Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Handb Clin Neurol ; 186: 123-132, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35772882

RESUMO

During stereotactic procedures for treating medically refractory movement disorders, intraoperative neurophysiology shifts its focus from simply monitoring the effects of surgery to an integral part of the surgical procedure. The small size, poor visualization, and physiologic nature of these deep brain targets compel the surgeon to rely on some form of physiologic for confirmation of proper anatomic targeting. Even given the newer reliance on imaging and asleep deep brain stimulator electrode placement, it is still a physiologic target and thus some form of intraoperative physiology is necessary. This chapter reviews the neurophysiologic monitoring method of microelectrode recording that is commonly employed during these neurosurgical procedures today.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Estimulação Encefálica Profunda/métodos , Humanos , Imageamento por Ressonância Magnética , Neurofisiologia , Doença de Parkinson/terapia , Técnicas Estereotáxicas
2.
Curr Opin Anaesthesiol ; 34(5): 590-596, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34435602

RESUMO

PURPOSE OF REVIEW: We will explain the basic principles of intraoperative neurophysiological monitoring (IONM) during spinal surgery. Thereafter we highlight the significant impact that general anesthesia can have on the efficacy of the IONM and provide an overview of the essential pharmacological and physiological factors that need to be optimized to enable IONM. Lastly, we stress the importance of teamwork between the anesthesiologist, the neurophysiologist, and the surgeon to improve clinical outcome after spinal surgery. RECENT FINDINGS: In recent years, the use of IONM has increased significantly. It has developed into a mature discipline, enabling neurosurgical procedures of ever-increasing complexity. It is thus of growing importance for the anesthesiologist to appreciate the interplay between IONM and anesthesia and to build up experience working in a team with the neurosurgeon and the neurophysiologist. SUMMARY: Safety measures, cooperation, careful choice of drugs, titration of drugs, and maintenance of physiological homeostasis are essential for effective IONM.


Assuntos
Anestesia , Monitorização Neurofisiológica Intraoperatória , Anestesia/efeitos adversos , Humanos , Neurocirurgiões , Procedimentos Neurocirúrgicos , Medula Espinal
3.
Oper Neurosurg (Hagerstown) ; 20(4): 419-425, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33428767

RESUMO

BACKGROUND: Segmented deep brain stimulation (DBS) leads, which are capable of steering current in the direction of any 1 of 3 segments, can result in a wider therapeutic window by directing current away from unintended structures, particularly, the corticospinal tract (CST). It is unclear whether the use of motor evoked potentials (MEPs) is feasible during DBS surgery via stimulation of individual contacts/segments in order to quantify CST activation thresholds and optimal contacts/segments intraoperatively. OBJECTIVE: To assess the feasibility of using MEP to identify CST thresholds for ring and individual segments of the DBS lead under general anesthesia. METHODS: MEP testing was performed during pulse generator implantation under general anesthesia on subjects who underwent DBS lead implantation into the subthalamic nucleus (STN). Stimulation of each ring and segmented contacts of the directional DBS lead was performed until CST threshold was reached. Stereotactic coordinates and thresholds for each contact/segment were recorded along with the initially activated muscle group. RESULTS: A total of 34 hemispheres were included for analysis. MEP thresholds were recorded from 268 total contacts/segments. For segmented contacts (2 and 3, respectively), the mean highest CST thresholds were 2.33 and 2.62 mA, while the mean lowest CST thresholds were 1.7 and 1.89 mA, suggesting differential thresholds in relation to CST. First dorsal interosseous and abductor pollicis brevis (34% each) were the most commonly activated muscle groups. CONCLUSION: MEP threshold recording from segmented DBS leads is feasible. MEP recordings can identify segments with highest CST thresholds and may identify segment orientation in relation to CST.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Núcleo Subtalâmico , Potencial Evocado Motor , Estudos de Viabilidade , Humanos , Doença de Parkinson/terapia
4.
J Clin Neurophysiol ; 36(1): 67-73, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30418266

RESUMO

PURPOSE: Local field potential recordings from deep brain stimulation (DBS) leads provide insight into the pathophysiology of Parkinson disease (PD). We recorded local field potential activity from DBS leads within the subthalamic nucleus in patients with PD undergoing DBS surgery to identify reproducible pathophysiological signatures of the disease. METHODS: Local field potentials were recorded in 11 hemispheres from patients with PD undergoing subthalamic nucleus-DBS. Bipolar recordings were performed off medication for 2 minutes at rest and another 2 minutes with continuous repetitive opening-closing of the contralateral hand. Spectral analysis and bicoherence were performed and compared between the two testing conditions. RESULTS: In all hemispheres, predominance of the beta band frequency (13-30 Hz) was observed at rest and during movement. Beta peak energy was significantly (P < 0.05) increased during movement compared with rest in 6 of 10 hemispheres. Significant beta bicoherence was observed at rest and during movement in 5 of 10 hemispheres. The most robust local field potential recordings were observed at the DBS contact(s) independently chosen for programming in 9 of the 10 hemispheres. CONCLUSIONS: In patients with PD, beta activity that increases with repetitive movement may be a signature of the "off" medication state. These findings provide new data on beta oscillatory activity during the Parkinsonian "off" state that may help further define the local field potential signatures of PD.


Assuntos
Ritmo beta/fisiologia , Estimulação Encefálica Profunda , Movimento/fisiologia , Doença de Parkinson/fisiopatologia , Doença de Parkinson/cirurgia , Núcleo Subtalâmico/fisiopatologia , Idoso , Feminino , Mãos/fisiopatologia , Humanos , Monitorização Neurofisiológica Intraoperatória , Masculino , Pessoa de Meia-Idade , Processamento de Sinais Assistido por Computador , Núcleo Subtalâmico/cirurgia
7.
J Neurosurg Spine ; 15(1): 64-70, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21476796

RESUMO

OBJECTIVE: Considerable overlap exists in nerve root innervation of various muscles. Knowledge of myotomal innervation is essential for the interpretation of neurological examination findings and neurosurgical decision-making. Previous studies relied on cadaveric dissections, animal studies, and cases with anomalous anatomy. This study investigates the myotomal innervation patterns of cervical and lumbar nerve roots through in vivo stimulation during surgeries for spinal decompression. METHODS: Patients undergoing cervical and lumbar surgeries in which nerve roots were exposed in the normal course of surgery were included in the study. Electromyography electrodes were placed in the muscle groups that are generally accepted to be innervated by the roots under study. These locations included levels above and below the spinal levels undergoing decompression. After decompression, a unipolar neural stimulator probe was placed directly on the nerve root sleeve and constant current stimulation in increments of 0.1 mA was performed. Current was raised until at least a 100 µV amplitude-triggered electromyographic response was noted in 1 or more muscles. All muscles that responded were recorded. RESULTS: A total of 2295 nerve root locations in 129 patients (mean age 57 ± 15 years, 47 female [36%]) were stimulated, and 1589 stimulations met quality criteria and were analyzed. Four hundred ninety-five stimulations were performed on roots contributing to the cervical and brachial plexus from C-3 to T-1 (31.2%), and 1094 (68.8%) were roots in the lumbosacral plexus between L-1 and S-2. The authors were able to construct a statistical map of the contributions of each cervical and lumbosacral nerve root for the set of muscle groups monitored in the protocol. In many cases the range of muscles innervated by a specific root was broader than previously described in textbooks. CONCLUSIONS: This is the largest data set of direct intraoperative nerve root stimulations during decompressive surgery, demonstrating the relative contribution of root-level motor input to various muscle groups. Compared with classic neuroanatomy, a significant number of roots innervate a broader range of muscles than expected, which may account for the variability of presentation between patients with identical number and location of compressed roots.


Assuntos
Músculo Esquelético/inervação , Raízes Nervosas Espinhais/fisiologia , Adulto , Idoso , Estimulação Elétrica , Eletromiografia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Monitorização Intraoperatória , Condução Nervosa/fisiologia
8.
Neurophysiol Clin ; 37(6): 449-55, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18083501

RESUMO

Intraoperative monitoring (IOM) adds new information to intraoperative surgical decision-making. When presented clearly and accurately, it can help guide decision processes during the procedure, but can be a detriment overall if the information is inaccurate or misleading. Troubleshooting abilities and vigilance of the IOM staff play a large role in bolstering the level of trust a surgeon develops in IOM. Additionally, a surgeon may impart his own interpretation and experience with this new information that can undermine or enhance its impact on the case. In this article, we explore these issues with IOM in general and as they relate to the special context of DBS for movement disorders.


Assuntos
Tomada de Decisões Assistida por Computador , Estimulação Encefálica Profunda , Monitorização Intraoperatória/métodos , Transtornos dos Movimentos/terapia , Procedimentos Neurocirúrgicos , Algoritmos , Eletroencefalografia , Potencial Evocado Motor/fisiologia , Humanos , Período Intraoperatório , Transtornos dos Movimentos/cirurgia , Doença de Parkinson/cirurgia , Doença de Parkinson/terapia , Implantação de Prótese , Núcleo Subtalâmico/fisiologia
9.
Neurosurg Focus ; 17(1): E6, 2004 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-15264775

RESUMO

The authors demonstrate that high-frequency electrical stimulation dorsal to the subthalamic nucleus (STN) can directly suppress levodopa-induced dyskinesias. This 63-year-old woman with idiopathic Parkinson disease underwent surgery for placement of bilateral subthalamic deep brain stimulation (DBS) electrodes to control progressive rigidity, motor fluctuations, and levodopa-induced dyskinesias. The model 3389 DBS leads were implanted with microelectrode guidance. Magnetic resonance imaging confirmed proper placement of the leads. Postoperatively the patient exhibited improvement in all of her parkinsonian symptoms; however, her right leg dyskinesias had not improved. Based on their previous experiences treating levodopa-induced dyskinesias with subthalamic stimulation through the more dorsally located contacts of the model 3387 lead, the authors withdrew the implanted 3389 lead 3 mm. Following relocation of the lead they were able to suppress the right leg dyskinesias by using the most dorsal contacts. The patient's dopaminergic medication intake increased slightly. These findings indicate that electrical stimulation dorsal to the STN can directly suppress levodopa-induced dyskinesias independent of dopaminergic medication changes. The 3389 lead may provide inadequate coverage of the subthalamic region for some patients.


Assuntos
Antiparkinsonianos/efeitos adversos , Agonistas de Dopamina/efeitos adversos , Discinesia Induzida por Medicamentos/terapia , Terapia por Estimulação Elétrica/instrumentação , Eletrodos Implantados , Levodopa/efeitos adversos , Doença de Parkinson/terapia , Núcleo Subtalâmico/fisiopatologia , Antiparkinsonianos/administração & dosagem , Antiparkinsonianos/uso terapêutico , Remoção de Dispositivo , Agonistas de Dopamina/administração & dosagem , Agonistas de Dopamina/uso terapêutico , Discinesia Induzida por Medicamentos/etiologia , Desenho de Equipamento , Feminino , Humanos , Perna (Membro) , Levodopa/administração & dosagem , Levodopa/uso terapêutico , Imageamento por Ressonância Magnética , Microeletrodos , Pessoa de Meia-Idade , Doença de Parkinson/tratamento farmacológico , Indução de Remissão , Núcleo Subtalâmico/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA