Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Brain Behav Immun ; 62: 87-99, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28216087

RESUMO

Post exertion malaise is one of the most debilitating aspects of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome, yet the neurobiological consequences are largely unexplored. The objective of the study was to determine the neural consequences of acute exercise using functional brain imaging. Fifteen female Myalgic Encephalomyelitis/Chronic Fatigue Syndrome patients and 15 healthy female controls completed 30min of submaximal exercise (70% of peak heart rate) on a cycle ergometer. Symptom assessments (e.g. fatigue, pain, mood) and brain imaging data were collected one week prior to and 24h following exercise. Functional brain images were obtained during performance of: 1) a fatiguing cognitive task - the Paced Auditory Serial Addition Task, 2) a non-fatiguing cognitive task - simple number recognition, and 3) a non-fatiguing motor task - finger tapping. Symptom and exercise data were analyzed using independent samples t-tests. Cognitive performance data were analyzed using mixed-model analysis of variance with repeated measures. Brain responses to fatiguing and non-fatiguing tasks were analyzed using linear mixed effects with cluster-wise (101-voxels) alpha of 0.05. Myalgic Encephalomyelitis/Chronic Fatigue Syndrome patients reported large symptom changes compared to controls (effect size ≥0.8, p<0.05). Patients and controls had similar physiological responses to exercise (p>0.05). However, patients exercised at significantly lower Watts and reported greater exertion and leg muscle pain (p<0.05). For cognitive performance, a significant Group by Time interaction (p<0.05), demonstrated pre- to post-exercise improvements for controls and worsening for patients. Brain responses to finger tapping did not differ between groups at either time point. During number recognition, controls exhibited greater brain activity (p<0.05) in the posterior cingulate cortex, but only for the pre-exercise scan. For the Paced Serial Auditory Addition Task, there was a significant Group by Time interaction (p<0.05) with patients exhibiting increased brain activity from pre- to post-exercise compared to controls bilaterally for inferior and superior parietal and cingulate cortices. Changes in brain activity were significantly related to symptoms for patients (p<0.05). Acute exercise exacerbated symptoms, impaired cognitive performance and affected brain function in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome patients. These converging results, linking symptom exacerbation with brain function, provide objective evidence of the detrimental neurophysiological effects of post-exertion malaise.


Assuntos
Encéfalo/fisiopatologia , Cognição/fisiologia , Exercício Físico/fisiologia , Síndrome de Fadiga Crônica/psicologia , Fadiga/psicologia , Esforço Físico/fisiologia , Adulto , Exercício Físico/psicologia , Fadiga/fisiopatologia , Síndrome de Fadiga Crônica/fisiopatologia , Feminino , Humanos , Pessoa de Meia-Idade , Testes Neuropsicológicos , Tempo de Reação/fisiologia
2.
J Pain ; 13(2): 195-206, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22245361

RESUMO

UNLABELLED: Fibromyalgia (FM) has been conceptualized as a disorder of the central nervous system, characterized by augmented sensory processing and an inability to effectively modulate pain. We previously reported that physical activity is related to brain processing of pain, providing evidence for a potential mechanism of pain management. The purpose of this study was to extend our work by manipulating pain modulation and determining relationships to both physical activity and sustained sedentary behavior. Eleven women with FM completed accelerometer measures of physical activity and underwent functional magnetic resonance imaging of painful heat, administered alone and during distracting cognitive tasks. Results showed that physical activity was significantly (P < .005) and positively related to brain responses during distraction from pain in regions implicated in pain modulation including the dorsolateral prefrontal cortex (DLPFC), the dorsal posterior cingulate, and the periaqueductal grey. A significant negative relationship occurred in the left anterior insula. For sedentary time, significant negative relationships were observed in areas involved in both pain modulation and the sensory-discriminative aspects of pain including the DLPFC, thalamus, and superior frontal and pre- and post-central gyri. These results suggest that physical activity and sedentary behaviors are related to central nervous system regulation of pain in FM. PERSPECTIVE: Our results support a promising benefit of physical activity and highlight the potentially deleterious effects of sustained sedentary behavior for pain regulation in FM. Studies aimed at increasing physical activity or reducing sedentary behavior and determining the impact of these on pain regulation are warranted.


Assuntos
Fibromialgia/complicações , Fibromialgia/terapia , Atividade Motora/fisiologia , Dor , Comportamento Sedentário , Adulto , Encéfalo/irrigação sanguínea , Encéfalo/patologia , Mapeamento Encefálico , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Pessoa de Meia-Idade , Oxigênio , Dor/etiologia , Dor/patologia , Dor/reabilitação , Manejo da Dor/métodos , Medição da Dor , Análise de Regressão , Inquéritos e Questionários
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA