Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Cancers (Basel) ; 15(17)2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37686652

RESUMO

The key challenges to treating glioblastoma multiforme (GBM) are the heterogeneous and complex nature of the GBM tumour microenvironment (TME) and difficulty of drug delivery across the blood-brain barrier (BBB). The TME is composed of various neuronal and immune cells, as well as non-cellular components, including metabolic products, cellular interactions, and chemical compositions, all of which play a critical role in GBM development and therapeutic resistance. In this review, we aim to unravel the complexity of the GBM TME, evaluate current therapeutics targeting this microenvironment, and lastly identify potential targets and therapeutic delivery vehicles for the treatment of GBM. Specifically, we explore the potential of aptamer-targeted delivery as a successful approach to treating brain cancers. Aptamers have emerged as promising therapeutic drug delivery vehicles with the potential to cross the BBB and deliver payloads to GBM and brain metastases. By targeting specific ligands within the TME, aptamers could potentially improve treatment outcomes and overcome the challenges associated with larger therapies such as antibodies.

2.
Biochimie ; 204: 108-117, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36155804

RESUMO

Despite medical advances in treatment strategies over the past 30-years, epithelial ovarian cancer (EOC) continues to be defined by poor patient survival rates and aggressive, drug resistant relapse. Traditional approaches to cancer chemotherapy are typically limited by severe off-target effects on healthy tissue and aggressive drug-resistant recurrence. Recent shifts towards targeted therapies offer the possibility of circumventing the obstacles experienced by these treatments. While antibodies are the pioneering agents in such targeted therapies, several intrinsic characteristics of antibodies limits their clinical translation and efficacy. In contrast, oligonucleotide chemical antibodies, known as aptamers, are ideal for this application given their small size and lack of immunogenicity. This study explored the efficacy of a DNA aptamer, designed to target a well-established cancer biomarker, EpCAM, to deliver a chemotherapeutic drug. The results from this study support evidence that EpCAM aptamers can bind to epithelial ovarian cancer; and offers a valid alternative as a targeting ligand with tuneable specificity and sensitivity. It also supports the growing body of evidence that aptamers show great potential for application-specific, post-SELEX engineering through rational modifications. Through in vitro assays, these aptamers demonstrated cytotoxicity in both monolayer and tumoursphere assays, as well as in tumourigenic enriching assays. Further experimentation based on the results achieved in this project might aid in the development of novel cancer therapeutics and guide the novel designs of drugs for targeted drug delivery.


Assuntos
Antineoplásicos , Aptâmeros de Nucleotídeos , Neoplasias Ovarianas , Humanos , Feminino , Molécula de Adesão da Célula Epitelial , Carcinoma Epitelial do Ovário/tratamento farmacológico , Antineoplásicos/uso terapêutico , Doxorrubicina/farmacologia , Neoplasias Ovarianas/tratamento farmacológico , Sistemas de Liberação de Medicamentos/métodos , Preparações Farmacêuticas , Aptâmeros de Nucleotídeos/farmacologia , Aptâmeros de Nucleotídeos/uso terapêutico , Linhagem Celular Tumoral , Técnica de Seleção de Aptâmeros
3.
Cancers (Basel) ; 14(24)2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36551742

RESUMO

The limited treatment options for triple-negative breast cancer with brain metastasis (TNBC-BM) have left the door of further drug development for these patients wide open. Although immunotherapy via monoclonal antibodies has shown some promising results in several cancers including TNBC, it cannot be considered the most effective treatment for brain metastasis. This is due to the protective role of the blood-brain barrier (BBB) which limits the entrance of most drugs, especially the bulky ones such as antibodies, to the brain. For a drug to traverse the BBB via passive diffusion, various physicochemical properties should be considered. Since natural medicine has been a key inspiration for the development of the majority of current medicines, in this paper, we review several naturally-derived molecules which have the potential for immunotherapy via blocking the interaction of programmed cell death protein-1 (PD-1) and its ligand, PD-L1. The mechanism of action, physicochemical properties and pharmacokinetics of these molecules and their theoretical potential to be used for the treatment of TNBC-BM are discussed.

4.
J Vis Exp ; (187)2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-36190297

RESUMO

A key challenge in developing an anticancer aptamer is to efficiently determine the selectivity and specificity of the developed aptamer to the target protein. Due to its several advantages over monoclonal antibodies, aptamer development has gained enormous popularity among cancer researchers. Systematic evolution of ligands by exponential enrichment (SELEX) is the most common method of developing aptamers specific for proteins of interest. Following SELEX, a quick and efficient binding assay accelerates the process of identification, confirming the selectivity and specificity of the aptamer. This paper explains a step-by-step flow cytometric-based binding assay of an aptamer specific for epithelial cellular adhesion molecule (EpCAM). The transmembrane glycoprotein EpCAM is overexpressed in most carcinomas and plays roles in cancer initiation, progression, and metastasis. Therefore, it is a valuable candidate for targeted drug delivery to tumors. To evaluate the selectivity and specificity of the aptamer to the membrane-bound EpCAM, EpCAM-positive and -negative cells are required. Additionally, a non-binding EpCAM aptamer with a similar length and 2-dimensional (2D) structure to the EpCAM-binding aptamer is required. The binding assay includes different buffers (blocking buffer, wash buffer, incubation buffer, and FACS buffer) and incubation steps. The aptamer is incubated with the cell lines. Following the incubation and washing steps, the cells will be evaluated using a sensitive flow cytometry assay. Analysis of the results shows the binding of the EpCAM-specific aptamer to EpCAM-positive cells and not the EpCAM-negative cells. In EpCAM-positive cells, this is depicted as a band shift in the binding of the EpCAM aptamer to the right compared to the non-binding aptamer control. In EpCAM-negative cells, the corresponding bands of EpCAM-binding and -non-binding aptamers overlap. This demonstrates the selectivity and specificity of the EpCAM aptamer. While this protocol is focused on the EpCAM aptamer, the protocol is applicable to other published aptamers.


Assuntos
Aptâmeros de Nucleotídeos , Neoplasias , Anticorpos Monoclonais/metabolismo , Aptâmeros de Nucleotídeos/química , Molécula de Adesão da Célula Epitelial/metabolismo , Citometria de Fluxo , Humanos , Ligantes , Proteínas de Membrana/metabolismo , Ligação Proteica , Técnica de Seleção de Aptâmeros
5.
Eur J Pharm Biopharm ; 173: 121-131, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35283304

RESUMO

The blood-brain barrier (BBB) is a strong barrier against the entrance of drugs, which has made brain cancer treatment a major challenge. We have previously shown that targeting transferrin receptors using aptamers increased brain drug delivery. To get a better understanding of this phenomenon, in the present article, a mathematical model based on the finite element method was developed accounting for the fluid flow and mass transport of the aptamer molecule inside an 8 µm capillary vessel across a 14 µm blood-brain barrier domain. The fluid flow and mass transport equations were coupled to calculate the blood velocity and aptamer concentration profiles across the BBB. It was identified that the thickness of the astrocyte and endothelial cell layers are key parameters affecting the concentration of the aptamer delivered to the last neuron dendrites in the BBB. The predicted efficacy of the drug delivery (Capt/Cin) of 10.9% to 13.8% was calculated at a porosity of 0.5 to 0.9, respectively, at a blood velocity of 0.38 mm/s, which was independent of the inlet concentration of the aptamer. This low efficacy was attributed to the mass transfer resistance across endothelial cells, astrocyte and pericyte layers, which decreased the concentration by 6.7%. It was also identified that the main mechanism of drug delivery is switched from convective mass transport in the capillary layer (with Peclet number > 50) to mixed convection mass transport (1 < Peclet number < 5) in the porous layers and to diffusion only once aptamer reached the brain parenchyma (Peclet number < 1).


Assuntos
Barreira Hematoencefálica , Neoplasias Encefálicas , Transporte Biológico , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Células Endoteliais/metabolismo , Humanos , Receptores da Transferrina/metabolismo , Receptores da Transferrina/uso terapêutico
6.
Drug Discov Today ; 27(5): 1298-1314, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35101641

RESUMO

The key challenges with the treatment of triple-negative breast cancer brain metastasis (TNBC-BM) are the lack of any targeted therapy and difficulties associated with drug delivery to the brain. These add to the high toxicity profile of existing treatments and the poor outcomes for patient. In this review, we introduce current drugs based on their molecular targets and look to improve brain drug delivery using more efficient and promising drug delivery systems. We describe ongoing clinical trials on druggable targets in TNBC-BM for a more targeted treatment and introduce the obstacles hindering drug delivery to the brain, bringing strategies and advancing knowledge for future steps in the treatment of patients with TNBC-BM.


Assuntos
Neoplasias Encefálicas , Neoplasias de Mama Triplo Negativas , Neoplasias Encefálicas/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Humanos , Neoplasias de Mama Triplo Negativas/patologia
7.
Pharmacol Res ; 175: 106019, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34861397

RESUMO

Triple-negative breast cancer (TNBC) has the worst prognosis among the subtypes of breast cancer, with no targeted therapy available. Immunotherapy targeting programmed cell death protein-1 (PD-1) and its ligand (PD-L1) has resulted in some promising outcomes in cancer patients. The common treatments are monoclonal antibodies (mAbs). Despite novel methodologies in developing mAbs, there are several drawbacks with these medications. Immunological reactions, expensive and time-consuming production and requiring refrigeration are some of the challenging characteristics of mAbs that are addressed with using aptamers. Aptamers are nucleotide-based structures with high selectivity and specificity for target. Their small size helps aptamers penetrate the tissue better. In this review, we have discussed the nature of PD-1/PD-L1 interaction and summarised the available mAbs and aptamers specific for these two targets. This review highlights the role of aptamers as a future pathway for PD-1/PD-L1 modulation.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Antineoplásicos Imunológicos/uso terapêutico , Aptâmeros de Nucleotídeos/uso terapêutico , Antígeno B7-H1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Animais , Antígeno B7-H1/imunologia , Feminino , Humanos , Receptor de Morte Celular Programada 1/imunologia , Neoplasias de Mama Triplo Negativas/imunologia
8.
Int J Mol Sci ; 22(11)2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34200484

RESUMO

Breast cancer is one of the most commonly occurring cancers in women globally and is the primary cause of cancer mortality in females. BC is highly heterogeneous with various phenotypic expressions. The overexpression of HER2 is responsible for 15-30% of all invasive BC and is strongly associated with malignant behaviours, poor prognosis and decline in overall survival. Molecular imaging offers advantages over conventional imaging modalities, as it provides more sensitive and specific detection of tumours, as these techniques measure the biological and physiological processes at the cellular level to visualise the disease. Early detection and diagnosis of BC is crucial to improving clinical outcomes and prognosis. While HER2-specific antibodies and nanobodies may improve the sensitivity and specificity of molecular imaging, the radioisotope conjugation process may interfere with and may compromise their binding functionalities. Aptamers are single-stranded oligonucleotides capable of targeting biomarkers with remarkable binding specificity and affinity. Aptamers can be functionalised with radioisotopes without compromising target specificity. The attachment of different radioisotopes can determine the aptamer's functionality in the treatment of HER2(+) BC. Several HER2 aptamers and investigations of them have been described and evaluated in this paper. We also provide recommendations for future studies with HER2 aptamers to target HER2(+) BC.


Assuntos
Aptâmeros de Nucleotídeos/uso terapêutico , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/tratamento farmacológico , Receptor ErbB-2/antagonistas & inibidores , Receptor ErbB-2/metabolismo , Anticorpos de Domínio Único/uso terapêutico , Feminino , Humanos , Prognóstico
9.
Mol Ther ; 29(8): 2396-2411, 2021 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-34146729

RESUMO

The development of an aptamer-based therapeutic has rapidly progressed following the first two reports in the 1990s, underscoring the advantages of aptamer drugs associated with their unique binding properties. In 2004, the US Food and Drug Administration (FDA) approved the first therapeutic aptamer for the treatment of neovascular age-related macular degeneration, Macugen developed by NeXstar. Since then, eleven aptamers have successfully entered clinical trials for various therapeutic indications. Despite some of the pre-clinical and clinical successes of aptamers as therapeutics, no aptamer has been approved by the FDA for the treatment of cancer. This review highlights the most recent and cutting-edge approaches in the development of aptamers for the treatment of cancer types most refractory to conventional therapies. Herein, we will review (1) the development of aptamers to enhance anti-cancer immunity and as delivery tools for inducing the expression of immunogenic neoantigens; (2) the development of the most promising therapeutic aptamers designed to target the hard-to-treat cancers such as brain tumors; and (3) the development of "carrier" aptamers able to target and penetrate tumors and metastasis, delivering RNA therapeutics to the cytosol and nucleus.


Assuntos
Aptâmeros de Nucleotídeos/uso terapêutico , Neoplasias/tratamento farmacológico , Aptâmeros de Nucleotídeos/imunologia , Portadores de Fármacos , Desenvolvimento de Medicamentos , Humanos , Neoplasias/imunologia , Evasão Tumoral/efeitos dos fármacos
10.
Pharmaceutics ; 14(1)2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-35056924

RESUMO

The identification of tumor cell-specific surface markers is a key step towards personalized cancer medicine, allowing early assessment and accurate diagnosis, and development of efficacious targeted therapies. Despite significant efforts, currently the spectrum of cell membrane targets associated with approved treatments is still limited, causing an inability to treat a large number of cancers. What mainly limits the number of ideal clinical biomarkers is the high complexity and heterogeneity of several human cancers and still-limited methods for molecular profiling of specific cancer types. Thanks to the simplicity, versatility and effectiveness of its application, cell-SELEX (Systematic Evolution of Ligands by Exponential Enrichment) technology is a valid complement to the present strategies for biomarkers' discovery. We and other researchers worldwide are attempting to apply cell-SELEX to the generation of oligonucleotide aptamers as tools for both identifying new cancer biomarkers and targeting them by innovative therapeutic strategies. In this review, we discuss the potential of cell-SELEX for increasing the currently limited repertoire of actionable cancer cell-surface biomarkers and focus on the use of the selected aptamers as components of innovative conjugates and nano-formulations for cancer therapy.

12.
Nucleic Acid Ther ; 30(2): 117-128, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32027209

RESUMO

The prognosis for breast cancer patients diagnosed with brain metastases is poor, with survival time measured merely in months. This can largely be attributed to the limited treatment options capable of reaching the tumor as a result of the highly restrictive blood-brain barrier (BBB). While methods of overcoming this barrier have been developed and employed with current treatment options, the majority are highly invasive and nonspecific, leading to severe neurotoxic side effects. A novel approach to address these issues is the development of therapeutics targeting receptor-mediated transport mechanisms on the BBB endothelial cell membranes. Using this approach, we intercalated doxorubicin (DOX) into a bifunctional aptamer targeting the transferrin receptor on the BBB and epithelial cell adhesion molecule (EpCAM) on metastatic cancer cells. The ability of the DOX-loaded aptamer to transcytose the BBB and selectively deliver the payload to EpCAM-positive tumors was evaluated in an in vitro model and confirmed for the first time in vivo using the MDA-MB-231 breast cancer metastasis model (MDA-MB-231Br). We show that colocalized aptamer and DOX are clearly detectable within the brain lesions 75 min postadministration. Collectively, results from this study demonstrate that through intercalation of a cytotoxic drug into the bifunctional aptamer, a therapeutic delivery vehicle can be developed for specific targeting of EpCAM-positive brain metastases.


Assuntos
Antígenos CD/genética , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias da Mama/tratamento farmacológico , Doxorrubicina/farmacologia , Molécula de Adesão da Célula Epitelial/genética , Receptores da Transferrina/genética , Animais , Aptâmeros de Nucleotídeos/genética , Aptâmeros de Nucleotídeos/farmacologia , Barreira Hematoencefálica/efeitos dos fármacos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Molécula de Adesão da Célula Epitelial/antagonistas & inibidores , Feminino , Humanos , Camundongos , Receptores da Transferrina/antagonistas & inibidores
13.
Pharmaceuticals (Basel) ; 12(1)2018 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-30586898

RESUMO

Cancer has a high incidence and mortality rate worldwide, which continues to grow as millions of people are diagnosed annually. Metastatic disease caused by cancer is largely responsible for the mortality rates, thus early detection of metastatic tumours can improve prognosis. However, a large number of patients will also present with micrometastasis tumours which are often missed, as conventional medical imaging modalities are unable to detect micrometastases due to the lack of specificity and sensitivity. Recent advances in radiochemistry and the development of nucleic acid based targeting molecules, have led to the development of novel agents for use in cancer diagnostics. Monoclonal antibodies may also be used, however, they have inherent issues, such as toxicity, cost, unspecified binding and their clinical use can be controversial. Aptamers are a class of single-stranded RNA or DNA ligands with high specificity, binding affinity and selectivity for a target, which makes them promising for molecular biomarker imaging. Aptamers are presented as being a superior choice over antibodies because of high binding affinity and pH stability, amongst other factors. A number of aptamers directed to cancer cell markers (breast, lung, colon, glioblastoma, melanoma) have been radiolabelled and characterised to date. Further work is ongoing to develop these for clinical applications.

14.
Cancers (Basel) ; 10(1)2018 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-29329202

RESUMO

The epithelial cell adhesion molecule (EpCAM), or CD326, was one of the first cancer associated biomarkers to be discovered. In the last forty years, this biomarker has been investigated for use in personalized cancer therapy, with the first monoclonal antibody, edrecolomab, being trialled in humans more than thirty years ago. Since then, several other monoclonal antibodies have been raised to EpCAM and tested in clinical trials. However, while monoclonal antibody therapy has been investigated against EpCAM for almost 40 years as primary or adjuvant therapy, it has not shown as much promise as initially heralded. In this review, we look at the reasons why and consider alternative targeting options, such as aptamers, to turn this almost ubiquitously expressed epithelial cancer biomarker into a viable target for future personalized therapy.

15.
Mini Rev Med Chem ; 18(11): 976-989, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-27145854

RESUMO

Mesoporous silica nanoparticles (MSNs) are exceptionally promising drug carriers for controlled drug delivery systems because their morphology, pore structure, pore volume and pore size can be well tailored to obtain certain drug release profiles. Moreover, they possess the ability to specifically transport and deliver anti-cancer drugs when targeting molecules are properly grafted onto their surface. MSNs based drug delivery systems have the potential to revolutionize cancer therapy. This review provides a comprehensive overview of the fabrication, modification of MSNs and their applications in tumour-targeted delivery. In addition, the characterization and analysis of MSNs with computer aided strategies were described. The existing issues and future prospective concerning the applications of MSNs as drug carriers for controlled drug delivery systems were discussed.


Assuntos
Antineoplásicos/farmacologia , Desenho Assistido por Computador , Sistemas de Liberação de Medicamentos , Desenho de Fármacos , Nanopartículas/química , Neoplasias/tratamento farmacológico , Dióxido de Silício/química , Animais , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Portadores de Fármacos/química , Humanos , Neoplasias/patologia , Tamanho da Partícula , Porosidade , Dióxido de Silício/síntese química , Propriedades de Superfície
16.
Biochimie ; 145: 34-44, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29224849

RESUMO

Current therapy for ovarian cancer typically involves indiscriminate chemotherapies that can have severe off target effects on healthy tissue and are still plagued by aggressive recurrence. Recent shifts towards targeted therapies offer the possibility of circumventing the obstacles experienced by these traditional treatments. While antibodies are the pioneering agents in targeted therapies, clinical experience has demonstrated that their antitumor efficacy is limited due to their high immunogenicity, large molecular size, and costly and laborious production. In contrast, nucleic acid based chemical antibodies, also known as aptamers, are ideal for this application given their small size, lack of immunogenicity and in vitro production. As aptamers have begun to demonstrate their promise through targeting Epithelial Cell Adhesion Molecule (EpCAM), as well as a number of ovarian cancer biomarkers, in in vivo and in vitro models, their clinical applicability is slowly being realised. This review explores some of the current progress of aptamers targeting cancer biomarkers and their potential role as ovarian cancer therapeutics.


Assuntos
Antineoplásicos/uso terapêutico , Aptâmeros de Nucleotídeos/uso terapêutico , Molécula de Adesão da Célula Epitelial/antagonistas & inibidores , Proteínas de Neoplasias/antagonistas & inibidores , Neoplasias Ovarianas/tratamento farmacológico , Animais , Antineoplásicos/química , Aptâmeros de Nucleotídeos/química , Molécula de Adesão da Célula Epitelial/metabolismo , Feminino , Humanos , Proteínas de Neoplasias/metabolismo
17.
Int J Mol Sci ; 18(12)2017 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-29189740

RESUMO

Glioblastoma is a highly aggressive primary brain tumour, renowned for its infiltrative growth and varied genetic profiles. The current treatment options are insufficient, and their off-target effects greatly reduce patient quality of life. The major challenge in improving glioblastoma diagnosis and treatment involves the development of a targeted imaging and drug delivery platform, capable of circumventing the blood brain barrier and specifically targeting glioblastoma tumours. The unique properties of aptamers demonstrate their capability of bridging the gap to the development of successful diagnosis and treatment options, where antibodies have previously failed. Aptamers possess many characteristics that make them an ideal novel imaging and therapeutic agent for the treatment of glioblastoma and other brain malignancies, and are likely to provide patients with a better standard of care and improved quality of life. Their target sensitivity, selective nature, ease of modification and low immunogenicity make them an ideal drug-delivery platform. This review article summarises the aptamers previously generated against glioblastoma cells or its identified biomarkers, and their potential application in diagnosis and therapeutic targeting of glioblastoma tumours.


Assuntos
Aptâmeros de Nucleotídeos/uso terapêutico , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/terapia , Glioblastoma/diagnóstico por imagem , Glioblastoma/terapia , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Humanos , Técnica de Seleção de Aptâmeros
18.
Theranostics ; 7(17): 4071-4086, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29158811

RESUMO

Chemotherapy-resistant cancer stem cells (CSCs) are a major obstacle to the effective treatment of many forms of cancer. To overcome CSC chemo-resistance, we developed a novel system by conjugating a CSC-targeting EpCAM aptamer with doxorubicin (Apt-DOX) to eliminate CSCs. Incubation of Apt-DOX with colorectal cancer cells resulted in high concentration and prolonged retention of DOX in the nuclei. Treatment of tumour-bearing xenograft mice with Apt-DOX resulted in at least 3-fold more inhibition of tumour growth and longer survival as well as a 30-fold lower frequency of CSC and a prolonged longer tumourigenic latency compared with those receiving the same dose of free DOX. Our data demonstrate that a CSC-targeting aptamer is able to transform a conventional chemotherapeutic agent into a CSC-killer to overcome drug resistance in solid tumours.


Assuntos
Aptâmeros de Nucleotídeos/administração & dosagem , Doxorrubicina/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Molécula de Adesão da Célula Epitelial/genética , Células-Tronco Neoplásicas/efeitos dos fármacos , Animais , Antibióticos Antineoplásicos/administração & dosagem , Antibióticos Antineoplásicos/química , Relação Dose-Resposta a Droga , Doxorrubicina/química , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/química , Feminino , Células HT29 , Humanos , Concentração de Íons de Hidrogênio , Masculino , Camundongos SCID , Polietilenoglicóis/química , Ratos Sprague-Dawley , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Sci Rep ; 7(1): 5898, 2017 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-28724889

RESUMO

The development of chemoresistance and inability in elimination of cancer stem cells are among the key limitations of cancer chemotherapy. Novel molecular therapeutic strategies able to overcome such limitations are urgently needed for future effective management of cancer. In this report, we show that EpCAM-aptamer-guided survivin RNAi effectively downregulated survivin both in colorectal cancer cells in vitro and in a mouse xenograft model for colorectal cancer. When combined with the conventional chemotherapeutic agents, the aptamer-guided survivin RNAi was able to enhance the sensitivity towards 5-FU or oxaliplatin in colorectal cancer stem cells, increase apoptosis, inhibit tumour growth and improve the overall survival of mice bearing xenograft colorectal cancer. Our results indicate that survivin is one of the key players responsible for the innate chemoresistance of colorectal cancer stem cells. Thus, aptamer-mediated targeting of survivin in cancer stem cells in combination with chemotherapeutic drugs constitutes a new avenue to improve treatment outcome in oncologic clinics.


Assuntos
Aptâmeros de Nucleotídeos/metabolismo , Neoplasias Colorretais/patologia , Fluoruracila/farmacologia , Células-Tronco Neoplásicas/patologia , Interferência de RNA , Survivina/metabolismo , Animais , Apoptose/efeitos dos fármacos , Sequência de Bases , Linhagem Celular Tumoral , Neoplasias Colorretais/metabolismo , Regulação para Baixo/efeitos dos fármacos , Molécula de Adesão da Célula Epitelial/metabolismo , Feminino , Técnicas de Silenciamento de Genes , Humanos , Camundongos SCID , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA