Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Antimicrob Chemother ; 77(3): 574-577, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-34894227

RESUMO

BACKGROUND: In vitro selection experiments identified viruses resistant to integrase strand transfer inhibitors (INSTIs) carrying mutations in the G-tract (six guanosines) of the 3'-polypurine tract (3'-PPT). A clinical study also reported that mutations in the 3'-PPT were observed in a patient receiving dolutegravir monotherapy. However, recombinant viruses with the 3'-PPT mutations that were found in the clinical study were recently shown to be susceptible to INSTIs. OBJECTIVES: To identify the specific mutation(s) in the G-tract of the 3'-PPT for acquiring INSTI resistance, we constructed infectious clones bearing single or multiple mutations and systematically characterized the susceptibility of these clones to both first- and second-generation INSTIs. METHODS: The infectious clones were tested for their infectivity and susceptibility to INSTIs in a single-cycle assay using TZM-bl cells. RESULTS: A single mutation of thymidine (T) at the fifth position (GGG GTG) in the G-tract of the 3'-PPT had no effect on INSTI resistance. A double mutation, cytidine (C) or 'T' at the second position and 'T' at the fifth position (GCG GTG and GTG GTG), increased resistance to INSTIs, with the appearance of a plateau in the maximal percentage inhibition (MPI) of the dose-response curves, consistent with a non-competitive mechanism of inhibition. CONCLUSIONS: Mutations at the second and fifth positions in the G-tract of the 3'-PPT may result in complex resistance mechanism(s), rather than simply affecting INSTI binding at the IN active site.


Assuntos
Infecções por HIV , Inibidores de Integrase de HIV , Integrase de HIV , HIV-1 , Farmacorresistência Viral/genética , Infecções por HIV/tratamento farmacológico , Integrase de HIV/genética , Inibidores de Integrase de HIV/farmacologia , Inibidores de Integrase de HIV/uso terapêutico , HIV-1/genética , Humanos , Mutação
2.
AIDS Res Hum Retroviruses ; 24(8): 1121-5, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18620491

RESUMO

We analyzed a total of 12 near full-length genomes of drug-resistant HIV-1 spreading among therapy-naïve individuals in Nagoya, Japan. Genomes comprised seven protease inhibitor (PI)-resistant viruses possessing an M46I (n = 6) or L90M mutation (n = 1) and five non-nucleoside reverse transcriptase inhibitor-resistant viruses possessing a K103N mutation. All 12 viruses conserved both an H87Q mutation in the cyclophilin A-binding site of Gag p24 (capsid) and a T23N mutation in the cysteine-rich domain of Tat protein. PI-resistant viruses commonly possessed two cleavage site mutations in the p6(Pol)/protease of Pol polyprotein (F48L in p6(Pol)) and the anchor/core domains of Nef protein (L57V). These amino acid mutations represent candidates for enhancing replication activity of drug-resistant viruses and supporting expansion of such viruses in therapy-naïve individuals.


Assuntos
Aminoácidos/genética , Farmacorresistência Viral Múltipla/genética , Genes Virais/genética , Infecções por HIV/virologia , HIV-1/genética , Infecções por HIV/tratamento farmacológico , HIV-1/efeitos dos fármacos , Humanos , Japão , Dados de Sequência Molecular , Mutação/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA