Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Cells ; 11(15)2022 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-35954179

RESUMO

Isolating a large quantity of high-quality human islets is a prerequisite for diabetes research. Human islets are typically isolated from the pancreases of brain-dead donors, making research difficult due to low availability. Pancreas tissue discarded after surgical resection may be a good alternative source of islet cells. To test this hypothesis, we isolated islets from discarded surgical specimens and evaluated the islet yield and quality as well as islet cell preparations. Eighty-two segmental pancreases were processed using the Ricordi automated method, and islet yield and quality were investigated. The mean age of patients was 54.6, and the cohort included 32 diabetes patients. After purification, partially resected pancreases yielded an average of 59,593 ± 56,651 islet equivalents (IEQs) and 2546 IEQ/g of digested pancreas, with 71.5 ± 21% purity. Multivariate analysis revealed that diabetes (p = 0.0046) and the lobe used (p = 0.0156) significantly altered islet yield. Islets transplanted into diabetic mice displayed good viability and in vitro glucose responses, DNA/RNA quality, mitochondrial function, and glucose control, even though these results were dependent on islet quality. Isolated cells also maintained high viability and function even after cryopreservation. Our findings indicate that pancreatic tissue discarded after surgery can be a valuable source of islets for diabetes research.


Assuntos
Diabetes Mellitus Experimental , Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas , Animais , Humanos , Transplante das Ilhotas Pancreáticas/métodos , Camundongos , Pâncreas , Doadores de Tecidos
2.
Arthroscopy ; 38(11): 2987-3000, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35716989

RESUMO

PURPOSE: The purpose of this study was to determine whether the addition of decellularized bovine pericardial patch loaded with mesenchymal stromal cells enhanced bone-to-tendon healing and improved the biomechanical strength of large-to-massive rotator cuff tears in a small animal model. METHODS: Adipose-derived mesenchymal stromal cells (MSCs) from rat inguinal fat were isolated, cultured, and loaded onto decellularized bovine pericardium patches. To simulate large-to-massive tears, rats were managed with free cage activity for 6 weeks after tear creation. A total of 18 rats were randomly allocated to repair-only (control), repair with pericardial patch augmentation (patch), or repair with MSC loaded pericardial patch augmentation (patch-MSC). Each group had 6 rats (one shoulder of each rat was used for histological evaluation and another for biomechanical evaluation). MSCs seeded on the pericardial patches were traced on four shoulders from 2 other rats at 4 weeks after surgery. Histological evaluation for bone-to-tendon healing and biomechanical testing was carried out at 8 weeks after repair. RESULTS: MSCs tagged with a green fluorescent protein were observed in the repair site 4 weeks after the repair. One shoulder each in the control and patch groups showed complete discontinuity between the bone and tendon. One shoulder in the control group showed attenuation with only a tenuous connection. Fibrocartilage and tidemark formation at the bone-to-tendon interface (P = .002) and collagen fiber density (P = .040) and orientation (P = .003) were better in the patch-MSC group than in the control or patch group. Load-to-failure in the patch-MSC and patch groups was higher than that in the control group (P = .001 and .009, respectively). CONCLUSION: Decellularized bovine pericardial patches loaded with adipose-derived and cultured mesenchymal stromal cells enhanced healing in terms of both histology and mechanical strength at 8 weeks following rotator cuff repair in a rat model. CLINICAL RELEVANCE: Large-to-massive rotator tears need a strategy to prevent retear and enhance healing. The addition of decellularized bovine pericardial patch loaded with MSCs can enhance bone-to-tendon healing and improve biomechanical healing of large-to-massive rotator cuff tears following repair.


Assuntos
Células-Tronco Mesenquimais , Lesões do Manguito Rotador , Bovinos , Animais , Ratos , Lesões do Manguito Rotador/cirurgia , Lesões do Manguito Rotador/patologia , Manguito Rotador/cirurgia , Manguito Rotador/patologia , Cicatrização , Fenômenos Biomecânicos , Modelos Animais de Doenças
3.
Pharmaceutics ; 14(2)2022 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-35214135

RESUMO

Although pancreatic islet transplantation is a potentially curative treatment for insulin-dependent diabetes, a shortage of donor sources, low differentiation capacity, and transplantation efficacy are major hurdles to overcome before becoming a standard therapy. Stem cell-derived insulin-producing cells (IPCs) are a potential approach to overcoming these limitations. To improve the differentiation capacity of the IPCs, cell cluster formation is crucial to mimic the 3D structure of the islet. This study developed a biodegradable polycaprolactone (PCL) electrospun nanofibrous (NF) microwell-arrayed membrane permeable to soluble factors. Based on the numerical analysis and experimental diffusion test, the NF microwell could provide sufficient nutrients, unlike an impermeable PDMS (polydimethylsiloxane) microwell. The IPC clusters in the NF microwells showed higher gene expression of insulin and PDX1 and insulin secretion than the PDMS microwells. The IPC clusters in the NF microwell-arrayed membrane could be directly transplanted. Transplanted IPC clusters in the microwells survived well and expressed PDX1 and insulin. Additionally, human c-peptide was identified in the blood plasma at two months after transplantation of the membranes. The NF microwell-arrayed membrane can be a new platform promoting IPC differentiation capacity and realizing an in situ transplantation technique for diabetic patients.

4.
Arthroscopy ; 38(7): 2142-2153, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35042006

RESUMO

PURPOSE: This study aimed (1) to confirm the maintenance of the extracellular vesicles (EVs) delivered via injectable collagen at the application site, and (2) to evaluate the effect of EVs derived from the human umbilical cord-derived mesenchymal stem cells and loaded in an injectable collagen gel after rotator cuff repair (RCR). METHODS: Rabbits (n = 20) were assigned to normal (N), repair-only (R), and those administered with injectable collagen after repair (RC), and EV-laden injectable collagen after repair (RCE) groups. The EVs isolated by ultra-centrifugation from the human umbilical cord-derived mesenchymal stem cells spent medium were mixed with collagen and administered accordingly. After 12 weeks, the rabbits were sacrificed to evaluate the healing of the bone-to-tendon junction and the fatty degeneration of muscle. Histomorphometric scoring for bone-tendon interface, fatty infiltration (%), and biomechanical tests were performed. Separately, groups of 3 rabbits were assigned to 3 different time points to evaluate maintenance of green fluorescence-labeled EVs with injectable collagen via tracking on the bursal side of the rotator cuff (3 groups: 3 days, 2, and 4 weeks). RESULTS: The EVs delivered by injectable collagen remained until 4 weeks at the bursal side of the cuff tissue. The RCE group showed a significantly greater histomorphometric total score (P < .001, and P = .013, respectively) and significantly lower fatty degeneration than the RC and R groups (P = .001, and P = .013, respectively). The biomechanical tests revealed significant growing trends in load-to-failure and stiffness (P = .002, and P = .013, respectively), in the R, RC, RCE, and N groups. CONCLUSIONS: EVs mounted in injectable collagen remained at the repair site for at least 4 weeks after application. Furthermore, they effectively promote bone-to-tendon healing via collagen maturation in bone-tendon interface and preventing fatty degeneration of rotator muscle after RCR as compared with collagen-only or repair-only groups. CLINICAL RELEVANCE: The combination of collagen with EVs significantly promotes rotator cuff healing demonstrating potential clinical application during partial rotator cuff tear or after RCR.


Assuntos
Vesículas Extracelulares , Lesões do Manguito Rotador , Animais , Fenômenos Biomecânicos , Colágeno/farmacologia , Coelhos , Manguito Rotador/fisiologia , Tendões , Cicatrização/fisiologia
5.
Polymers (Basel) ; 13(24)2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-34960917

RESUMO

With the aim of fabricating drug-loaded implantable patches, a 3D printing technique was employed to produce novel coaxial hydrogel patches. The core-section of these patches contained a dopamine-modified methacrylated alginate hydrogel loaded with a chemotherapeutic drug (Gemcitabine), while their shell section was solely comprised of a methacrylated alginate hydrogel. Subsequently, these patches were further modified with CaCO3 cross linker and a polylactic acid (PLA) coating to facilitate prolonged release of the drug. Consequently, the results showed that addition of CaCO3 to the formula enhanced the mechanical properties of the patches and significantly reduced their swelling ratio as compared to that for patches without CaCO3. Furthermore, addition of PLA coating to CaCO3-containing patches has further reduced their swelling ratio, which then significantly slowed down the release of Gemcitabine, to a point where 4-layered patches could release the drug over a period of 7 days in vitro. Remarkably, it was shown that 3-layered and 4-layered Gemcitabine loaded patches were successful in inhibiting pancreatic cancer cell growth for a period of 14 days when tested in vitro. Lastly, in vivo experiments showed that gemcitabine-loaded 4-layered patches were capable of reducing the tumor growth rate and caused no severe toxicity when tested in mice. Altogether, 3D printed hydrogel patches might be used as biocompatible implants for local delivery of drugs to diseased site, to either shrink the tumor or to prevent the tumor recurrence after resection.

6.
J Control Release ; 335: 650-659, 2021 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-34118337

RESUMO

Postoperative pancreatic fistula at the early stage can lead to auto-digestion, which may delay the recovery of the pancreaticojejunal (PJ) anastomosis. The efficacy and safety of an acetazolamide-eluting biodegradable tubular stent (AZ-BTS) for the prevention of self-digestion and intra-abdominal inflammatory diseases caused by pancreatic juice leakage after PJ anastomosis in a porcine model were investigated. The AZ-BTS was successfully fabricated using a multiple dip-coating process. Then, the drug amount and release profile were analyzed. The therapeutic effects of AZ were examined in vitro using two kinds of pancreatic cancer cell lines, AsPC-1 and PANC-1. The efficacy of AZ-BTS was assessed in a porcine PJ leakage model, with animals were each assigned to a leakage group, a BTS group and an AZ-BTS group. The overall mortality rates in these three groups were 44.4%, 16.6%, and 0%, respectively. Mean α-amylase concentrations were significantly higher in the leakage and BTS groups than in the AZ-BTS group on day 2-5 (p < 0.05 each all). The luminal diameters and areas of the pancreatic duct were significantly larger in the leakage group than in the BTS and AZ-BTS groups (p < 0.05 each all). These findings indicate that AZ-BTS can significantly suppress intra-abdominal inflammatory diseases caused by pancreatic juice leakage and also prevent late stricture formation at the PJ anastomotic site in a porcine model.


Assuntos
Fístula Anastomótica , Preparações Farmacêuticas , Acetazolamida , Animais , Humanos , Pancreaticoduodenectomia , Stents , Suínos
7.
Scand J Gastroenterol ; 56(5): 598-603, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33764846

RESUMO

OBJECTIVES: Circumferential endoscopic submucosal dissection (ESD) for large lesions induces severe stricture, requiring subsequent treatment. We aimed to evaluate the efficacy of allogeneic epithelial cell sheet transplantation in preventing esophageal stricture after circumferential ESD in a porcine model. MATERIALS AND METHODS: A total of 15 conventional pigs underwent a 4 cm long circumferential ESD in the mid-esophagus. Out of these animals, 11 were immediately subjected to allogeneic oral mucosal cell sheet transplantation at the resection site, whereas four pigs underwent circumferential ESD only. We performed upper endoscopy 1 and 2 weeks after ESD and assessed the degree of esophageal stricture and histologic characteristics. RESULTS: Dysphagia scores and weight change ratios recorded 1 and 2 weeks after ESD did not differ between the two groups. The stricture rate 2 weeks after ESD was 100% in the control group and 90.9% in the cell sheet group (p = 1.000). The median mucosal constriction rates of the control and cell sheet groups were 73.5% (range 63.0-80.0%) and 53.8% (37.5-73.3%, p = .018), respectively. With regard to microscopic measurements, the length of re-epithelialization was greater in the cell sheet group than in the control group (2,495 µm vs. 369 µm, p = .008). Median fibrosis thickness and degree of muscle damage were not significantly different between groups. CONCLUSIONS: Although allogeneic epithelial cell sheet transplantation showed greater re-epithelialization and less mucosal constriction of post-ESD ulcers, it was not sufficiently effective in preventing post-ESD stricture.


Assuntos
Ressecção Endoscópica de Mucosa , Neoplasias Esofágicas , Estenose Esofágica , Transplante de Células-Tronco Hematopoéticas , Animais , Ressecção Endoscópica de Mucosa/efeitos adversos , Células Epiteliais , Estenose Esofágica/etiologia , Estenose Esofágica/prevenção & controle , Complicações Pós-Operatórias/prevenção & controle , Suínos
8.
Stem Cell Res Ther ; 12(1): 3, 2021 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-33407888

RESUMO

BACKGROUND: Although pancreatic islet transplantation therapy is ideal for diabetes patients, several hurdles have prevented it from becoming a standard treatment, including donor shortage and low engraftment efficacy. In this study, we prepared insulin-producing cells trans-differentiated from adult human liver cells as a new islet source. Also, cell sheet formation could improve differentiation efficiency and graft survival. METHODS: Liver cells were expanded in vitro and trans-differentiated to IPCs using adenovirus vectors carrying human genes for PDX1, NEUROD1, and MAFA. IPCs were seeded on temperature-responsive culture dishes to form cell sheets. Differentiation efficiency was confirmed by ß cell-specific gene expression, insulin production, and immunohistochemistry. IPC suspension was injected by portal vein (PV), and IPC sheet was transplanted on the liver surface of the diabetic nude mouse. The therapeutic effect of IPC sheet was evaluated by comparing blood glucose control, weight gain, histological evaluation, and hepatotoxicity with IPC injection group. Also, cell biodistribution was assessed by in vivo/ex vivo fluorescence image tagging. RESULTS: Insulin gene expression and protein production were significantly increased on IPC sheets compared with those in IPCs cultured on conventional culture dishes. Transplanted IPC sheets displayed significantly higher engraftment efficiency and fewer transplanted cells in other organs than injected IPCs, and also lower liver toxicity, improved blood glucose levels, and weight gain. Immunohistochemical analyses of liver tissue revealed positive staining for PDX1 and insulin at 1, 2, and 4 weeks after IPC transplantation. CONCLUSIONS: In conclusion, cell sheet formation enhanced the differentiation function and maturation of IPCs in vitro. Additionally, parameters for clinical application such as distribution, therapeutic efficacy, and toxicity were favorable. The cell sheet technique may be used with IPCs derived from various cell sources in clinical applications.


Assuntos
Diabetes Mellitus Experimental , Células Secretoras de Insulina , Adulto , Animais , Diferenciação Celular , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/terapia , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Fígado/metabolismo , Distribuição Tecidual
9.
Cells ; 9(12)2020 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-33261076

RESUMO

Pancreatic islet transplantation is the fundamental treatment for insulin-dependent diabetes; however, donor shortage is a major hurdle in its use as a standard treatment. Accordingly, differentiated insulin-producing cells (DIPCs) are being developed as a new islet source. Differentiation efficiency could be enhanced if the spheroid structure of the natural islets could be recapitulated. Here, we fabricated DIPC spheroids using concave microwells, which enabled large-scale production of spheroids of the desired size. We prepared DIPCs from human liver cells by trans-differentiation using transcription factor gene transduction. Islet-related gene expression and insulin secretion levels were higher in spheroids compared to those in single-cell DIPCs, whereas actin-myosin interactions significantly decreased. We verified actin-myosin-dependent insulin expression in single-cell DIPCs by using actin-myosin interaction inhibitors. Upon transplanting cells into the kidney capsule of diabetic mouse, blood glucose levels decreased to 200 mg/dL in spheroid-transplanted mice but not in single cell-transplanted mice. Spheroid-transplanted mice showed high engraftment efficiency in in vivo fluorescence imaging. These results demonstrated that spheroids fabricated using concave microwells enhanced the engraftment and functions of DIPCs via actin-myosin-mediated cytoskeletal changes. Our strategy potentially extends the clinical application of DIPCs for improved differentiation, glycemic control, and transplantation efficiency of islets.


Assuntos
Diferenciação Celular/fisiologia , Citoesqueleto/fisiologia , Células Secretoras de Insulina/fisiologia , Insulina/metabolismo , Esferoides Celulares/fisiologia , Actinas/metabolismo , Animais , Células Cultivadas , Citoesqueleto/metabolismo , Humanos , Secreção de Insulina/fisiologia , Células Secretoras de Insulina/metabolismo , Fígado/metabolismo , Fígado/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Miosinas/metabolismo , Esferoides Celulares/metabolismo
10.
Am J Sports Med ; 48(13): 3347-3358, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33136454

RESUMO

BACKGROUND: Efforts are being made to treat rotator cuff tears (RCTs) that exhibit poor healing and high retear rates. Tendon-to-bone healing using mesenchymal stem cells is being explored, but research is needed to establish effective delivery options. PURPOSE: To evaluate the effects of an adipose-derived stem cell (ADSC) sheet on mesenchymal stem cell delivery for tendon-to-bone healing of a chronic RCT in rats and to demonstrate that ADSC sheets enhance tendon-to-bone healing. STUDY DESIGN: Controlled laboratory study. METHODS: Mesenchymal stem cells were obtained from rat adipose tissue, and a cell sheet was prepared using a temperature-responsive dish. To evaluate the efficacy of stem cells produced in a sheet for the lesion, the experiment was conducted with 3 groups: repair group, cell sheet transplantation after repair group, and cell sheet-only group. Histological, biomechanical, and micro-computed tomography (micro-CT) results were compared among the groups. RESULTS: Hematoxylin and eosin staining for histomorphological analysis revealed that the cell sheet transplantation after repair group (5.75 ± 0.95) showed statistically significant higher scores than the repair (2.75 ± 0.50) and cell sheet-only (3.25 ± 0.50) groups (P < .001). On safranin O staining, the cell sheet transplantation after repair group (0.51 ± 0.04 mm2) had a larger fibrocartilage area than the repair (0.31 ± 0.06 mm2) and cell sheet-only (0.32 ± 0.03 mm2) groups (P = .001). On micro-CT, bone volume/total volume values were significantly higher in the cell sheet transplantation after repair group (23.98% ± 1.75%) than in the other groups (P < .039); there was no significant difference in the other values. On the biomechanical test, the cell sheet transplantation after repair group (4 weeks after repair) showed significantly higher results than the other groups (P < .005). CONCLUSION: Our study shows that engineered stem cells are a clinically feasible stem cell delivery tool for rotator cuff repair. CLINICAL RELEVANCE: This laboratory study provides evidence that ADSCs are effective in repairing RCTs, which are common sports injuries.


Assuntos
Lesões do Manguito Rotador , Engenharia Tecidual , Cicatrização , Tecido Adiposo , Animais , Modelos Animais de Doenças , Ratos , Manguito Rotador , Tendões , Microtomografia por Raio-X
11.
Cells ; 9(9)2020 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-32878048

RESUMO

Islet cell transplantation is considered an ideal treatment for insulin-deficient diabetes, but implantation sites are limited and show low graft survival. Cell sheet technology and adipose-derived stem cells (ADSCs) can be useful tools for improving islet cell transplantation outcomes since both can increase implantation efficacy and graft survival. Herein, the optimal transplantation site in diabetic mice was investigated using islets and stem cell sheets. We constructed multi-layered cell sheets using rat/human islets and human ADSCs. Cell sheets were fabricated using temperature-responsive culture dishes. Islet/ADSC sheet (AI sheet) group showed higher viability and glucose-stimulated insulin secretion than islet-only group. Compared to islet transplantation alone, subcutaneous AI sheet transplantation showed better blood glucose control and CD31+ vascular traits. Because of the adhesive properties of cell sheets, AI sheets were easily applied on liver and peritoneal surfaces. Liver or peritoneal surface grafts showed better glucose control, weight gain, and intraperitoneal glucose tolerance test (IPGTT) profiles than subcutaneous site grafts using both rat and human islets. Stem cell sheets increased the therapeutic efficacy of islets in vivo because mesenchymal stem cells enhance islet function and induce neovascularization around transplanted islets. The liver and peritoneal surface can be used more effectively than the subcutaneous site in future clinical applications.


Assuntos
Tecido Adiposo/metabolismo , Diabetes Mellitus Experimental/terapia , Ilhotas Pancreáticas/metabolismo , Transplante de Células-Tronco/métodos , Células-Tronco/metabolismo , Animais , Masculino , Camundongos , Ratos , Ratos Sprague-Dawley
12.
Artigo em Inglês | MEDLINE | ID: mdl-32565421

RESUMO

OBJECTIVE: Esterified collagen (EC) can be functionalized with heparin to enhance islet graft stability. Growth factors secreted by human adipose-derived stem cells (hADSCs) can bind efficiently to EC-heparin (EC-Hep), which enhances revascularization and cell protection. We investigated the therapeutic potential of a combined heparin-esterified collagen-hADSC (HCA)-islet sheet to enhance islet engraftment. RESEARCH DESIGN AND METHODS: This study was designed to assess the efficiency of using EC-Hep as a scaffold for subcutaneous islet transplantation in diabetic athymic mice. After the hADSC-cocultured islets were seeded in the EC-Hep scaffold, islet function was measured by glucose-stimulated insulin secretion test and growth factors in the culture supernatants were detected by protein array. Islet transplantation was performed in mice, and graft function and survival were monitored by measuring the blood glucose levels. ß-Cell mass and vascular densities were assessed by immunohistochemistry. RESULTS: The EC-Hep composite allowed sustained release of growth factors. Secretion of growth factors and islet functionality in the HCA-islet sheet were significantly increased compared with the control groups of islets alone or combined with native collagen. In vivo, stable long-term glucose control by the graft was achieved after subcutaneous transplantation of HCA-islet sheet due to enhanced capillary network formation around the sheet. CONCLUSIONS: The findings indicate the potential of the HCA-islet sheet to enhance islet revascularization and engraftment in a hADSC dose-dependent manner, following clinical islet transplantation for the treatment of diabetes mellitus.


Assuntos
Diabetes Mellitus Experimental , Células Secretoras de Insulina , Animais , Colágeno , Diabetes Mellitus Experimental/terapia , Heparina , Camundongos , Células-Tronco
13.
J Mater Chem B ; 8(23): 5064-5079, 2020 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-32400836

RESUMO

Biopolymer-based hydrogels have emerged as promising platforms for drug delivery systems (DDSs) due to their inherent biocompatibility, tunable physical properties and controllable degradability. Yet, drug release in majority of these systems is solely contingent on diffusion of drug molecules through the hydrogel, which often leads to burst release of drugs from these systems. Herein, inspired by the chemistry of mussel adhesive proteins, a new generation of coaxial hydrogel fibers was developed that could simultaneously exert both affinity and diffusion control over the release of chemotherapeutic drugs. Specifically, dopamine-modified alginate hydrogel along with chemotherapeutic drugs (doxorubicin or gemcitabine) was used as the main core component to confer affinity-controlled release, while a methacrylated-alginate hydrogel was used as the shell composition to provide the controlled diffusion barrier. It was shown that our coaxial mussel-inspired biofibers yielded biocompatible hydrogel fibers (as indicated by comprehensive in vitro and in vivo experiments) with favourable properties including controlled swelling, and enhanced mechanical properties, when compared against single fibers made from unmodified alginate. Notably, it was observed that these coaxial fibers were capable of releasing the two drugs in a slower manner, when compared to single fibers made from pure alginate, which was partly attributed to stronger interactions of drugs with dopamine-modified alginate (the core element of coaxial fibers) as observed from zeta-potential measurements. It was further shown that these drug-loaded coaxial fibers had optimal anticancer activity both in vitro and in vivo using various pancreatic cancer cell lines. Most remarkably, drug loaded coaxial fibers, particularly doxorubicin-containing fibers, had higher anticancer effect in vivo compared to systemic injection of equivalent dosage of the drugs. Altogether, these biocompatible and robust hydrogel fibers may be further used as neoadjuvant or adjuvant therapies for controlled delivery of chemotherapeutic drugs locally to the tumor sites.


Assuntos
Antineoplásicos/farmacologia , Materiais Biocompatíveis/química , Desoxicitidina/análogos & derivados , Doxorrubicina/farmacologia , Sistemas de Liberação de Medicamentos , Hidrogéis/química , Proteínas/química , Animais , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Desoxicitidina/química , Desoxicitidina/farmacologia , Doxorrubicina/química , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Masculino , Camundongos , Camundongos Nus , Estrutura Molecular , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/patologia , Imagem Óptica , Tamanho da Partícula , Propriedades de Superfície , Células Tumorais Cultivadas , Gencitabina
14.
Sci Rep ; 10(1): 1518, 2020 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-32001759

RESUMO

Stricture of pancreatic-enteric anastomoses is a major late complication of a pancreaticoduodenectomy for the treatment of a periampullary tumor and can lead to exocrine and endocrine insufficiency such as malnutrition and diabetes mellitus. We investigated the safety and efficacy of a biodegradable tubular stent (BTS) for preventing a pancreaticojejunostomy (PJ) anastomotic stricture in both a rat and porcine model. The BTS was manufactured using a terpolymer comprising poly p-dioxanone, trimethylene carbonate, and glycolide. A cohort of 42 rats was randomized into 7 groups of 6 animals each after BTS placement into the duodenum for the biodegradation assay. A total of 12 pigs were randomized equally into a control and BTS placement group. The effectiveness of the BTS was assessed by comparing radiologic images with histologic results. Surgical procedures and/or BTS placements were technically successful in all animals. The median mass losses of the removed BTS samples from the rat duodenum were 2.1, 6.8, 11.2, 19.4, 26.1, and 56.8% at 1, 2, 3, 4, 6, and 8 weeks, respectively. The BTS had completely degraded at 12 weeks in the rats. In the porcine PJ model, the mean luminal diameter and area of the pancreatic duct in the control group was significantly larger than in the BTS group (all p < 0.05). BTS placement thus appears to be safe and effective procedure for the prevention of PJ anastomotic stricture. These devices have the potential to be used as a temporary stent placement to treat pancreatic-enteric anastomoses, but further investigations are required for optimization in human.


Assuntos
Implantes Absorvíveis/veterinária , Anastomose Cirúrgica/instrumentação , Anastomose Cirúrgica/métodos , Animais , Constrição Patológica/cirurgia , Modelos Animais de Doenças , Masculino , Pâncreas/cirurgia , Ductos Pancreáticos/cirurgia , Pancreaticoduodenectomia/efeitos adversos , Pancreaticoduodenectomia/métodos , Pancreaticojejunostomia , Complicações Pós-Operatórias/cirurgia , Ratos , Ratos Sprague-Dawley , Stents , Suínos
15.
J Vis Exp ; (154)2019 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-31885383

RESUMO

The transplantation of pancreatic islets is a promising treatment for patients who suffer from type 1 diabetes accompanied by hypoglycemia and secondary complications. However, islet transplantation still has several limitations such as the low viability of transplanted islets due to poor islet engraftment and hostile environments. In addition, the insulin-producing cells differentiated from human pluripotent stem cells have limited ability to secrete sufficient hormones that can regulate the blood glucose level; therefore, improving the maturation by culturing cells with proper microenvironmental cues is strongly required. In this article, we elucidate protocols for preparing a pancreatic tissue-derived decellularized extracellular matrix (pdECM) bioink to provide a beneficial microenvironment that can increase glucose sensitivity of pancreatic islets, followed by describing the processes for generating 3D pancreatic tissue constructs using a microextrusion-based bioprinting technique.


Assuntos
Bioimpressão/métodos , Matriz Extracelular , Pâncreas/citologia , Impressão Tridimensional/instrumentação , Animais , Diferenciação Celular , Humanos , Engenharia Tecidual/métodos , Alicerces Teciduais
16.
J Mater Chem B ; 7(10): 1773-1781, 2019 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-32254919

RESUMO

Type 1 diabetes mellitus (T1DM) is a form of diabetes that inhibits or halts insulin production in the pancreas. Although various therapeutic options are applied in clinical settings, not all patients are treatable with such methods due to the instability of the T1DM or the unawareness of hypoglycemia. Islet transplantation using a tissue engineering-based approach may mark a clinical significance, but finding ways to increase the function of islets in 3D constructs is a major challenge. In this study, we suggest pancreatic tissue-derived extracellular matrix as a potential candidate to recapitulate the native microenvironment in transplantable 3D pancreatic tissues. Notably, insulin secretion and the maturation of insulin-producing cells derived from human pluripotent stem cells were highly up-regulated when cultured in pdECM bioink. In addition, co-culture with human umbilical vein-derived endothelial cells decreased the central necrosis of islets under 3D culture conditions. Through the convergence of 3D cell printing technology, we validated the possibility of fabricating 3D constructs of a therapeutically applicable transplant size that can potentially be an allogeneic source of islets, such as patient-induced pluripotent stem cell-derived insulin-producing cells.


Assuntos
Matriz Extracelular/metabolismo , Ilhotas Pancreáticas/metabolismo , Engenharia Tecidual/métodos , Humanos , Impressão Tridimensional
17.
Sci Rep ; 8(1): 11314, 2018 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-30054522

RESUMO

Owing to the recent progress in regenerative medicine technology, clinical trials that harnessed the regeneration and immune modulation potentiality of stem cells for treating IBD have shown promising results. We investigated the feasibility and utility of intraluminal endoscopic transplantation of rat MSC sheets in murine models of experimental colitis for targeted delivery of stem cells to lesions. We isolated adipose-derived mesenchymal stem cells (AD-MSC) and bone marrow-derived mesenchymal stem cells (BM-MSC) from EGFP-transgenic rats and fabricated the cells in sheet forms using temperature-responsive culture dishes. The MSC sheets were endoscopically transplanted to the inflamed area in electrocoagulation and DNBS colitis model. The effect of the transplantation was verified using endoscopic scoring and histological analysis. In the electrocoagulation model, the AD-MSC group showed significantly decreased ulcer size in the transplanted regions. In the DNBS colitis model, the AD-MSC group showed decreased inflammation and colitis in the transplanted regions. Histologic analysis showed that the MSC sheets had successfully attached to the inflamed mucosa in both the electrocoagulation and DNBS colitis model. Our results show that endoscopic transplantation of MSC sheets could be a new effective mode of stem cell therapy for IBD treatment.


Assuntos
Colite/terapia , Inflamação/terapia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Animais , Colite/induzido quimicamente , Colite/genética , Colite/patologia , Dinitrofluorbenzeno/análogos & derivados , Dinitrofluorbenzeno/toxicidade , Modelos Animais de Doenças , Endoscópios , Proteínas de Fluorescência Verde/genética , Humanos , Inflamação/induzido quimicamente , Inflamação/genética , Inflamação/patologia , Camundongos , Ratos , Ratos Transgênicos/genética
18.
Oncotarget ; 9(8): 7867-7881, 2018 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-29487698

RESUMO

Tumors from 25 patients with pancreatic cancer were used to establish two patient-derived xenograft (PDX) models: orthotopic PDX (PDOX) and heterotopic (subcutaneous) PDX (PDHX). We compared gene expression by immunohistochemistry, single-nucleotide polymorphism (SNP), DNA methylation, and metabolite levels. The 4 cases, of the total of 13 in which simultaneous PDHX & PDOX models were established, were randomly selected. The molecular-genetic characteristics of the patient's tumor were well maintained in the two PDX models. SNP analysis demonstrated that both groups were more than 90% identical to the original patient's tumor, and there was little difference between the two models. DNA methylation of most genes was similar among the two models and the original patients tumor, but some gene sets were hypermethylated the in PDOX model and hypomethylated in the PDHX model. Most of the metabolites had a similar pattern to those of the original patient tumor in both PDX tumor models, but some metabolites were more prominent in the PDOX and PDHX models. This is the first simultaneous molecular-genetic and metabolite comparison of patient tumors and their tumors established in PDOX and PDHX models. The results indicate high fidelity of these critical properties of the patient tumors in the two models.

19.
Sci Rep ; 8(1): 360, 2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-29321630

RESUMO

Post-operative pancreatic fistula (POPF) following pancreatic resection is a life-threatening surgical complication. Cell sheets were prepared and harvested using temperature-responsive culture dishes and transplanted as patches to seal POPF. Two different mesenchymal stem cell (MSC) sheets were compared in terms of the preventative ability for pancreatic leakage in a rat model. Both rat adipose-derived stem cell (rADSC) and bone marrow-derived stem cell (rBMSC) sheets were transplanted. Those rADSC and rBMSC sheets are created without enzymes and thus maintained their cell-cell junctions and adhesion proteins with intact fibronectin on the basal side, as well as characteristics of MSCs. The rats with post-pancreatectomy rADSC- or rBMSC-sheet patches had significantly decreased abdominal fluid leakage compared with the control group, demonstrated by MR image analysis and measurement of the volume of abdominal fluid. Amylase level was significantly lower in the rats with rADSC-sheet and rBMSC-sheet patches compared with the control groups. The rADSC sheet patches had increased adhesive and immune-cytokine profiles (ICAM-1, L-selectin, TIMP-1), and the rBMSC sheets had reduced immune reactions compared to the control. This is first project looking at the feasibility of tissue engineering therapy using MSC-sheets as tissue patches preventing leakage of abdominal fluid caused by POPF.


Assuntos
Células-Tronco Mesenquimais , Fístula Pancreática/etiologia , Fístula Pancreática/terapia , Complicações Pós-Operatórias , Engenharia Tecidual , Amilases/metabolismo , Animais , Biomarcadores , Modelos Animais de Doenças , Imuno-Histoquímica , Imageamento por Ressonância Magnética , Células-Tronco Mesenquimais/citologia , Fístula Pancreática/diagnóstico por imagem , Fístula Pancreática/patologia , Ratos , Ratos Transgênicos , Resultado do Tratamento
20.
Sci Rep ; 7(1): 12381, 2017 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-28959053

RESUMO

Pancreatic cancer has a high rate of local recurrence and poor prognosis even with adjuvant chemotherapy after curative resection. The aim of this study was to investigate if local drug delivery combined with low dose systemic chemotherapy can increase the therapeutic effect of chemotherapy while reducing systemic toxicities. Poly-L-lactic acid-based 5-FU releasing patch was fabricated by electrospinning, and its tumour killing effects were first confirmed in vitro. The 5-FU patch directly adhered to the tumour in subcutaneous and orthotopic murine models, and induced a significant decrease in tumour size. Systemic gemcitabine treatment group, 5-FU drug releasing patch group, and systemic gemcitabine plus 5-FU patch group were compared by tumour size measurement, non-invasive bio-imaging, and histology in subcutaneous models. Combination of local drug patch and systemic chemotherapy led to increased tumour suppression effects that lasted longer, as well as increased survival rate. Histology revealed higher degree of apoptosis in the combined group. Systemic toxicity was recovered within 7 days after the treatment in all mice. Conclusively, local drug delivery using biocompatible polymer patch significantly inhibited tumour growth, and combination with systemic chemotherapy was more effective than single systemic chemotherapy.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Portadores de Fármacos/química , Neoplasias Pancreáticas/tratamento farmacológico , Adesivo Transdérmico , Administração Cutânea , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacocinética , Materiais Biocompatíveis/química , Linhagem Celular Tumoral , Desoxicitidina/administração & dosagem , Desoxicitidina/análogos & derivados , Composição de Medicamentos/métodos , Liberação Controlada de Fármacos , Fluoruracila/administração & dosagem , Fluoruracila/farmacocinética , Humanos , Masculino , Camundongos , Camundongos Nus , Recidiva Local de Neoplasia , Neoplasias Pancreáticas/mortalidade , Neoplasias Pancreáticas/patologia , Poliésteres/química , Taxa de Sobrevida , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto , Gencitabina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA