Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Cell Mol Gastroenterol Hepatol ; 16(1): 83-105, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37011811

RESUMO

BACKGROUND & AIMS: Tumor necrosis factor (TNF) superfamily member tumor necrosis factor-like protein 1A (TL1A) has been associated with the susceptibility and severity of inflammatory bowel diseases. However, the function of the tumor necrosis factor-like protein 1A and its receptor death receptor 3 (DR3) in the development of intestinal inflammation is incompletely understood. We investigated the role of DR3 expressed by intestinal epithelial cells (IECs) during intestinal homeostasis, tissue injury, and regeneration. METHODS: Clinical phenotype and histologic inflammation were assessed in C57BL/6 (wild-type), Tl1a-/- and Dr3-/- mice in dextran sulfate sodium (DSS)-induced colitis. We generated mice with an IEC-specific deletion of DR3 (Dr3ΔIEC) and assessed intestinal inflammation and epithelial barrier repair. In vivo intestinal permeability was assessed by fluorescein isothiocyanate dextran uptake. Proliferation of IECs was analyzed by bromodeoxyuridine incorporation. Expression of DR3 messenger RNA was assessed by fluorescent in situ hybridization. Small intestinal organoids were used to determine ex vivo regenerative potential. RESULTS: Dr3-/- mice developed more severe colonic inflammation than wild-type mice in DSS-induced colitis with significantly impaired IEC regeneration. Homeostatic proliferation of IECs was increased in Dr3-/- mice, but blunted during regeneration. Cellular localization and expression of the tight junction proteins Claudin-1 and zonula occludens-1 were altered, leading to increased homeostatic intestinal permeability. Dr3ΔIEC mice recapitulated the phenotype observed in Dr3-/- mice with increased intestinal permeability and IEC proliferation under homeostatic conditions and impaired tissue repair and increased bacterial translocation during DSS-induced colitis. Impaired regenerative potential and altered zonula occludens-1 localization also were observed in Dr3ΔIEC enteroids. CONCLUSIONS: Our findings establish a novel function of DR3 in IEC homeostasis and postinjury regeneration independent of its established role in innate lymphoid cells and T-helper cells.


Assuntos
Colite , Imunidade Inata , Camundongos , Animais , Hibridização in Situ Fluorescente , Mucosa Intestinal/patologia , Camundongos Endogâmicos C57BL , Linfócitos/metabolismo , Colite/patologia , Inflamação/patologia , Fatores de Necrose Tumoral/efeitos adversos , Fatores de Necrose Tumoral/genética , Fatores de Necrose Tumoral/metabolismo , Homeostase , Regeneração
2.
Cell Mol Gastroenterol Hepatol ; 14(4): 841-876, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35840034

RESUMO

BACKGROUND & AIMS: More than half of Crohn's disease patients develop intestinal fibrosis-induced intestinal strictures. Elafin is a human protease inhibitor that is down-regulated in the stricturing intestine of Crohn's disease patients. We investigated the efficacy of elafin in reversing intestinal fibrosis and elucidated its mechanism of action. METHODS: We developed a new method to mimic a stricturing Crohn's disease environment and induce fibrogenesis using stricturing Crohn's disease patient-derived serum exosomes to condition fresh human intestinal tissues and primary stricturing Crohn's disease patient-derived intestinal fibroblasts. Three mouse models of intestinal fibrosis, including SAMP1/YitFc mice, Salmonella-infected mice, and trinitrobenzene sulfonic acid-treated mice, were also studied. Elafin-Eudragit FS30D formulation and elafin-overexpressing construct and lentivirus were used. RESULTS: Elafin reversed collagen synthesis in human intestinal tissues and fibroblasts pretreated with Crohn's disease patient-derived serum exosomes. Proteome arrays identified cathepsin S as a novel fibroblast-derived pro-fibrogenic protease. Elafin directly suppressed cathepsin S activity to inhibit protease-activated receptor 2 activity and Zinc finger E-box-binding homeobox 1 expression, leading to reduced collagen expression in intestinal fibroblasts. Elafin overexpression reversed ileal fibrosis in SAMP1/YitFc mice, cecal fibrosis in Salmonella-infected mice, and colonic fibrosis in trinitrobenzene sulfonic acid-treated mice. Cathepsin S, protease-activated receptor 2 agonist, and zinc finger E-box-binding homeobox 1 overexpression abolished the anti-fibrogenic effect of elafin in fibroblasts and all 3 mouse models of intestinal fibrosis. Oral elafin-Eudragit FS30D treatment abolished colonic fibrosis in trinitrobenzene sulfonic acid-treated mice. CONCLUSIONS: Elafin suppresses collagen synthesis in intestinal fibroblasts via cathepsin S-dependent protease-activated receptor 2 inhibition and decreases zinc finger E-box-binding homeobox 1 expression. The reduced collagen synthesis leads to the reversal of intestinal fibrosis. Thus, modified elafin may be a therapeutic approach for intestinal fibrosis.


Assuntos
Doença de Crohn , Obstrução Intestinal , Animais , Catepsinas , Colágeno , Constrição Patológica/metabolismo , Constrição Patológica/patologia , Doença de Crohn/patologia , Elafina , Fibrose , Humanos , Obstrução Intestinal/patologia , Intestinos/patologia , Camundongos , Peptídeo Hidrolases , Ácidos Polimetacrílicos , Inibidores de Proteases , Proteoma , Receptor PAR-2 , Ácido Trinitrobenzenossulfônico/toxicidade , Homeobox 1 de Ligação a E-box em Dedo de Zinco
3.
Mediators Inflamm ; 2021: 5927064, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34257516

RESUMO

BACKGROUND AND AIMS: Recent evidences reveal that epithelial to mesenchymal transition (EMT) exacerbates the process of intestinal fibrosis. Tumor necrosis factor-like ligand 1A (TL1A) is a member of the tumor necrosis family (TNF), which can take part in the development of colonic inflammation and fibrosis by regulating immune response or inflammatory factors. The purpose of this study was to elucidate the possible contribution of TL1A in onset and progression of intestinal inflammation and fibrosis through EMT. METHODS: Colonic specimens were obtained from patients with inflammatory bowel disease (IBD) and control individuals. The expression levels of TL1A and EMT-related markers in intestinal tissues were evaluated. Furthermore, the human colorectal adenocarcinoma cell line, HT-29, was stimulated with TL1A, anti-TL1A antibody, or BMP-7 to assess EMT process. In addition, transgenic mice expressing high levels of TL1A in lymphoid cells were used to further investigate the mechanism of TL1A in intestinal fibrosis. RESULTS: High levels of TL1A expression were detected in the intestinal specimens of patients with ulcerative colitis and Crohn's disease and were negatively associated with the expression of an epithelial marker (E-cadherin), while it was positively associated with the expression of interstitial markers (FSP1 and α-SMA). Transgenic mice with high expression of TL1A were more sensitive to dextran sodium sulfate and exhibited severe intestinal inflammation and fibrosis. Additionally, the TGF-ß1/Smad3 pathway may be involved in TL1A-induced EMT, and the expression of IL-13 and EMT-related transcriptional molecules (e.g., ZEB1 and Snail1) was increased in the intestinal specimens of the transgenic mice. Furthermore, TL1A-induced EMT can be influenced by anti-TL1A antibody or BMP-7 in vitro. CONCLUSIONS: TL1A participates in the formation and process of EMT in intestinal fibrosis. This new knowledge enables us to better understand the pathogenesis of intestinal fibrosis and identify new therapeutic targets for its treatment.


Assuntos
Colite/metabolismo , Transição Epitelial-Mesenquimal , Fibrose/metabolismo , Intestinos/metabolismo , Membro 15 da Superfamília de Ligantes de Fatores de Necrose Tumoral/metabolismo , Adulto , Animais , Proteína Morfogenética Óssea 7/metabolismo , Caderinas/metabolismo , Doença Crônica , Feminino , Células HT29 , Humanos , Sistema Imunitário , Inflamação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pessoa de Meia-Idade , Reprodutibilidade dos Testes
4.
Oxid Med Cell Longev ; 2021: 3877617, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35003513

RESUMO

Nonalcoholic steatohepatitis (NASH) is a progressive, chronic liver disease worldwide which imposes a large economic burden on society. M1/M2 macrophage balance destruction and recruitment of mononuclear immune cells to the liver play critical roles in NASH. Several studies have shown that the expression of TNF-like ligand 1 aberrance (TL1A) increased in macrophages associated with many inflammatory diseases, for example, inflammatory bowel disease, primary biliary cholangitis, and liver fibrosis. One recent research showed that weight, abdominal adipose, and liver leptin, one of the critical fat cytokines, were reduced in TL1A knockout mice. However, the functional and molecular regulatory mechanisms of TL1A on macrophage polarization and recruitment in NASH have yet to be clarified. The authors found that high fructose high fat diet and methionine-choline deficiency diet induced the expression of TL1A in macrophages of liver tissue from murine NASH models. Myeloid-specific TL1A overexpressed mice showed exacerbated steatohepatitis with increased hepatic lipid accumulation, inflammation, liver injury, and apoptosis. M1 macrophages' infiltration and the production of proinflammatory and chemotactic cytokines increased in liver of NASH mouse models with myeloid-specific TL1A overexpressed. Furthermore, this paper revealed that bone marrow-derived macrophages and Kupffer cells with overexpression of TL1A exacerbated the lipid accumulation and expression of proinflammatory factors in the murine primary hepatocytes after free fatty acid treatment in vitro. In conclusion, TL1A-mediated M1-type macrophage polarization and recruitment into the liver promoted steatohepatitis in murine NASH.


Assuntos
Ativação de Macrófagos/fisiologia , Macrófagos/metabolismo , Hepatopatia Gordurosa não Alcoólica/imunologia , Animais , Modelos Animais de Doenças , Humanos , Ligantes , Camundongos , Camundongos Transgênicos , Fator de Necrose Tumoral alfa
5.
Sci Rep ; 10(1): 18189, 2020 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-33097818

RESUMO

Tumor necrosis factor-like cytokine 1A (TL1A, TNFSF15) is implicated in inflammatory bowel disease, modulating the location and severity of inflammation and fibrosis. TL1A expression is increased in inflamed mucosa and associated with fibrostenosing Crohn's disease. Tl1a-overexpression in mice causes spontaneous ileitis, and exacerbates induced proximal colitis and fibrosis. Intestinal fibroblasts express Death-receptor 3 (DR3; the only know receptor for TL1A) and stimulation with TL1A induces activation in vitro. However, the contribution of direct TL1A-DR3 activation on fibroblasts to fibrosis in vivo remains unknown. TL1A overexpressing naïve T cells were transferred into Rag-/- , Rag-/- mice lacking DR3 in all cell types (Rag-/-Dr3-/-), or Rag-/- mice lacking DR3 only on fibroblasts (Rag-/-Dr3∆Col1a2) to induce colitis and fibrosis, assessed by clinical disease activity index, intestinal inflammation, and collagen deposition. Rag-/- mice developed overt colitis with intestinal fibrostenosis. In contrast, Rag-/-Dr3-/- demonstrated decreased inflammation and fibrosis. Despite similar clinical disease and inflammation as Rag-/-, Rag-/-Dr3∆Col1a2 exhibited reduced intestinal fibrosis and attenuated fibroblast activation and migration. RNA-Sequencing of TL1A-stimulated fibroblasts identified Rho signal transduction as a major pathway activated by TL1A and inhibition of this pathway modulated TL1A-mediated fibroblast functions. Thus, direct TL1A signaling on fibroblasts promotes intestinal fibrosis in vivo. These results provide novel insight into profibrotic pathways mediated by TL1A paralleling its pro-inflammatory effects.


Assuntos
Enteropatias/metabolismo , Membro 25 de Receptores de Fatores de Necrose Tumoral/metabolismo , Transdução de Sinais , Membro 15 da Superfamília de Ligantes de Fatores de Necrose Tumoral/metabolismo , Animais , Fibroblastos/metabolismo , Fibrose/metabolismo , Camundongos , Camundongos Transgênicos , Membro 25 de Receptores de Fatores de Necrose Tumoral/genética , Membro 15 da Superfamília de Ligantes de Fatores de Necrose Tumoral/genética
6.
J Crohns Colitis ; 2020 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-32770194

RESUMO

Inflammatory bowel disease (IBD) is characterized by abnormal host-microbe interactions. Proinflammatory cytokine IFNγ and a novel TNF superfamily member, TL1A, have been implicated in epithelial barrier dysfunction. The divergent regulatory mechanisms of transcellular versus paracellular hyperpermeability remain poorly understood. Intestinal epithelia express two splice variants of long myosin light chain kinase (MLCK), of which the full-length MLCK1 differ from the shorter isoform MLCK2 by a Src kinase phosphorylation site. The aim was to investigate the roles of MLCK splice variants in gut barrier defects under proinflammatory stress. Upregulated expression of TL1A, IFNγ, and two MLCK variants was observed in human IBD biopsy specimens. The presence of intraepithelial bacteria preceded tight junction (TJ) damage in dextran sodium sulfate-treated and TL1A-transgenic mouse models. Lack of barrier defects was observed in long MLCK(-/-) mice. TL1A induced MLCK-dependent terminal web (TW) contraction, brush border fanning, and transepithelial bacterial internalization. The bacterial taxa identified in the inflamed colonocytes included Escherichia, Enterococcus, Staphylococcus,and Lactobacillus. Recombinant TL1A and IFNγ at low doses induced PI3K/Akt/MLCK2-dependent bacterial endocytosis, whereas high-dose IFNγ caused TJ opening via the iNOS/Src/MLCK1 axis. Bacterial internalization was recapitulated in MLCK-knockout cells individually expressing MLCK2 but not MLCK1. Immunostaining showed different subcellular sites of phosphorylated MLC localized to the TJ and TW in the MLCK1- and MLCK2-expressing cells, respectively. In conclusion, proinflammatory cytokines induced bacterial influx through transcellular and paracellular routes via divergent pathways orchestrated by distinct MLCK isoforms. Bacterial transcytosis induced by TL1A may be an alternative route causing symptom flares in IBD.

7.
Life Sci ; 262: 118220, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32781075

RESUMO

AIMS: Tumor necrosis factor-like ligand 1A (TL1A) has been proved to activate adaptive immunity in inflammatory bowel disease (IBD). However, its role in the regulation of intestinal dendritic cells (DCs) has not been fully characterized. This study aims to investigate the modulation of TL1A in DCs activation in murine colitis. MATERIALS AND METHODS: Myeloid TL1A-Transgenic C57BL/6 mice and wild-type (WT) mice were administrated with dextran sulfate sodium (DSS) to explore the effects of TL1A in murine colitis. Bone marrow-derived DCs (BMDCs) were isolated to detect the ability of antigen phagocytosis and presentation. The expression of nuclear factor-κB (NF-κB) pathway and chemokines receptors (CCRs) was assessed by real-time PCR and Western blot. KEY FINDINGS: Myeloid cells with constitutive TL1A expression developed worsened murine colitis with exacerbated TH1/TH17 cytokine responses. Intestinal DCs from TL1A transgenic mice expressed high levels of costimulatory molecules (CD80 and CD86) with increased pro-inflammatory cytokines of IL-1ß, TNF-α and IL-12/23 p40. Mechanistic studies showed that TL1A enhanced the phagocytotic ability of BMDCs. Moreover, TL1A enhanced the capacity of antigen process and presentation in BMDCs. Besides, TL1A induced the phosphorylation of NF-κB(p65) and IκBα. Meanwhile, higher expression of CCR2, CCR5, CCR7, and CX3CR1 was observed both in vivo and in vitro. SIGNIFICANCE: TL1A exacerbated DSS-induced chronic experimental colitis, probably through activation and migration of dendritic cells, and therefore increasing the secretion of pro-inflammatory cytokines.


Assuntos
Colite/fisiopatologia , Células Dendríticas/imunologia , Membro 15 da Superfamília de Ligantes de Fatores de Necrose Tumoral/genética , Animais , Células da Medula Óssea/imunologia , Movimento Celular/imunologia , Doença Crônica , Colite/genética , Colite/imunologia , Citocinas/metabolismo , Sulfato de Dextrana , Modelos Animais de Doenças , Regulação da Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Células Mieloides/imunologia
8.
PLoS One ; 15(4): e0231796, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32287314

RESUMO

BACKGROUND: Antimicrobial peptide expression is associated with disease activity in inflammatory bowel disease (IBD) patients. IBD patients have abnormal expression of elafin, a human elastase-specific protease inhibitor and antimicrobial peptide. We determined elafin expression in blood, intestine, and mesenteric fat of IBD and non-IBD patients. METHODS: Serum samples from normal and IBD patients were collected from two UCLA cohorts. Surgical resection samples of human colonic and mesenteric fat tissues from IBD and non-IBD (colon cancer) patients were collected from Cedars-Sinai Medical Center. RESULTS: High serum elafin levels were associated with a significantly elevated risk of intestinal stricture in Crohn's disease (CD) patients. Microsoft Azure Machine learning algorithm using serum elafin levels and clinical data identified stricturing CD patients with high accuracy. Serum elafin levels had weak positive correlations with clinical disease activity (Partial Mayo Score and Harvey Bradshaw Index), but not endoscopic disease activity (Mayo Endoscopic Subscore and Simple Endoscopic Index for CD) in IBD patients. Ulcerative colitis (UC) patients had high serum elafin levels. Colonic elafin mRNA and protein expression were not associated with clinical disease activity and histological injury in IBD patients, but stricturing CD patients had lower colonic elafin expression than non-stricturing CD patients. Mesenteric fat in stricturing CD patients had significantly increased elafin mRNA and protein expression, which may contribute to high circulating elafin levels. Human mesenteric fat adipocytes secrete elafin protein. CONCLUSIONS: High circulating elafin levels are associated with the presence of stricture in CD patients. Serum elafin levels may help identify intestinal strictures in CD patients.


Assuntos
Colite Ulcerativa/sangue , Doença de Crohn/complicações , Elafina/sangue , Obstrução Intestinal/diagnóstico , Gordura Abdominal/citologia , Gordura Abdominal/metabolismo , Adipócitos/metabolismo , Adulto , Estudos de Casos e Controles , Linhagem Celular , Colite Ulcerativa/patologia , Colo/diagnóstico por imagem , Colo/patologia , Colonoscopia , Constrição Patológica/sangue , Constrição Patológica/diagnóstico , Constrição Patológica/etiologia , Doença de Crohn/sangue , Doença de Crohn/diagnóstico , Doença de Crohn/patologia , Elafina/metabolismo , Feminino , Fibroblastos , Voluntários Saudáveis , Humanos , Mucosa Intestinal/diagnóstico por imagem , Mucosa Intestinal/patologia , Obstrução Intestinal/sangue , Obstrução Intestinal/etiologia , Obstrução Intestinal/patologia , Masculino , Cultura Primária de Células , Estudos Prospectivos , Índice de Gravidade de Doença
9.
Dig Dis Sci ; 64(7): 1844-1856, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30949903

RESUMO

OBJECTIVE: The role of TL1A in the intestinal mucosa barrier in inflammatory bowel disease (IBD) is still unclear. This study was aimed to investigate the expression levels of tight junction protein (TJ), myosin light chain kinase (MLCK), MyD88 and tumor necrosis factor (TNF) receptor-associated factor-6 (TRAF6) and how TL1A influences the intestinal barrier in IBD. METHODS: The mouse models of IBD were built using FMS-TL1A-GFP-transgenic mice and wild-type mice. The morphological and histopathological changes, bacterial translocation, permeability of colonic mucosa, and LPS level were assessed. Caco-2 cells were used to further investigate the association between TL1A and TNF-α and LPS. The protein level and mRNA changes of TJ proteins including ZO-1, occluding, JAMA, claudin-1, claudin-2, and claudin-3 were investigated using Western blot and real-time PCR. Protein changes of MLCK, MyD88 and TNF receptor-associated factor-6 (TRAF6), and TNF-α mRNA in the mouse colon were further assessed. RESULTS: The IBD models were successfully built. Cooper HS score and histopathological score of the colon were higher in DSS/WT group than in control/WT group (P < 0.05), higher in DSS/Tg group than in control/Tg group (P < 0.05), and higher in DSS/Tg group than in DSS/WT group. PAS, colonic permeability of the colon, and FITC-D examination showed the similar results and trends. Compared with control/WT group, the levels of TL1A and claudin-2 were higher and the levels of ZO-1, occludin, JAMA, claudin-1, and claudin-3 were lower in DSS/WT group (P < 0.05). Compared with control/Tg group, the levels of TL1A and claudin-2 were higher and the levels of ZO-1, occludin, JAMA, claudin-1, and claudin-3 were lower in DSS/Tg group. Compared with Caco-2 + TNF-α group, the expression level of occludin and claudin-1 in Caco-2 + LV-TNFSF15 + TNF-α group was significantly lower (P < 0.05); p-MLC level was significantly higher. Compared with Caco-2 + LPS group, the expression level of occludin and claudin-1 significantly decreased in Caco-2 + LV-TNFSF15 + LPS group; MyD88 and TRAF6 expression level significantly increased. CONCLUSION: The results suggested that TL1A could impair intestinal epithelial barrier in the mouse model of IBD and might regulate TJ expression via MLCK/p-MLC pathway and LPS-mediated MyD88/TRAF6 pathway.


Assuntos
Translocação Bacteriana , Colite/metabolismo , Colo/metabolismo , Sulfato de Dextrana , Microbioma Gastrointestinal , Mucosa Intestinal/metabolismo , Junções Íntimas/metabolismo , Membro 15 da Superfamília de Ligantes de Fatores de Necrose Tumoral/metabolismo , Animais , Células CACO-2 , Colite/induzido quimicamente , Colite/microbiologia , Colite/patologia , Colo/microbiologia , Colo/ultraestrutura , Modelos Animais de Doenças , Feminino , Humanos , Mucosa Intestinal/microbiologia , Mucosa Intestinal/ultraestrutura , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fator 88 de Diferenciação Mieloide/metabolismo , Cadeias Leves de Miosina/metabolismo , Quinase de Cadeia Leve de Miosina/metabolismo , Permeabilidade , Fosforilação , Fator 6 Associado a Receptor de TNF/metabolismo , Proteínas de Junções Íntimas/metabolismo , Junções Íntimas/microbiologia , Junções Íntimas/ultraestrutura , Membro 15 da Superfamília de Ligantes de Fatores de Necrose Tumoral/genética
10.
Science ; 363(6430): 993-998, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30819965

RESUMO

Immunoglobulin A (IgA) is the major secretory immunoglobulin isotype found at mucosal surfaces, where it regulates microbial commensalism and excludes luminal factors from contacting intestinal epithelial cells (IECs). IgA is induced by both T cell-dependent and -independent (TI) pathways. However, little is known about TI regulation. We report that IEC endoplasmic reticulum (ER) stress induces a polyreactive IgA response, which is protective against enteric inflammation. IEC ER stress causes TI and microbiota-independent expansion and activation of peritoneal B1b cells, which culminates in increased lamina propria and luminal IgA. Increased numbers of IgA-producing plasma cells were observed in healthy humans with defective autophagy, who are known to exhibit IEC ER stress. Upon ER stress, IECs communicate signals to the peritoneum that induce a barrier-protective TI IgA response.


Assuntos
Estresse do Retículo Endoplasmático , Células Epiteliais/imunologia , Imunidade nas Mucosas , Imunoglobulina A/imunologia , Mucosa Intestinal/imunologia , Animais , Autofagia , Proteínas Relacionadas à Autofagia/genética , Humanos , Inflamação , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Plasmócitos/imunologia , Técnicas de Cultura de Tecidos , Proteína 1 de Ligação a X-Box/genética
11.
Immunity ; 49(6): 1077-1089.e5, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30552020

RESUMO

Inflammatory bowel disease (IBD) results from a dysregulated interaction between the microbiota and a genetically susceptible host. Genetic studies have linked TNFSF15 polymorphisms and its protein TNF-like ligand 1A (TL1A) with IBD, but the functional role of TL1A is not known. Here, we found that adherent IBD-associated microbiota induced TL1A release from CX3CR1+ mononuclear phagocytes (MNPs). Using cell-specific genetic deletion models, we identified an essential role for CX3CR1+MNP-derived TL1A in driving group 3 innate lymphoid cell (ILC3) production of interleukin-22 and mucosal healing during acute colitis. In contrast to this protective role in acute colitis, TL1A-dependent expression of co-stimulatory molecule OX40L in MHCII+ ILC3s during colitis led to co-stimulation of antigen-specific T cells that was required for chronic T cell colitis. These results identify a role for ILC3s in activating intestinal T cells and reveal a central role for TL1A in promoting ILC3 barrier immunity during colitis.


Assuntos
Colite/imunologia , Imunidade Inata/imunologia , Linfócitos/imunologia , Microbiota/imunologia , Membro 15 da Superfamília de Ligantes de Fatores de Necrose Tumoral/imunologia , Adulto , Idoso , Animais , Colite/genética , Colite/metabolismo , Feminino , Humanos , Imunidade Inata/genética , Interleucinas/genética , Interleucinas/imunologia , Interleucinas/metabolismo , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Linfócitos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Microbiota/fisiologia , Pessoa de Meia-Idade , Fagócitos/citologia , Fagócitos/imunologia , Fagócitos/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Membro 15 da Superfamília de Ligantes de Fatores de Necrose Tumoral/genética , Membro 15 da Superfamília de Ligantes de Fatores de Necrose Tumoral/metabolismo , Adulto Jovem , Interleucina 22
12.
BMC Gastroenterol ; 18(1): 127, 2018 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-30103680

RESUMO

BACKGROUND: A variety of extra-intestinal manifestations (EIMs), including hepatobiliary complications, are associated with inflammatory bowel disease (IBD). Mesenchymal stem cells (MSCs) have been shown to play a potential role in the therapy of IBD. This study was designed to investigate the effect and mechanism of MSCs on chronic colitis-associated hepatobiliary complications using mouse chronic colitis models induced by dextran sulfate sodium (DSS). METHODS: DSS-induced mouse chronic colitis models were established and treated with MSCs. Severity of colitis was evaluated by disease activity index (DAI), body weight (BW), colon length and histopathology. Serum lipopolysaccharide (LPS) levels were detected by limulus amebocyte lysate test (LAL-test). Histology and liver function of the mice were checked correspondingly. Serum LPS levels and bacterial translocation of mesenteric lymph nodes (MLN) were detected. Pro-inflammatory cytokines including tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ), interleukin-1ß (IL-1ß), interleukin-17A (IL-17A), Toll receptor 4 (TLR4), TNF receptor-associated factor 6 (TRAF6) and nuclear factor kappa B (NF-κB) were detected by immunohistochemical staining, western blot analysis and real-time PCR, respectively. RESULTS: The DSS-induced chronic colitis model was characterized by reduced BW, high DAI, worsened histologic inflammation, and high levels of LPS and E. coli. Liver histopathological lesions, impaired liver function, enhanced proteins and mRNA levels of TNF-α, IFN-γ, IL-1ß, IL-17A, TLR4, TRAF6 and NF-κB were observed after DSS administration. MSCs transplantation markedly ameliorated the pathology of colon and liver by reduction of LPS levels and proteins and mRNA expressions of TNF-α, IFN-γ, IL-1ß, IL-17A, TLR4, TRAF6 and NF-κB. CONCLUSIONS: MSCs can improve chronic colitis-associated hepatobiliary complications, probably by inhibition of enterogenous endotoxemia and hepatic inflammation through LPS/TLR4 pathway. MSCs may represent a novel therapeutic approach for chronic colitis-associated hepatobiliary complications.


Assuntos
Doenças Biliares/prevenção & controle , Colite/complicações , Colite/terapia , Hepatopatias/prevenção & controle , Transplante de Células-Tronco Mesenquimais , Receptor 4 Toll-Like/antagonistas & inibidores , Animais , Translocação Bacteriana , Doenças Biliares/etiologia , Doença Crônica , Colite/metabolismo , Colite/patologia , Citocinas/metabolismo , Modelos Animais de Doenças , Intestinos/microbiologia , Lipopolissacarídeos/sangue , Hepatopatias/etiologia , Linfonodos/microbiologia , Masculino , Mesentério , Camundongos Endogâmicos C57BL , RNA Mensageiro/metabolismo , Receptor 4 Toll-Like/metabolismo
13.
Mucosal Immunol ; 11(5): 1466-1476, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29988118

RESUMO

Tumor necrosis factor-like cytokine 1A (TL1A, TNFSF15) is implicated in inflammatory bowel disease (IBD), modulating the location and severity of intestinal inflammation and fibrosis. TL1A expression is increased in inflamed gut mucosa and associated with fibrostenosing Crohn's disease. Tl1a-overexpression in mice lead to spontaneous ileitis, and exacerbated induced proximal colitis and fibrosis. IBD is associated with shifts in the gut microbiome, but the effect of differing microbial populations and their interaction with TL1A on fibrosis has not been investigated. We demonstrate that the pro-fibrotic and inflammatory phenotype resulting from Tl1a-overexpression is abrogated in the absence of resident microbiota. To evaluate if this is due to the absence of a unique bacterial population, as opposed to any bacteria per se, we gavaged germ-free (GF) wild-type and Tl1a-transgenic (Tl1a-Tg) mice with stool from specific pathogen free (SPF) mice and a healthy human donor (Hu). Reconstitution with SPF, but not Hu microbiota, resulted in increased intestinal collagen deposition and fibroblast activation in Tl1a-Tg mice. Notably, there was reduced fibroblast migration and activation under GF conditions compared to native conditions. We then identified several candidate organisms that correlated directly with increased fibrosis in reconstituted mice and showed that these organisms directly impact fibroblast function in vitro. Thus, Tl1a-mediated intestinal fibrosis and fibroblast activation are dependent on specific microbial populations.


Assuntos
Fibrose/metabolismo , Fibrose/microbiologia , Microbioma Gastrointestinal/fisiologia , Inflamação/metabolismo , Intestinos/microbiologia , Membro 15 da Superfamília de Ligantes de Fatores de Necrose Tumoral/metabolismo , Animais , Colite/metabolismo , Colite/microbiologia , Colágeno/metabolismo , Doença de Crohn/metabolismo , Doença de Crohn/microbiologia , Fibroblastos/metabolismo , Fibroblastos/microbiologia , Humanos , Ileíte/metabolismo , Ileíte/microbiologia , Inflamação/microbiologia , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/microbiologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
14.
Pathol Res Pract ; 214(2): 217-227, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29254800

RESUMO

Tumor necrosis factor like cytokine 1A (TL1A) is a member of the TNF superfamily. Accumulating evidence demonstrated the importance of TL1A in the pathogenesis of inflammatory bowel disease (IBD) and suggested a potential role of TL1A blocking in IBD therapy. Here we aimed to explore whether the anti-TL1A antibody could ameliorate intestinal inflammation and fibrosis in IBD. A T cell transfer model of chronic colitis was induced by intraperitoneal injection of CD4+CD45RBhigh naive T cells isolated from either C57BL/6 wild type (WT) mice or LCK-CD2-Tl1a-GFP transgenic (L-Tg) mice into recombinase activating gene-1-deficient (RAG-/-) mice. The colitis model mice were treated prophylactically or therapeutically with anti-Tl1a antibody or IgG isotype control. Haematoxylin and eosin staining (H&E staining), Masson's trichrome staining (MT staining) and sirius red staining were used to detect histopathological changes in colonic tissue; immunohistochemical staining was used to detect the expressions of collagen I, collagen III, TIMP1, vimentin, α-SMA and TGF-ß1/Smad3. Results showed that anti-Tl1a antibody could reduce intestinal inflammation and fibrosis by inhibiting the activation of intestinal fibroblasts and reducing the collagen synthesis in the T cell transfer model of chronic colitis. The mechanism may be related to the inhibition of TGF-1/Smad3 signaling pathway.


Assuntos
Linfócitos T CD4-Positivos/metabolismo , Colite/metabolismo , Inflamação/metabolismo , Membro 15 da Superfamília de Ligantes de Fatores de Necrose Tumoral/antagonistas & inibidores , Animais , Doença Crônica , Modelos Animais de Doenças , Fibrose/metabolismo , Homeostase/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Membro 15 da Superfamília de Ligantes de Fatores de Necrose Tumoral/imunologia , Membro 15 da Superfamília de Ligantes de Fatores de Necrose Tumoral/metabolismo
15.
J Dig Dis ; 19(1): 15-23, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29251413

RESUMO

OBJECTIVE: Inflammatory bowel diseases (IBD) are associated with significant morbidity and economic burden. The variable course of IBD creates a need for predictors of clinical outcomes and health resource utilization (HRU) to guide treatment decisions. We aimed to identify clinical, serological or genetic markers associated with inpatient resource utilization in patients with ulcerative colitis (UC) and Crohn's disease (CD). METHODS: Patients with IBD with available genetic and serological data who had at least one emergency department visit or hospitalization in a 3-year period were included. The primary outcome measure was HRU, as measured by the All Patient Refined Diagnosis Related Group classification system. Univariate and multivariate linear and logistic regression models were used to identify the associations with HRU. RESULTS: Altogether 858 (562 CD and 296 UC) patients were included. Anti-CBir1 seropositivity (P = 0.002, effect size [ES]: 0.762, 95% confidence interval [CI] 0.512-1.012) and low socioeconomic status (P = 0.005, ES: 1.620 [95% CI 1.091-2.149]) were independently associated with a high HRU. CD diagnosis (P = 0.006, ES: -0.701 [95% CI -0.959 to -0.443]) was independently associated with a low inpatient HRU. CONCLUSION: In patients with IBD who required at least one emergency department visit or hospitalization, anti-CBir1 antibody status may be a useful biomarker of HRU when formulating management strategies to reduce disease complications and resource utilization.


Assuntos
Recursos em Saúde/estatística & dados numéricos , Doenças Inflamatórias Intestinais/diagnóstico , Doenças Inflamatórias Intestinais/terapia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/sangue , California , Colite Ulcerativa/diagnóstico , Colite Ulcerativa/genética , Colite Ulcerativa/terapia , Doença de Crohn/diagnóstico , Doença de Crohn/genética , Doença de Crohn/terapia , Feminino , Predisposição Genética para Doença , Genótipo , Humanos , Doenças Inflamatórias Intestinais/genética , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Prognóstico , Estudos Retrospectivos , Classe Social , Adulto Jovem
16.
World J Gastroenterol ; 23(11): 1932-1943, 2017 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-28373759

RESUMO

Biologic therapy, such as those that target tumor necrosis factor (TNF) signaling, has proven to be an efficacious method of treatment for patients with inflammatory bowel disease (IBD) with regards to symptom management and mucosal healing. However, the rising prevalence of IBD worldwide and the ever-increasing burden of biologic pharmaceuticals in the health care industry is alarming for insurance companies, clinicians, and patients. The impending patent expiry and the relatively high costs of biologics, particularly anti-TNF agents, have paved the way for biosimilar development for IBD. The United States Food and Drug Administration defines a biosimilar as a biological product that is highly similar to its reference medicinal product, with no clinically meaningful differences in terms of safety, purity, and potency. The hope with biosimilars is that their entry into the market will be able to drive competition between pharmaceutical companies to reduce prices like that of the generic market, and that access to appropriate biologic treatments for IBD patients is increased in the long-term. Yet, there are challenging issues such as indication extrapolation and interchangeability that are still being debated in the field of IBD and must be addressed in future issued guidance. This review will discuss the issues and implications concerning the use of biosimilar therapy for IBD.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Produtos Biológicos/uso terapêutico , Medicamentos Biossimilares/uso terapêutico , Doenças Inflamatórias Intestinais/tratamento farmacológico , Fator de Necrose Tumoral alfa/metabolismo , Anticorpos Monoclonais/economia , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacologia , Produtos Biológicos/economia , Produtos Biológicos/imunologia , Produtos Biológicos/farmacologia , Medicamentos Biossimilares/economia , Medicamentos Biossimilares/farmacologia , Substituição de Medicamentos , Humanos , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/antagonistas & inibidores
17.
J Exp Med ; 214(2): 401-422, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28082357

RESUMO

ATG16L1T300A, a major risk polymorphism in Crohn's disease (CD), causes impaired autophagy, but it has remained unclear how this predisposes to CD. In this study, we report that mice with Atg16l1 deletion in intestinal epithelial cells (IECs) spontaneously develop transmural ileitis phenocopying ileal CD in an age-dependent manner, driven by the endoplasmic reticulum (ER) stress sensor IRE1α. IRE1α accumulates in Paneth cells of Atg16l1ΔIEC mice, and humans homozygous for ATG16L1T300A exhibit a corresponding increase of IRE1α in intestinal epithelial crypts. In contrast to a protective role of the IRE1ß isoform, hyperactivated IRE1α also drives a similar ileitis developing earlier in life in Atg16l1;Xbp1ΔIEC mice, in which ER stress is induced by deletion of the unfolded protein response transcription factor XBP1. The selective autophagy receptor optineurin interacts with IRE1α, and optineurin deficiency amplifies IRE1α levels during ER stress. Furthermore, although dysbiosis of the ileal microbiota is present in Atg16l1;Xbp1ΔIEC mice as predicted from impaired Paneth cell antimicrobial function, such structural alteration of the microbiota does not trigger ileitis but, rather, aggravates dextran sodium sulfate-induced colitis. Hence, we conclude that defective autophagy in IECs may predispose to CD ileitis via impaired clearance of IRE1α aggregates during ER stress at this site.


Assuntos
Proteínas Relacionadas à Autofagia/fisiologia , Doença de Crohn/etiologia , Endorribonucleases/fisiologia , Ileíte/etiologia , Proteínas Serina-Treonina Quinases/fisiologia , Fatores Etários , Animais , Autofagia , Estresse do Retículo Endoplasmático , Proteínas de Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Microbiota
18.
J Immunol ; 198(5): 2133-2146, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28130498

RESUMO

Intact ATG16L1 plays an essential role in Paneth cell function and intestinal homeostasis. However, the functional consequences of ATG16L1 deficiency in myeloid cells, particularly macrophages, are not fully characterized. We generated mice with Atg16l1 deficiency in myeloid and dendritic cells and showed that mice with myeloid Atg16l1 deficiency had exacerbated colitis in two acute and one chronic model of colitis with increased proinflammatory to anti-inflammatory macrophage ratios, production of proinflammatory cytokines, and numbers of IgA-coated intestinal microbes. Mechanistic analyses using primary murine macrophages showed that Atg16l1 deficiency led to increased reactive oxygen species production, impaired mitophagy, reduced microbial killing, impaired processing of MHC class II Ags, and altered intracellular trafficking to the lysosomal compartments. Increased production of reactive oxygen species and reduced microbial killing may be general features of the myeloid compartment, as they were also observed in Atg16l1-deficient primary murine neutrophils. A missense polymorphism (Thr300Ala) in the essential autophagy gene ATG16L1 is associated with Crohn disease (CD). Previous studies showed that this polymorphism leads to enhanced cleavage of ATG16L1 T300A protein and thus reduced autophagy. Similar findings were shown in primary human macrophages from controls and a population of CD patients carrying the Atg16l1 T300A risk variant and who were controlled for NOD2 CD-associated variants. This study revealed that ATG16L1 deficiency led to alterations in macrophage function that contribute to the severity of CD.


Assuntos
Proteínas Relacionadas à Autofagia/metabolismo , Autofagia , Colite/imunologia , Doença de Crohn/imunologia , Intestinos/imunologia , Células Mieloides/fisiologia , Proteína Adaptadora de Sinalização NOD2/genética , Celulas de Paneth/imunologia , Infecções por Salmonella/imunologia , Salmonella typhimurium/imunologia , Animais , Autofagia/genética , Autofagia/imunologia , Células Cultivadas , Doença de Crohn/genética , Modelos Animais de Doenças , Estudos de Associação Genética , Predisposição Genética para Doença , Genótipo , Homeostase , Interações Hospedeiro-Patógeno , Humanos , Intestinos/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Celulas de Paneth/microbiologia , Polimorfismo Genético , Risco
19.
Inflamm Bowel Dis ; 22(4): 862-9, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26937622

RESUMO

BACKGROUND: Perianal Crohn's Disease (pCD) is a particularly severe phenotype associated with poor quality of life with a reported prevalence of 12%-40%. Previous studies investigating the etiology of pCD have been limited in the numbers of subjects and the intensity of genotyping. The aim of this study was to identify clinical, serological, and genetic factors associated with pCD. METHODS: We performed a case-control study comparing patients with (pCD+) and without perianal (pCD) involvement in CD; defined as the presence of perianal abscesses or fistulae. Data on demographics and clinical features were obtained by chart review. Inflammatory bowel disease-related serology was determined by enzyme-linked immunosorbent assay. Genetic data were generated using Illumina genotyping platforms. RESULTS: We included 1721 patients with CD of which 524 (30.4%) were pCD+ and 1197 were pPCD. pCD was associated with distal colonic disease (Odds ratio 5.54 [3.23-9.52], P < 0.001), stricturing disease behavior (1.44 [1.14-1.81], P = 0.002) and family history of inflammatory bowel disease (4.98 [3.30-7.46], P < 0.001). pCD was associated with higher anti-sacharomyces cerevisae antibodies IgA (P < 0.001) and OmpC (P = 0.008) antibody levels. pCD was associated with known inflammatory bowel disease loci, including KIF3B, CRTC3, TRAF3IP2, JAZF1, NRIP1, MST1, FUT2, and PTGER (all P < 0.05). We also identified genetic association with genes involved in autophagy (DAPK1, P = 5.11 × 10), TNF alpha pathways (NUCB2, P = 8.68 × 10; DAPK1), IFNg pathways (DAPK1; NDFIP2, P = 8.74 × 10), and extracellular matrix and scaffolding proteins (USH1C, P = 8.68 × 10; NDFIP2; TMC07, P = 8.87 × 10). Pathway analyses implicated the JAK-Stat pathway (pc = 3.72 × 10). CONCLUSION: We have identified associations between pCD, more distal colonic inflammation, Crohn's disease-associated serologies, and genetic variation in the JAK-Stat pathway.


Assuntos
Doenças do Ânus/complicações , Doenças do Colo/etiologia , Constrição Patológica/etiologia , Doença de Crohn/complicações , Variação Genética/genética , Doenças Inflamatórias Intestinais/patologia , Janus Quinases/genética , Fator de Transcrição STAT3/genética , Adolescente , Adulto , Anticorpos Antibacterianos/sangue , Estudos de Casos e Controles , Doenças do Colo/metabolismo , Doenças do Colo/patologia , Constrição Patológica/metabolismo , Constrição Patológica/patologia , Ensaio de Imunoadsorção Enzimática , Feminino , Seguimentos , Genótipo , Humanos , Masculino , Fenótipo , Prognóstico , Adulto Jovem
20.
Inflamm Bowel Dis ; 22(3): 548-59, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26818423

RESUMO

BACKGROUND: Expression of TL1A (tumor necrosis factor-like ligand 1A) is increased in patients with inflammatory bowel disease (IBD). Mice with elevated T-cell expression of Tl1a (L-Tg) have increased regulatory T cells, yet develop worsened colitis and intestinal fibrosis. The aim of this study was to investigate the role of Tl1a in the differentiation and function of Tregs and their effects in modulating murine colitis. METHODS: Tl1a overexpressing L-Tg, Foxp3-mRFP (FIR)-LTg, and DR3KO-LTg mice were used for the study. In the L-Tg mice, Tl1a expressing cells can be identified by green fluorescent protein (GFP). RESULTS: We report that Foxp3 expression in the L-Tg mice is variable based on high or low level of Tl1a expression, referred to herein as GFPhigh and GFPlow T cells. Treg-specific suppressive molecules were highly expressed on the GFPlow Foxp3 Tregs and were significantly reduced on Tregs expressing high Tl1a. In vitro suppression function was significantly enhanced in the GFPlow compared with the GFPhigh Tregs. RAG mice cotransferred with either GFPlow or wild-type Tregs were protected from colitis. Furthermore, GFPlow Tregs lost the suppression function in the absence of DR3 (Death receptor 3). CONCLUSIONS: Tregs expressing low levels of Tl1a ameliorate murine colitis and promote the maintenance of Treg suppressor function in a DR3-dependent manner, partly due to a heightened regulatory program. These data reveal novel roles for differential levels of Tl1a in regulating T cell-mediated immune responses that have implications in understanding the pathogenesis of IBD.


Assuntos
Colite/imunologia , Modelos Animais de Doenças , Fatores de Transcrição Forkhead/metabolismo , Membro 25 de Receptores de Fatores de Necrose Tumoral/metabolismo , Linfócitos T Reguladores/imunologia , Membro 15 da Superfamília de Ligantes de Fatores de Necrose Tumoral/metabolismo , Animais , Western Blotting , Células Cultivadas , Colite/metabolismo , Colite/patologia , Feminino , Fatores de Transcrição Forkhead/genética , Técnicas Imunoenzimáticas , Ativação Linfocitária , Masculino , Camundongos , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Membro 25 de Receptores de Fatores de Necrose Tumoral/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Linfócitos T Reguladores/metabolismo , Linfócitos T Reguladores/patologia , Membro 15 da Superfamília de Ligantes de Fatores de Necrose Tumoral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA