Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Am J Cancer Res ; 13(9): 3983-4002, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37818052

RESUMO

The association between REST reduction and the development of neuroendocrine prostate cancer (NEPC), a novel drug-resistant and lethal variant of castration-resistant prostate cancer (CRPC), is well established. To better understand the mechanisms underlying this process, we aimed to identify REST-repressed long noncoding RNAs (lncRNAs) that promote neuroendocrine differentiation (NED), thus facilitating targeted therapy-induced resistance. In this study, we used data from REST knockdown RNA sequencing combined with siRNA screening to determine that LINC01801 was upregulated and played a crucial role in NED in prostate cancer (PCa). Using The Cancer Genome Atlas (TCGA) prostate adenocarcinoma database and CRPC samples collected in our laboratory, we demonstrated that LINC01801 expression is upregulated in NEPC. Functional experiments revealed that overexpression of LINC01801 had a slight stimulatory effect on the NED of LNCaP cells, while downregulation of LINC01801 significantly inhibited the induction of NED. Mechanistically, LINC01801 is transcriptionally repressed by REST, and transcriptomic analysis revealed that LINC01801 preferentially affects the autophagy pathway. LINC01801 was found to function as a competing endogenous RNA (ceRNA) to regulate the expression of autophagy-related genes by sponging hsa-miR-6889-3p in prostate cancer cells. In conclusion, our data expand the current knowledge of REST-induced NED and highlight the contribution of the REST-LINC01801-hsa-miR-6889-3p axis to autophagic induction, which may provide promising avenues for therapeutic opportunities.

2.
BMC Complement Med Ther ; 20(1): 252, 2020 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-32799864

RESUMO

BACKGROUND: Monoamine oxidase (MAO) A catalyzes oxidative deamination of monoamine neurotransmitters and dietary amines and regulates brain development and functions. Recently, we showed that MAO A mediates the progression and migration of glioma and MAO A inhibitors reduce glioma cell growth. Glioblastoma (GBM) is a common and most malignant brain tumor which is difficult to treat. Temozolomide (TMZ) is the current standard chemotherapy for glioma, but tumors usually become resistant and recur. So far, no effective therapy for TMZ-resistant glioma is available. Natural plant antimicrobial solution (PAMs) is a Chinese herbal medicine which has been used for decades without toxicity and has multiple medical functions including anti- inflammatory effects. Here, we report the effects of PAMs on glioblastoma growth. METHODS: The growth of TMZ -sensitive (U251S),-resistant (U251R) human glioma cells, and mouse glioma cell line GL-26 were assessed by MTS colorimetric assay, colony formation, and cell migration assays. Male C57BL/6 mice were implanted subcutaneously or intracranial with luciferase-positive mouse glioma GL-26 cells and treated with vehicle; MAO A inhibitor clorgyline (10 mg/kg); TMZ (1 mg/kg); PAMs (48 mg/kg) alone or in combination with TMZ (1 mg/kg) for 14 days. At the end of the treatment, mice were sacrificed, MAO A catalytic activity in tumors was measured, and tumor sizes were determined by imaging and weight. RESULTS: These results show that PAMs inhibits MAO A catalytic activity in all three glioma cell lines studied U251S, U251R, and GL-26. PAMs reduced glioma growth and has greater effects in combination with low dose of TMZ than PAMS or TMZ alone in all three cell lines as shown by MTS, colony formation, and cell migration assays. Using the subcutaneous or intracranial GL-26 glioma mouse model, PAMs reduced the tumor growth and MAO A activity, similar to the MAO A inhibitor clorgyline. Combining PAMs with non-toxic dose TMZ increased survival to a greater extent than those of PAMs or TMZ alone. CONCLUSIONS: This is the first study which suggests that PAMs alone or co-administration with low doses of TMZ may be a potential adjuvant to reduce the toxicity of TMZ and to abrogate drug resistance for the effective treatment of glioma.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Glioblastoma/tratamento farmacológico , Inibidores da Monoaminoxidase/farmacologia , Monoaminoxidase/metabolismo , Animais , Antineoplásicos Alquilantes/farmacologia , Neoplasias Encefálicas/enzimologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Quimioterapia Combinada , Glioblastoma/enzimologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Temozolomida/farmacologia
3.
J Pharm Anal ; 8(3): 153-159, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29922483

RESUMO

A high-performance liquid chromatography-electrospray ionization tandem mass spectrometric (HPLC-ESI-MS/MS) method was developed for the quantification of MHI148-clorgyline amide (NMI-amide), a novel tumor-targeting monoamine oxidase A inhibitor, in mouse plasma. The method was validated in terms of sensitivity, precision, accuracy, recovery and stability and then applied to a pharmacokinetic study of NMI-amide in mice following intravenous administration. NMI-amide together with the internal standard (IS), MHI-148, was extracted by protein precipitation using acetonitrile. Multiple reaction monitoring was used for quantification of NMI-amide by detecting m/z transition of 491.2-361.9, and 685.3-258.2 for NMI-amide and the IS, respectively. The lower limit of quantification (LLOQ) of the HPLC-MS/MS method for NMI-amide was 0.005 µg/mL and the linear calibration curve was acquired with R2 > 0.99 in the concentration range of 0.005-2 µg/mL. The intra- and inter-day precisions of the assay were assessed by percentage of the coefficient of variations, which was within 9.8% at LLOQ and 14.0% for other quality control samples, whereas the mean accuracy ranged from 86.8% to 113.2%. The samples were stable under storage and experimental conditions. This method was successfully applied to a pharmacokinetic study in mice following intravenous administration of 5 mg/kg NMI-amide.

4.
J Pathol ; 243(2): 220-229, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28722111

RESUMO

Monoamine oxidase A (MAOA) is a mitochondrial enzyme that catalyzes oxidative deamination of neurotransmitters and dietary amines and produces H2 O2 . It facilitates the progression of gliomas and prostate cancer, but its expression and functional relevance have not been studied in lymphoma. Here, we evaluated MAOA in 427 cases of Hodgkin and non-Hodgkin lymphoma and in a spectrum of reactive lymphoid tissues by immunohistochemistry on formalin-fixed, paraffin-embedded specimens. MAOA was expressed by Hodgkin Reed-Sternberg (HRS) cells in the majority of classical Hodgkin lymphomas (cHLs) (181/241; 75%), with 34.8% showing strong expression. Weak MAOA was also noted in a minority of primary mediastinal large B-cell lymphomas (8/47; 17%) and in a mediastinal gray-zone lymphoma. In contrast, no MAOA was found in non-neoplastic lymphoid tissues, nodular lymphocyte-predominant Hodgkin lymphoma (NLPHL; 0/8) or any other non-Hodgkin lymphomas studied (0/123). MAOA was more common in Epstein-Barr virus (EBV)-negative compared to EBV-positive cHL (p < 0.0001) and was especially prevalent in the EBV-negative nodular sclerosing subtype. Similar to primary human lymphoma specimens, most cHL-derived cell lines displayed MAOA activity, whereas non-Hodgkin-lymphoma-derived cell lines did not. The MAOA inhibitor clorgyline reduced the growth of L1236 cells and U-HO1 cells, and shRNA knockdown of MAOA reduced the growth of L1236 cells. Conversely, ectopic overexpression of MAOA increased the growth of MAOA-negative HDLM2 cells. Combined treatment with clorgyline and ABVD (doxorubicin, bleomycin, vinblastine, dacarbazine) was more effective in reducing cell growth than either regimen alone. In summary, MAOA is highly expressed in cHL and may reflect the distinct biology of this lymphoma. Further studies on the potential utility of MAOA as a diagnostic marker and therapeutic target are warranted. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Doença de Hodgkin/enzimologia , Monoaminoxidase/metabolismo , Linhagem Celular Tumoral , Clorgilina/farmacologia , Infecções por Vírus Epstein-Barr/enzimologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Inibidores da Monoaminoxidase/farmacologia , Células de Reed-Sternberg/metabolismo
5.
Neurotoxicology ; 25(1-2): 21-30, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-14697877

RESUMO

Cloning of MAO A and B has demonstrated clearly that MAO A and B are coded by different proteins with 70% amino acid identity. With the MAO A and B cDNA clones, we showed the tissue distribution and genomic structure of MAO A and B, the latter suggesting that they are derived from the same ancestral gene. The active sites, the role of cysteine residues, the three-dimensional models and the mitochondria targeting domains of both isoenzymes have been established. The transcriptional regulation of MAO A and B has been studied. MAO A KO mice showed increased levels of serotonin (5-HT), norepinephrine (NE), dopamine (DA) whereas MAO B KO mice showed increased phenylethylamine (PEA) levels only. Both MAO A and B KO mice showed increased response to stress. MAO A KO mice showed increased emotional learning and memory and aggressive behavior, but the vesicular monoamine transporter (VMAT2), 5-HT1A, 5-HT2A and 5-HT2C receptors were down regulated. 5-HT2A antagonist, ketanserin and MDL100907 were able to abolish the aggression, suggesting that the aggressive behavior may be mediated by 5-HT2A receptor. In contrast, MAO B KO mice are resistant to MPTP, a toxin which induces Parkinson's syndromes. Studies of these mice suggest that MAO A and B have distinct biochemical and physiological functions.


Assuntos
Clonagem Molecular/métodos , Camundongos Knockout/genética , Monoaminoxidase/genética , Sequência de Aminoácidos , Animais , Humanos , Camundongos , Camundongos Knockout/metabolismo , Dados de Sequência Molecular , Monoaminoxidase/química , Monoaminoxidase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA