Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(23): e2220037120, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37252980

RESUMO

The balance between neural stem cell proliferation and neuronal differentiation is paramount for the appropriate development of the nervous system. Sonic hedgehog (Shh) is known to sequentially promote cell proliferation and specification of neuronal phenotypes, but the signaling mechanisms responsible for the developmental switch from mitogenic to neurogenic have remained unclear. Here, we show that Shh enhances Ca2+ activity at the neural cell primary cilium of developing Xenopus laevis embryos through Ca2+ influx via transient receptor potential cation channel subfamily C member 3 (TRPC3) and release from intracellular stores in a developmental stage-dependent manner. This ciliary Ca2+ activity in turn antagonizes canonical, proliferative Shh signaling in neural stem cells by down-regulating Sox2 expression and up-regulating expression of neurogenic genes, enabling neuronal differentiation. These discoveries indicate that the Shh-Ca2+-dependent switch in neural cell ciliary signaling triggers the switch in Shh action from canonical-mitogenic to neurogenic. The molecular mechanisms identified in this neurogenic signaling axis are potential targets for the treatment of brain tumors and neurodevelopmental disorders.


Assuntos
Cálcio , Proteínas Hedgehog , Proteínas de Xenopus , Cálcio/metabolismo , Diferenciação Celular , Cílios/metabolismo , Proteínas Hedgehog/metabolismo , Tubo Neural/metabolismo , Neurogênese/fisiologia , Xenopus laevis , Animais
2.
J Dev Biol ; 4(4)2016 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-29615598

RESUMO

Sonic hedgehog (Shh) signaling occurs concurrently with the many processes that constitute nervous system development. Although Shh is mostly known for its proliferative and morphogenic action through its effects on neural stem cells and progenitors, it also contributes to neuronal differentiation, axonal pathfinding and synapse formation and function. To participate in these diverse events, Shh signaling manifests differently depending on the maturational state of the responsive cell, on the other signaling pathways regulating neural cell function and the environmental cues that surround target cells. Shh signaling is particularly dynamic in the nervous system, ranging from canonical transcription-dependent, to non-canonical and localized to axonal growth cones. Here, we review the variety of Shh functions in the developing nervous system and their consequences for neurodevelopmental diseases and neural regeneration, with particular emphasis on the signaling mechanisms underlying Shh action.

3.
Mol Brain ; 6: 51, 2013 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-24289807

RESUMO

BACKGROUND: Stromal interaction molecule 1 (STIM1), a Ca2+ sensor in the endoplasmic reticulum, regulates store-operated Ca2+ entry (SOCE) that is essential for Ca2+ homeostasis in many types of cells. However, if and how STIM1 and SOCE function in nerve growth cones during axon guidance remains to be elucidated. RESULTS: We report that STIM1 and transient receptor potential channel 1 (TRPC1)-dependent SOCE operates in Xenopus spinal growth cones to regulate Ca2+ signaling and guidance responses. We found that STIM1 works together with TRPC1 to mediate SOCE within growth cones and filopodia. In particular, STIM1/TRPC1-dependent SOCE was found to mediate oscillatory filopodial Ca2+ transients in the growth cone. Disruption of STIM1 function abolished filopodial Ca2+ transients and impaired Ca2+-dependent attractive responses of Xenopus growth cones to netrin-1. Finally, interference with STIM1 function was found to disrupt midline axon guidance of commissural interneurons in the developing Xenopus spinal cord in vivo. CONCLUSIONS: Our data demonstrate that STIM1/TRPC1-dependent SOCE plays an essential role in generating spatiotemporal Ca2+ signals that mediate guidance responses of nerve growth cones.


Assuntos
Axônios/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Cálcio/metabolismo , Pseudópodes/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus/metabolismo , Animais , Sinalização do Cálcio , Clonagem Molecular , Cones de Crescimento/metabolismo , Interneurônios/metabolismo , Fatores de Crescimento Neural/metabolismo , Netrina-1 , Transporte Proteico , Medula Espinal/metabolismo , Molécula 1 de Interação Estromal , Canais de Cátion TRPC/metabolismo , Proteínas Supressoras de Tumor/metabolismo
4.
Curr Biol ; 23(12): 1046-56, 2013 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-23746641

RESUMO

BACKGROUND: Actin-based cell motility is fundamental for development, function, and malignant events in eukaryotic organisms. During neural development, axonal growth cones depend on rapid assembly and disassembly of actin filaments (F-actin) for their guided extension to specific targets for wiring. Monomeric globular actin (G-actin) is the building block for F-actin but is not considered to play a direct role in spatiotemporal control of actin dynamics in cell motility. RESULTS: Here we report that a pool of G-actin dynamically localizes to the leading edge of growth cones and neuroblastoma cells to spatially elevate the G-/F-actin ratio that drives membrane protrusion and cell movement. Loss of G-actin localization leads to the cessation and retraction of membrane protrusions. Moreover, G-actin localization occurs asymmetrically in growth cones during attractive turning. Finally, we identify the actin monomer-binding proteins profilin and thymosin ß4 as key molecules that localize actin monomers to the leading edge of lamellipodia for their motility. CONCLUSIONS: Our results suggest that dynamic localization of G-actin provides a novel mechanism to regulate the spatiotemporal actin dynamics underlying membrane protrusion in cell locomotion and growth cone chemotaxis.


Assuntos
Actinas/metabolismo , Membrana Celular/metabolismo , Quimiotaxia , Cones de Crescimento/metabolismo , Neurônios/fisiologia , Pseudópodes/metabolismo , Timosina/metabolismo , Animais , Linhagem Celular Tumoral , Movimento Celular , Neurônios/metabolismo , Profilinas/metabolismo , Timosina/genética , Xenopus laevis
5.
Nat Neurosci ; 8(6): 730-5, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15880110

RESUMO

Calcium arising through release from intracellular stores and from influx across the plasma membrane is essential for signalling by specific guidance cues and by factors that inhibit axon regeneration. The mediators of calcium influx in these cases are largely unknown. Transient receptor potential channels (TRPCs) belong to a superfamily of Ca2+-permeable, receptor-operated channels that have important roles in sensing and responding to changes in the local environment. Here we report that XTRPC1, a Xenopus homolog of mammalian TRPC1, is required for proper growth cone turning responses of Xenopus spinal neurons to microscopic gradients of netrin-1, brain-derived neurotrophic factor and myelin-associated glycoprotein, but not to semaphorin 3A. Furthermore, XTRPC1 is required for midline guidance of axons of commissural interneurons in the developing Xenopus spinal cord. Thus, members of the TRPC family may serve as a key mediator for the Ca2+ influx that regulates axon guidance during development and inhibits axon regeneration in adulthood.


Assuntos
Canais de Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Diferenciação Celular/fisiologia , Quimiotaxia/fisiologia , Cones de Crescimento/metabolismo , Sistema Nervoso/embriologia , Proteínas de Xenopus/metabolismo , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Canais de Cálcio/efeitos dos fármacos , Sinalização do Cálcio/efeitos dos fármacos , Comunicação Celular/fisiologia , Diferenciação Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Movimento Celular/fisiologia , Quimiotaxia/efeitos dos fármacos , Sinais (Psicologia) , Embrião não Mamífero , Lateralidade Funcional/fisiologia , Cones de Crescimento/efeitos dos fármacos , Cones de Crescimento/ultraestrutura , Inibidores do Crescimento/metabolismo , Interneurônios/citologia , Interneurônios/metabolismo , Glicoproteína Associada a Mielina/metabolismo , Glicoproteína Associada a Mielina/farmacologia , Fatores de Crescimento Neural/metabolismo , Fatores de Crescimento Neural/farmacologia , Regeneração Nervosa/efeitos dos fármacos , Regeneração Nervosa/fisiologia , Sistema Nervoso/citologia , Sistema Nervoso/metabolismo , Netrina-1 , Medula Espinal/citologia , Medula Espinal/embriologia , Medula Espinal/metabolismo , Canais de Cátion TRPC , Proteínas Supressoras de Tumor/metabolismo , Proteínas Supressoras de Tumor/farmacologia , Proteínas de Xenopus/efeitos dos fármacos , Xenopus laevis
6.
Nat Neurosci ; 7(11): 1204-12, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15494733

RESUMO

Netrins are a family of secreted molecules that are important for axonal outgrowth and guidance in the developing nervous system. However, the signaling mechanisms that lie immediately downstream of netrin receptors remain poorly understood. Here we report that the netrin receptor DCC (deleted in colorectal cancer) interacts with the focal adhesion kinase (FAK), a kinase implicated in regulating cell adhesion and migration. FAK was expressed in developing brains and was localized with DCC in cultured neurons. Netrin-1 induced FAK and DCC tyrosine phosphorylation. Disruption of FAK signaling abolished netrin-1-induced neurite outgrowth and attractive growth cone turning. Taken together, these results indicate a new signaling mechanism for DCC, in which FAK is activated upon netrin-1 stimulation and mediates netrin-1 function; they also identify a critical role for FAK in axon navigation.


Assuntos
Axônios/fisiologia , Fatores de Crescimento Neural/fisiologia , Neuritos/fisiologia , Proteínas Tirosina Quinases/metabolismo , Transdução de Sinais/fisiologia , Animais , Axônios/efeitos dos fármacos , Western Blotting/métodos , Contagem de Células , Células Cultivadas , Córtex Cerebral/citologia , Embrião de Galinha , Técnicas de Cocultura/métodos , Meios de Cultivo Condicionados/farmacologia , Relação Dose-Resposta a Droga , Interações Medicamentosas , Embrião de Mamíferos , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Feminino , Quinase 1 de Adesão Focal , Proteína-Tirosina Quinases de Adesão Focal , Regulação da Expressão Gênica , Proteínas de Fluorescência Verde/metabolismo , Humanos , Imuno-Histoquímica/métodos , Imunoprecipitação/métodos , Laminina/farmacologia , Masculino , Camundongos , Camundongos Knockout , Mucoproteínas/farmacologia , Fator de Crescimento Neural/farmacologia , Fatores de Crescimento Neural/farmacologia , Netrina-1 , Neuritos/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Proteínas Oncogênicas v-abl/metabolismo , Fosforilação/efeitos dos fármacos , Gravidez , Proteínas Tirosina Quinases/genética , Ratos , Receptor trkA/metabolismo , Transdução de Sinais/efeitos dos fármacos , Medula Espinal/metabolismo , Fatores de Tempo , Tubulina (Proteína)/metabolismo , Proteínas Supressoras de Tumor , Técnicas do Sistema de Duplo-Híbrido , Tirosina/metabolismo , Quinases da Família src/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA