células Hep G2 , Células Endoteliais da Veia Umbilical Humana , Humanos , Células MCF-7 , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas c-ets/genética , Transcrição Gênica/genética
14.
Biomed Pharmacother ; 117: 109067, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31176171

RESUMO

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a lethal lung disease with a poor prognosis. Fibroblast proliferation amplifies extracellular matrix deposition and increases angiogenesis. Vascular endothelial growth factor (VEGF) is one of the most potent angiogenic factors. VEGF interacts with VEGF receptors (VEGFR1 and VEGFR2). A previous study showed that VEGFR1 tyrosine kinase (TK) signaling induced blood flow recovery mediated by bone marrow (BM)-derived stem cells. We hypothesized that VEGFR1-TK signaling might be related to pulmonary fibrosis. MATERIAL AND METHODS: Six-week-old male C57Bl/6 wild-type (WT) mice and VEGFR1 TK knockout mice (TKKO mice) were treated with a single intratracheal injection of bleomycin (BLM; 0.1 µg in 50 µl saline) or vehicle (saline; 50 µl). Lung fibrosis was evaluated by histology, real-time PCR and ELISA for pro-fibrotic factors, and assessment of lung mechanics. RESULTS: The fibrotic area in the lung and the lung elastance were significantly reduced in TKKO mice (P < 0.01). The expression of the fibrosis-related factors type I collagen, S100A4, and transforming growth factor (TGF)-ß was also significantly reduced in TKKO mice on day 21 after BLM injection. TKKO mice also had significantly lower levels of stromal cell-derived factor (SDF)-1 in the lungs and plasma on days 14 and 21 after BLM treatment (P < 0.05). Moreover, the expression of C-X-C chemokine receptor type 7 (CXCR7) and CXCR4, the receptors for SDF-1, was also suppressed in TKKO mice. Immunohistochemical analysis showed that treatment with a CXCR4 antibody decreased the accumulation of VEGFR1+ cells in the lung in WT mice but not in TKKO mice. CONCLUSION: These results suggest that VEGFR1 TK signaling promotes BLM-induced pulmonary fibrosis by activating the SDF-1/CXCR4 axis in infiltrating VEGFR1+ cells.


Assuntos
Fibrose Pulmonar/metabolismo , Transdução de Sinais , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Animais , Bleomicina , Quimiocina CXCL12/administração & dosagem , Quimiocina CXCL12/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/patologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores CXCR/metabolismo , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/genética
15.
Sci Rep ; 9(1): 7037, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-31065021

RESUMO

Angiogenesis is critical in maintenance of endometrial tissues. Here, we examined the role of VEGF receptor 1 (VEGFR1) signaling in angiogenesis and tissue growth in an endometriosis model. Endometrial fragments were implanted into the peritoneal wall of mice, and endometrial tissue growth and microvessel density (MVD) were determined. Endometrial fragments from wild-type (WT) mice grew slowly with increased angiogenesis determined by CD31+ MVD, peaking on Day 14. When tissues from WT mice were transplanted into VEGFR1 tyrosine kinase-knockout mice, implant growth and angiogenesis were suppressed on Day 14 compared with growth of WT implants in a WT host. The blood vessels in the implants were not derived from the host peritoneum. Immunostaining for VEGFR1 suggested that high numbers of VEGFR1+ cells such as macrophages were infiltrated into the endometrial tissues. When macrophages were deleted with Clophosome N, both endometrial tissue growth and angiogenesis were significantly suppressed. Bone marrow chimera experiments revealed that growth and angiogenesis in endometrial implants were promoted by host bone marrow-derived VEGFR1+/CD11b+ macrophages that accumulated in the implants, and secreted basic fibroblast growth factor (bFGF). A FGF receptor kinase inhibitor, PD173047 significantly reduced size of endometrial tissues and angiogenesis. VEGFR1 signaling in host-derived cells is crucial for growth and angiogenesis in endometrial tissue. Thus, VEGFR1 blockade is a potential treatment for endometriosis.


Assuntos
Endométrio/irrigação sanguínea , Macrófagos/fisiologia , Neovascularização Fisiológica/fisiologia , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Animais , Células da Medula Óssea/metabolismo , Antígeno CD11b/metabolismo , Endometriose/tratamento farmacológico , Endometriose/fisiopatologia , Endométrio/citologia , Endométrio/transplante , Feminino , Macrófagos/citologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microvasos/fisiologia , Neovascularização Fisiológica/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacologia , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/genética
16.
Biomed Pharmacother ; 111: 131-141, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30579252

RESUMO

BACKGROUND: Ulcerative Colitis (UC) is an inflammatory bowel disease that affects the colon. The development of UC is regulated by immune cells. Previously, we showed that vascular endothelial growth factor receptor 1 (VEGFR1) tyrosine kinase (TK) signaling induces healing of mucosal damage by recruiting VEGFR1+ cells appear to be lineage monocyte cells. Recent studies show that development of UC correlates with the number of regulatory T cells (Tregs). Here, we investigated whether VEGFR1-TK signaling induces healing of UC via accumulation of Tregs or not. METHOD: Acute colitis was induced in C57/Bl6N (wild-type [WT]) and VEGFR1 T K knockout (VEGFR1 T K-/-) mice by administration of 2.0% dextran sulfate sodium (DSS). RESULTS: Total colon length in VEGFR1 T K-/- mice was shorter than that in WT mice. The ulcer length and the disease activity index (DAI) score were significantly higher in VEGFR1 T K-/- mice than in WT mice, whereas CD31 mRNA and protein levels were significantly lower. Accumulation of forkhead box P3+ (Foxp3+) VEGFR1+ Tregs was lower in VEGFR1 T K-/- mice, as was expression of interleukin (IL)-10 and transforming growth factor (TGF)-ß. The survival rate of WT mice treated with an anti-folate receptor 4 (FR4) antibody was 40%, while that of WT mice treated with control IgG was 90%. Moreover, WT mice treated with a neutralizing antibody against C-X-C chemokine receptor type 4 (CXCR4) showed significantly shorter colon length than WT with control antibody. In VEGFR1 T K-/-, infiltration of Foxp3+ Tregs expressing VEGFR1 and CXCR4 into ulcerated areas was lower than that in WT mice. CONCLUSION: VEGFR1-TK signaling plays a critical role in UC healing and angiogenesis via accumulation of VEGFR1+CXCR4+Foxp3+ Tregs in ulcerated tissue. (264 words).


Assuntos
Colite Ulcerativa/metabolismo , Sulfato de Dextrana/toxicidade , Transdução de Sinais/fisiologia , Linfócitos T Reguladores/metabolismo , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/biossíntese , Cicatrização/fisiologia , Animais , Colite Ulcerativa/induzido quimicamente , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais/efeitos dos fármacos , Linfócitos T Reguladores/efeitos dos fármacos , Cicatrização/efeitos dos fármacos
17.
Sci Rep ; 8(1): 17375, 2018 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-30478339

RESUMO

Placental hypoxia and elevated levels of circulating soluble Fms-like tyrosine kinase-1 (sFlt-1), an anti-angiogenic factor, are closely related to the pathogenesis of preeclampsia. Although sFlt-1 secretion from the placental trophoblasts is increased under hypoxic conditions, the underlying molecular mechanism remains unclear. Previously, an authentic hypoxia response element in the Flt-1 gene promoter was shown to be a potential binding site for hypoxia-inducible factors (HIFs). Here, we investigated the roles of HIF-1α and HIF-2α in Flt-1 gene expression in trophoblast-derived choriocarcinoma cell lines and cytotrophoblasts exposed to hypoxic conditions. In the cell lines, increased expression of sFlt-1 splice variants and nuclear accumulation of HIF-1α and HIF-2α were observed after hypoxic stimulation. A specific small interfering RNA or an inhibitor molecule targeting HIF-2α decreased hypoxia-induced up-regulation of Flt-1 gene expression. Moreover, in cytotrophoblasts, increased sFlt-1 mRNA expression and elevated sFlt-1 production were induced by hypoxic stimulation. Notably, hypoxia-induced elevation of sFlt-1 secretion from the cytotrophoblasts was inhibited by silencing the HIF-2α, but not HIF-1α mRNA. These findings suggest that hypoxia-induced activation of HIF-2α is essential for the increased production of sFlt-1 proteins in trophoblasts. Targeting the HIF-2α may be a novel strategy for the treatment of preeclampsia.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Expressão Gênica/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Hipóxia/genética , Placenta/metabolismo , Trofoblastos/metabolismo , Regulação para Cima/genética , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/genética , Linhagem Celular , Feminino , Humanos , Pré-Eclâmpsia/genética , Gravidez , Regiões Promotoras Genéticas/genética , RNA Mensageiro/genética , RNA Interferente Pequeno/genética
18.
Am J Physiol Cell Physiol ; 315(2): C214-C224, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29719170

RESUMO

Ectodomain shedding and regulated intracellular proteolysis can determine the fate or function of cell surface proteins. Fms-related tyrosine kinase (FLT) or VEGF receptor 1 is a high-affinity cell surface VEGF-A receptor tyrosine kinase that is constitutively cleaved to release an NH2-terminal VEGF-A binding ectodomain that, once shed, can antagonize the effects of VEGF-A in the extracellular milieu. We evaluated the effect of VEGF-A on FLT1 cleavage in native cells and in transient and stable expression systems. We demonstrate that VEGF-A inhibits FLT1 ectodomain cleavage in a time- and dose-dependent manner, whereas VEGF-A knockdown in HEK293 cells increases ectodomain shedding. Although kinase insert domain receptor (KDR) or VEGF receptor 2, analogous to FLT1, is also subject to extracellular and intracellular cleavage, VEGF-A does not inhibit KDR cleavage. VEGF-A inhibition of FLT1 cleavage is not dependent on FLT1 tyrosine kinase activity or the intracellular FLT1 residues. N-acetylleucylleucylnorleucinal (ALLN), a proteasomal inhibitor; bafilomycin A, an inhibitor of endosomal acidification; and dynasore, a dynamin inhibitor, all increase the abundance of FLT1 and the shed ectodomain, indicating that FLT1 is subject to dynamin-mediated endocytosis and susceptible to proteasomal and lysosomal degradation. VEGF-A inhibition of cleavage is not reversed by ALLN, bafilomycin A, or dynasore. However, a 30 AA deletion in the extracellular immunoglobulin 7 domain leads to enhanced cleavage of Flt1 with a significant reduction of the VEGF inhibitory effect. Our results indicate that the inhibition of FLT1 ectodomain cleavage by VEGF-A is dependent neither on receptor activation nor on internalization nor a consequence of receptor degradation and likely represents a direct inhibitory effect on receptor cleavage.


Assuntos
Endocitose/fisiologia , Endossomos/metabolismo , Proteínas de Membrana/metabolismo , Receptores de Superfície Celular/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Animais , Células COS , Linhagem Celular , Chlorocebus aethiops , Células HEK293 , Células Endoteliais da Veia Umbilical Humana , Humanos , Proteólise , Receptores Proteína Tirosina Quinases/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
19.
EBioMedicine ; 31: 190-201, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29724654

RESUMO

Pericyte desorption from retinal blood vessels and subsequent vascular abnormalities are the pathogenesis of diabetic retinopathy (DR). Although the involvement of abnormal signals including platelet-derived growth factor receptor-ß (PDGFRß) and vascular endothelial growth factor-A (VEGF-A) have been hypothesized in DR, the mechanisms that underlie this processes are largely unknown. Here, novel retinopathy mouse model (N-PRß-KO) was developed with conditional Pdgfrb gene deletion by Nestin promoter-driven Cre recombinase (Nestin-Cre) that consistently reproduced through early non-proliferative to late proliferative DR pathologies. Depletion of Nestin-Cre-sensitive PDGFRß+NG2+αSMA- pericytes suppressed pericyte-coverages and induced severe vascular lesion and hemorrhage. Nestin-Cre-insensitive PDGFRß+NG2+αSMA+ pericytes detached from the vascular wall, and subsequently changed into myofibroblasts in proliferative membrane to cause retinal traction. PDGFRα+ astrogliosis was seen in degenerated retina. Expressions of placental growth factor (PlGF), VEGF-A and PDGF-BB were significantly increased in the retina of N-PRß-KO. PDGF-BB may contribute to the pericyte-fibroblast transition and glial scar formation. Since VEGFR1 signal blockade significantly ameliorated the vascular phenotype in N-PRß-KO mice, the augmented VEGFR1 signal by PlGF and VEGF-A was indicated to mediate vascular lesions. In addition to PDGF-BB, PlGF and VEGF-A with their intracellular signals may be the relevant therapeutic targets to protect eyes from DR.


Assuntos
Retinopatia Diabética , Proteínas do Olho , Pericitos , Retina , Transdução de Sinais , Animais , Becaplermina , Retinopatia Diabética/genética , Retinopatia Diabética/metabolismo , Retinopatia Diabética/patologia , Modelos Animais de Doenças , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Proteínas de Membrana , Camundongos , Camundongos Knockout , Pericitos/metabolismo , Pericitos/patologia , Proteínas/genética , Proteínas/metabolismo , Proteínas Proto-Oncogênicas c-sis/genética , Proteínas Proto-Oncogênicas c-sis/metabolismo , Receptor beta de Fator de Crescimento Derivado de Plaquetas/genética , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Retina/metabolismo , Retina/patologia , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo
20.
Anat Sci Int ; 93(3): 372-383, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29256114

RESUMO

Vascular endothelial growth factor (VEGF)-A facilitates wound healing. VEGF-A binds to VEGF receptor 1 (VEGFR1) and VEGFR2 and induces wound healing through the receptor's tyrosine kinase (TK) domain. During blood flow recovery and lung regeneration, expression of VEGFR1 is elevated. However, the precise mechanism of wound healing, especially granulation formation on VEGFR1, is not well understood. We hypothesized that VEGFR1-TK signaling induces wound healing by promoting granulation tissue formation. A surgical sponge implantation model was made by implanting a sponge disk into dorsal subcutaneous tissue of mice. Granulation formation was estimated from the weight of the sponge and the granulation area from the immunohistochemical analysis of collagen I. The expression of fibroblast markers was estimated from the expression of transforming growth factor-beta (TGF-ß) and cellular fibroblast growth factor-2 (FGF-2) using real-time PCR (polymerase chain reaction) and from the immunohistochemical analysis of S100A4. VEGFR1 TK knockout (TK-/-) mice exhibited suppressed granulation tissue formation compared to that in wild-type (WT) mice. Expression of FGF-2, TGF-ß, and VEGF-A was significantly suppressed in VEGFR1 TK-/- mice, and the accumulation of VEGFR1+ cells in granulation tissue was reduced in VEGFR1 TK-/- mice compared to that in WT mice. The numbers of VEGFR1+ cells and S100A4+ cells derived from bone marrow (BM) were higher in WT mice transplanted with green fluorescent protein (GFP) transgenic WT BM than in VEGFR1 TK-/- mice transplanted with GFP transgenic VEGFR1 TK-/- BM. These results indicated that VEGFR1-TK signaling induced the accumulation of BM-derived VEGFR1+ cells expressing F4/80 and S100A4 and contributed to granulation formation around the surgically implanted sponge area in a mouse model.


Assuntos
Células da Medula Óssea/metabolismo , Células da Medula Óssea/fisiologia , Tecido de Granulação/citologia , Tecido de Granulação/fisiologia , Proteínas Tirosina Quinases/fisiologia , Transdução de Sinais/fisiologia , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/fisiologia , Animais , Transplante de Medula Óssea , Fibroblastos/citologia , Fibroblastos/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Cicatrização/genética , Cicatrização/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA