Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Exp Clin Cancer Res ; 42(1): 112, 2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37143137

RESUMO

BACKGROUND: Uterine leiomyosarcoma (uLMS) is a rare and aggressive gynaecological malignancy, with individuals with advanced uLMS having a five-year survival of < 10%. Mutations in the homologous recombination (HR) DNA repair pathway have been observed in ~ 10% of uLMS cases, with reports of some individuals benefiting from poly (ADP-ribose) polymerase (PARP) inhibitor (PARPi) therapy, which targets this DNA repair defect. In this report, we screened individuals with uLMS, accrued nationally, for mutations in the HR repair pathway and explored new approaches to therapeutic targeting. METHODS: A cohort of 58 individuals with uLMS were screened for HR Deficiency (HRD) using whole genome sequencing (WGS), whole exome sequencing (WES) or NGS panel testing. Individuals identified to have HRD uLMS were offered PARPi therapy and clinical outcome details collected. Patient-derived xenografts (PDX) were generated for therapeutic targeting. RESULTS: All 13 uLMS samples analysed by WGS had a dominant COSMIC mutational signature 3; 11 of these had high genome-wide loss of heterozygosity (LOH) (> 0.2) but only two samples had a CHORD score > 50%, one of which had a homozygous pathogenic alteration in an HR gene (deletion in BRCA2). A further three samples harboured homozygous HRD alterations (all deletions in BRCA2), detected by WES or panel sequencing, with 5/58 (9%) individuals having HRD uLMS. All five individuals gained access to PARPi therapy. Two of three individuals with mature clinical follow up achieved a complete response or durable partial response (PR) with the subsequent addition of platinum to PARPi upon minor progression during initial PR on PARPi. Corresponding PDX responses were most rapid, complete and sustained with the PARP1-specific PARPi, AZD5305, compared with either olaparib alone or olaparib plus cisplatin, even in a paired sample of a BRCA2-deleted PDX, derived following PARPi therapy in the patient, which had developed PARPi-resistance mutations in PRKDC, encoding DNA-PKcs. CONCLUSIONS: Our work demonstrates the value of identifying HRD for therapeutic targeting by PARPi and platinum in individuals with the aggressive rare malignancy, uLMS and suggests that individuals with HRD uLMS should be included in trials of PARP1-specific PARPi.


Assuntos
Leiomiossarcoma , Neoplasias Ovarianas , Neoplasias Uterinas , Feminino , Humanos , Leiomiossarcoma/tratamento farmacológico , Leiomiossarcoma/genética , Leiomiossarcoma/patologia , Platina , Piperazinas/farmacologia , Piperazinas/uso terapêutico , Neoplasias Uterinas/tratamento farmacológico , Neoplasias Uterinas/genética , Poli(ADP-Ribose) Polimerases , Reparo de DNA por Recombinação , Neoplasias Ovarianas/patologia , Recombinação Homóloga
2.
medRxiv ; 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-36993400

RESUMO

BRCA1 splice isoforms Δ11 and Δ11q can contribute to PARP inhibitor (PARPi) resistance by splicing-out the mutation-containing exon, producing truncated, partially-functional proteins. However, the clinical impact and underlying drivers of BRCA1 exon skipping remain undetermined. We analyzed nine ovarian and breast cancer patient derived xenografts (PDX) with BRCA1 exon 11 frameshift mutations for exon skipping and therapy response, including a matched PDX pair derived from a patient pre- and post-chemotherapy/PARPi. BRCA1 exon 11 skipping was elevated in PARPi resistant PDX tumors. Two independent PDX models acquired secondary BRCA1 splice site mutations (SSMs), predicted in silico to drive exon skipping. Predictions were confirmed using qRT-PCR, RNA sequencing, western blots and BRCA1 minigene modelling. SSMs were also enriched in post-PARPi ovarian cancer patient cohorts from the ARIEL2 and ARIEL4 clinical trials. We demonstrate that SSMs drive BRCA1 exon 11 skipping and PARPi resistance, and should be clinically monitored, along with frame-restoring secondary mutations.

3.
Cancer Res ; 81(18): 4709-4722, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34321239

RESUMO

In high-grade serous ovarian carcinoma (HGSC), deleterious mutations in DNA repair gene RAD51C are established drivers of defective homologous recombination and are emerging biomarkers of PARP inhibitor (PARPi) sensitivity. RAD51C promoter methylation (meRAD51C) is detected at similar frequencies to mutations, yet its effects on PARPi responses remain unresolved.In this study, three HGSC patient-derived xenograft (PDX) models with methylation at most or all examined CpG sites in the RAD51C promoter show responses to PARPi. Both complete and heterogeneous methylation patterns were associated with RAD51C gene silencing and homologous recombination deficiency (HRD). PDX models lost meRAD51C following treatment with PARPi rucaparib or niraparib, where a single unmethylated copy of RAD51C was sufficient to drive PARPi resistance. Genomic copy number profiling of one of the PDX models using SNP arrays revealed that this resistance was acquired independently in two genetically distinct lineages.In a cohort of 12 patients with RAD51C-methylated HGSC, various patterns of meRAD51C were associated with genomic "scarring," indicative of HRD history, but exhibited no clear correlations with clinical outcome. Differences in methylation stability under treatment pressure were also observed between patients, where one HGSC was found to maintain meRAD51C after six lines of therapy (four platinum-based), whereas another HGSC sample was found to have heterozygous meRAD51C and elevated RAD51C gene expression (relative to homozygous meRAD51C controls) after only neoadjuvant chemotherapy.As meRAD51C loss in a single gene copy was sufficient to cause PARPi resistance in PDX, methylation zygosity should be carefully assessed in previously treated patients when considering PARPi therapy. SIGNIFICANCE: Homozygous RAD51C methylation is a positive predictive biomarker for sensitivity to PARP inhibitors, whereas a single unmethylated gene copy is sufficient to confer resistance.


Assuntos
Cistadenocarcinoma Seroso/genética , Metilação de DNA , Proteínas de Ligação a DNA/genética , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias Ovarianas/genética , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Regiões Promotoras Genéticas , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Biologia Computacional , Cistadenocarcinoma Seroso/tratamento farmacológico , Cistadenocarcinoma Seroso/metabolismo , Cistadenocarcinoma Seroso/patologia , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Feminino , Perfilação da Expressão Gênica , Inativação Gênica , Homozigoto , Humanos , Camundongos , Gradação de Tumores , Estadiamento de Neoplasias , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Prognóstico , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Cell Death Dis ; 12(3): 268, 2021 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-33712556

RESUMO

Targeting cell division by chemotherapy is a highly effective strategy to treat a wide range of cancers. However, there are limitations of many standard-of-care chemotherapies: undesirable drug toxicity, side-effects, resistance and high cost. New small molecules which kill a wide range of cancer subtypes, with good therapeutic window in vivo, have the potential to complement the current arsenal of anti-cancer agents and deliver improved safety profiles for cancer patients. We describe results with a new anti-cancer small molecule, WEHI-7326, which causes cell cycle arrest in G2/M, cell death in vitro, and displays efficacious anti-tumor activity in vivo. WEHI-7326 induces cell death in a broad range of cancer cell lines, including taxane-resistant cells, and inhibits growth of human colon, brain, lung, prostate and breast tumors in mice xenografts. Importantly, the compound elicits tumor responses as a single agent in patient-derived xenografts of clinically aggressive, treatment-refractory neuroblastoma, breast, lung and ovarian cancer. In combination with standard-of-care, WEHI-7326 induces a remarkable complete response in a mouse model of high-risk neuroblastoma. WEHI-7326 is mechanistically distinct from known microtubule-targeting agents and blocks cells early in mitosis to inhibit cell division, ultimately leading to apoptotic cell death. The compound is simple to produce and possesses favorable pharmacokinetic and toxicity profiles in rodents. It represents a novel class of anti-cancer therapeutics with excellent potential for further development due to the ease of synthesis, simple formulation, moderate side effects and potent in vivo activity. WEHI-7326 has the potential to complement current frontline anti-cancer drugs and to overcome drug resistance in a wide range of cancers.


Assuntos
Antimitóticos/farmacologia , Resistencia a Medicamentos Antineoplásicos , Neoplasias/tratamento farmacológico , Animais , Antimitóticos/farmacocinética , Antimitóticos/toxicidade , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Feminino , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Células Hep G2 , Humanos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Nus , Mitose/efeitos dos fármacos , Neoplasias/patologia , Células PC-3 , Ratos Sprague-Dawley , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Cancer Discov ; 7(9): 984-998, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28588062

RESUMO

High-grade epithelial ovarian carcinomas containing mutated BRCA1 or BRCA2 (BRCA1/2) homologous recombination (HR) genes are sensitive to platinum-based chemotherapy and PARP inhibitors (PARPi), while restoration of HR function due to secondary mutations in BRCA1/2 has been recognized as an important resistance mechanism. We sequenced core HR pathway genes in 12 pairs of pretreatment and postprogression tumor biopsy samples collected from patients in ARIEL2 Part 1, a phase II study of the PARPi rucaparib as treatment for platinum-sensitive, relapsed ovarian carcinoma. In 6 of 12 pretreatment biopsies, a truncation mutation in BRCA1, RAD51C, or RAD51D was identified. In five of six paired postprogression biopsies, one or more secondary mutations restored the open reading frame. Four distinct secondary mutations and spatial heterogeneity were observed for RAD51CIn vitro complementation assays and a patient-derived xenograft, as well as predictive molecular modeling, confirmed that resistance to rucaparib was associated with secondary mutations.Significance: Analyses of primary and secondary mutations in RAD51C and RAD51D provide evidence for these primary mutations in conferring PARPi sensitivity and secondary mutations as a mechanism of acquired PARPi resistance. PARPi resistance due to secondary mutations underpins the need for early delivery of PARPi therapy and for combination strategies. Cancer Discov; 7(9); 984-98. ©2017 AACR.See related commentary by Domchek, p. 937See related article by Quigley et al., p. 999See related article by Goodall et al., p. 1006This article is highlighted in the In This Issue feature, p. 920.


Assuntos
Proteínas de Ligação a DNA/genética , Resistencia a Medicamentos Antineoplásicos/genética , Indóis/uso terapêutico , Neoplasias Ovarianas/tratamento farmacológico , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Animais , Células CHO , Linhagem Celular Tumoral , Cricetulus , Feminino , Células HEK293 , Humanos , Mutação , Neoplasias Ovarianas/genética
6.
BMC Cancer ; 15: 506, 2015 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-26152113

RESUMO

BACKGROUND: While a number of studies have examined miRNA profiles across the molecular subtypes of breast cancer, it is unclear whether BRCA1 basal-like cancers have a specific miRNA profile. This study aims to compare grade independent miRNA expression in luminal cancers, sporadic and BRCA1 basal-type breast cancers. It also aims to ascertain an immunohistochemical profile regulated by BRCA1 specific miRNAs for potential diagnostic use. METHODS: miRNA expression was assessed in 11 BRCA1 basal, 16 sporadic basal, 17 luminal grade 3 cancers via microarrays. The expression of Cyclin D1, FOXP1, FIH-1, pan-ERß, NRP1 and CD99, predicted to be regulated by BRCA1 specific miRNAs by computer prediction algorithms, was assessed via immunohistochemistry in a cohort of 35 BRCA1 and 52 sporadic basal-like cancers. Assessment of cyclin D1, FOXP1, NRP1 and CD99 expression was repeated on a validation cohort of 82 BRCA1 and 65 sporadic basal-like breast cancers. RESULTS: Unsupervised clustering of basal cancers resulted in a "sporadic" cluster of 11 cancers, and a "BRCA1" cluster of 16 cancers, including a subgroup composed entirely of 10 BRCA1 cancers. Compared with sporadic basal cancers, BRCA1 cancers showed reduced positivity for proteins predicted to be regulated by miRNAs: FOXP1 (6/20[30 %] vs. 37/49[76 %], p < 0.001), cyclin D1 (8/22[36 %] vs. 30/46[65 %], p = 0.025), NRP1 (2/20[10 %] vs. 23/46[50 %], p = 0.002). This was confirmed in the validation cohort (all p < 0.001). Negative staining for 2 or more out of FOXP1, cyclin D1 and NRP1 predicts germline BRCA1 mutation with a sensitivity of 92 %, specificity of 44 %, positive predictive value of 38 % and a negative predictive value of 94 %. CONCLUSION: Sporadic and BRCA1 basal-like cancers have grade independent miRNA expression profiles. Furthermore miRNA driven differences in the expression of proteins in BRCA1 basal cancers may be detected via immunohistochemistry. These findings may have important diagnostic implications, as immunohistochemical assessment of basal cancers, in addition to the patient's family and clinical history, may potentially identify patients who may benefit from BRCA1 gene testing.


Assuntos
Neoplasias da Mama/genética , Genes BRCA1 , Estudos de Associação Genética , MicroRNAs/genética , Mutação , Neoplasia de Células Basais/genética , Transcriptoma , Biomarcadores Tumorais , Neoplasias da Mama/patologia , Análise por Conglomerados , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Imuno-Histoquímica , Gradação de Tumores , Neoplasia de Células Basais/patologia , Interferência de RNA , RNA Mensageiro/genética
7.
J Carcinog ; 12: 10, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23858298

RESUMO

INTRODUCTION: Ovarian cancer is the leading cause of death from gynecological cancer. Non-specific symptoms early in disease and the lack of specific biomarkers hinder early diagnosis. Multi-marker blood screening tests have shown promise for improving identification of early stage disease; however, available tests lack sensitivity, and specificity. MATERIALS AND METHODS: In this study, pooled deeply-depleted plasma from women with Stage 1, 2 or 3 ovarian cancer and healthy controls were used to compare the 2-dimensional gel electrophoresis (2-DE) protein profiles and identify potential novel markers of ovarian cancer progression. RESULTS/DISCUSSION: Stage-specific variation in biomarker expression was observed. For example, apolipoprotein A1 expression is relatively low in control and Stage 1, but shows a substantial increase in Stage 2 and 3, thus, potential of utility for disease confirmation rather than early detection. A better marker for early stage disease was tropomyosin 4 (TPM4). The expression of TPM4 increased by 2-fold in Stage 2 before returning to "normal" levels in Stage 3 disease. Multiple isoforms were also identified for some proteins and in some cases, displayed stage-specific expression. An interesting example was fibrinogen alpha, for which 8 isoforms were identified. Four displayed a moderate increase at Stage 1 and a substantial increase for Stages 2 and 3 while the other 4 showed only moderate increases. CONCLUSION: Herein is provided an improved summary of blood protein profiles for women with ovarian cancer stratified by stage.

8.
Breast Cancer Res ; 14(2): R69, 2012 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-22537934

RESUMO

INTRODUCTION: The RAD21 gene encodes a key component of the cohesin complex, which is essential for chromosome segregation, and together with BRCA1 and BRCA2, for high-fidelity DNA repair by homologous recombination. Although its expression correlates with early relapse and treatment resistance in sporadic breast cancers, it is unclear whether familial breast cancers behave in a similar manner. METHODS: We performed an immunohistochemical analysis of RAD21 expression in a cohort of 94 familial breast cancers (28 BRCA1, 27 BRCA2, and 39 BRCAX) and correlated these data with genotype and clinicopathologic parameters, including survival. In these cancers, we also correlated RAD21 expression with genomic expression profiling and gene copy-number changes and miRNAs predicted to target RAD21. RESULTS: No significant differences in nuclear RAD21 expression were observed between BRCA1 (12 (43%) of 28), BRCA2 (12 (44%) of 27), and BRCAX cancers (12 (33%) of 39 (p = 0.598). No correlation was found between RAD21 expression and grade, size, or lymph node, ER, or HER2 status (all P > 0.05). As for sporadic breast cancers, RAD21 expression correlated with shorter survival in grade 3 (P = 0.009) and but not in grade 1 (P = 0.065) or 2 cancers (P = 0.090). Expression of RAD21 correlated with poorer survival in patients treated with chemotherapy (P = 0.036) but not with hormonal therapy (P = 0.881). RAD21 expression correlated with shorter survival in BRCA2 (P = 0.006) and BRCAX (P = 0.008), but not BRCA1 cancers (P = 0.713). Changes in RAD21 mRNA were reflected by genomic changes in DNA copy number (P < 0.001) and by RAD21 protein expression, as assessed with immunohistochemistry (P = 0.047). High RAD21 expression was associated with genomic instability, as assessed by the total number of base pairs affected by genomic change (P = 0.048). Of 15 miRNAs predicted to target RAD21, mir-299-5p inversely correlated with RAD21 expression (P = 0.002). CONCLUSIONS: Potential use of RAD21 as a predictive and prognostic marker in familial breast cancers is hence feasible and may therefore take into account the patient's BRCA1/2 mutation status.


Assuntos
Proteína BRCA1/genética , Proteína BRCA2/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/mortalidade , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Proteínas de Ciclo Celular , Estudos de Coortes , Proteínas de Ligação a DNA , Feminino , Regulação Neoplásica da Expressão Gênica , Instabilidade Genômica , Heterozigoto , Humanos , MicroRNAs/genética , Pessoa de Meia-Idade , Proteínas Nucleares/genética , Linhagem , Fosfoproteínas/genética , Valor Preditivo dos Testes , Prognóstico , Reprodutibilidade dos Testes
9.
Proteomics Clin Appl ; 6(3-4): 170-81, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22532453

RESUMO

PURPOSE: To evaluate the utility of an enhanced biomarker discovery approach in order to identify potential biomarkers relevant to ovarian cancer detection. EXPERIMENTAL DESIGN: We combined immuno-depletion, liquid-phase IEF, 1D-DIGE, MALDI-TOF/MS and LC-MS/MS to identify differentially expressed proteins in the plasma of symptomatic ovarian cancer patients, stratified by stage, compared to samples obtained from normal subjects. RESULTS: We demonstrate that this approach is a practical alternative to traditional 2D gel techniques and that it has some advantages, most notably increased protein capacity. Proteins were identified in all 76 bands excised from the gels in this project and confirmed the cancer-associated expression of several well-established biomarkers of ovarian cancer. These included C-reactive protein (CRP), haptoglobin, alpha-2 macroglobulin and A1A2. We also identified new ovarian cancer candidate biomarkers, Protein S100-A9 (S100A9) and multimerin-2. The cancer-associated differential expression of CRP and S100A9 was further confirmed by Western blot and ELISA. CONCLUSIONS: The methods developed in this study allow for the increased loading of plasma proteins into the analytical stream when compared to traditional 2D-DIGE. This increased protein identification sensitivity allowed us to identify new putative ovarian cancer biomarkers.


Assuntos
Proteínas Sanguíneas/análise , Neoplasias Ovarianas/diagnóstico , Proteômica/métodos , Adulto , Idoso , Biomarcadores Tumorais/sangue , Western Blotting , Proteína C-Reativa/análise , Calgranulina B/sangue , Estudos de Casos e Controles , Cromatografia Líquida/métodos , Eletroforese em Gel Bidimensional , Ensaio de Imunoadsorção Enzimática , Feminino , Haptoglobinas/análise , Humanos , Focalização Isoelétrica , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Neoplasias Ovarianas/sangue , Neoplasias Ovarianas/patologia , Sensibilidade e Especificidade , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , alfa-Macroglobulinas/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA