Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
EBioMedicine ; 103: 105102, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38614865

RESUMO

BACKGROUND: Cell-cell interaction factors that facilitate the progression of adenoma to sporadic colorectal cancer (CRC) remain unclear, thereby hindering patient survival. METHODS: We performed spatial transcriptomics on five early CRC cases, which included adenoma and carcinoma, and one advanced CRC. To elucidate cell-cell interactions within the tumour microenvironment (TME), we investigated the colocalisation network at single-cell resolution using a deep generative model for colocalisation analysis, combined with a single-cell transcriptome, and assessed the clinical significance in CRC patients. FINDINGS: CRC cells colocalised with regulatory T cells (Tregs) at the adenoma-carcinoma interface. At early-stage carcinogenesis, cell-cell interaction inference between colocalised adenoma and cancer epithelial cells and Tregs based on the spatial distribution of single cells highlighted midkine (MDK) as a prominent signalling molecule sent from tumour epithelial cells to Tregs. Interaction between MDK-high CRC cells and SPP1+ macrophages and stromal cells proved to be the mechanism underlying immunosuppression in the TME. Additionally, we identified syndecan4 (SDC4) as a receptor for MDK associated with Treg colocalisation. Finally, clinical analysis using CRC datasets indicated that increased MDK/SDC4 levels correlated with poor overall survival in CRC patients. INTERPRETATION: MDK is involved in the immune tolerance shown by Tregs to tumour growth. MDK-mediated formation of the TME could be a potential target for early diagnosis and treatment of CRC. FUNDING: Japan Society for the Promotion of Science (JSPS) Grant-in-Aid for Science Research; OITA Cancer Research Foundation; AMED under Grant Number; Japan Science and Technology Agency (JST); Takeda Science Foundation; The Princess Takamatsu Cancer Research Fund.


Assuntos
Neoplasias Colorretais , Análise de Célula Única , Linfócitos T Reguladores , Microambiente Tumoral , Humanos , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/mortalidade , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Microambiente Tumoral/imunologia , Carcinogênese/genética , Carcinogênese/imunologia , Perfilação da Expressão Gênica , Transcriptoma , Comunicação Celular/imunologia , Tolerância Imunológica , Regulação Neoplásica da Expressão Gênica , Masculino , Feminino
2.
Cell Syst ; 15(2): 180-192.e7, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38387441

RESUMO

Analyzing colocalization of single cells with heterogeneous molecular phenotypes is essential for understanding cell-cell interactions, and cellular responses to external stimuli and their biological functions in diseases and tissues. However, existing computational methodologies identified the colocalization patterns between predefined cell populations, which can obscure the molecular signatures arising from intercellular communication. Here, we introduce DeepCOLOR, a computational framework based on a deep generative model that recovers intercellular colocalization networks with single-cell resolution by the integration of single-cell and spatial transcriptomes. Along with colocalized population detection accuracy that is superior to existing methods in simulated dataset, DeepCOLOR identified plausible cell-cell interaction candidates between colocalized single cells and segregated cell populations defined by the colocalization relationships in mouse brain tissues, human squamous cell carcinoma samples, and human lung tissues infected with SARS-CoV-2. DeepCOLOR is applicable to studying cell-cell interactions behind various spatial niches. A record of this paper's transparent peer review process is included in the supplemental information.


Assuntos
Comunicação Celular , Revisão por Pares , Humanos , Animais , Camundongos , Fenótipo , SARS-CoV-2 , Análise de Célula Única
3.
J Clin Invest ; 133(22)2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37966117

RESUMO

The heterogeneity of cancer stem cells (CSCs) within tumors presents a challenge in therapeutic targeting. To decipher the cellular plasticity that fuels phenotypic heterogeneity, we undertook single-cell transcriptomics analysis in triple-negative breast cancer (TNBC) to identify subpopulations in CSCs. We found a subpopulation of CSCs with ancestral features that is marked by FXYD domain-containing ion transport regulator 3 (FXYD3), a component of the Na+/K+ pump. Accordingly, FXYD3+ CSCs evolve and proliferate, while displaying traits of alveolar progenitors that are normally induced during pregnancy. Clinically, FXYD3+ CSCs were persistent during neoadjuvant chemotherapy, hence linking them to drug-tolerant persisters (DTPs) and identifying them as crucial therapeutic targets. Importantly, FXYD3+ CSCs were sensitive to senolytic Na+/K+ pump inhibitors, such as cardiac glycosides. Together, our data indicate that FXYD3+ CSCs with ancestral features are drivers of plasticity and chemoresistance in TNBC. Targeting the Na+/K+ pump could be an effective strategy to eliminate CSCs with ancestral and DTP features that could improve TNBC prognosis.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Células-Tronco Neoplásicas/patologia , Linhagem Celular Tumoral , Proteínas de Membrana , Proteínas de Neoplasias/genética
4.
Commun Biol ; 6(1): 1191, 2023 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-37996567

RESUMO

Circulating tumor cells (CTCs) play an important role in metastasis and recurrence. However, which cells comprise the complex tumor lineages in recurrence and are key in metastasis are unknown in colorectal cancer (CRC). CRC with high expression of POU5F1 has a poor prognosis with a high incidence of liver metastatic recurrence. We aim to reveal the key cells promoting metastasis and identify treatment-resistant lineages with established EGFP-expressing organoids in two-dimensional culture (2DOs) under the POU5F1 promotor. POU5F1-expressing cells are highly present in relapsed clinical patients' blood as CTCs. Sorted POU5F1-expressing cells from 2DOs have cancer stem cell abilities and abundantly form liver metastases in vivo. Single-cell RNA sequencing of 2DOs identifies heterogeneous populations derived from POU5F1-expressing cells and the Wnt signaling pathway is enriched in POU5F1-expressing cells. Characteristic high expression of CTLA4 is observed in POU5F1-expressing cells and immunocytochemistry confirms the co-expression of POU5F1 and CTLA4. Demethylation in some CpG islands at the transcriptional start sites of POU5F1 and CTLA4 is observed. The Wnt/ß-catenin pathway inhibitor, XAV939, prevents the adhesion and survival of POU5F1-expressing cells in vitro. Early administration of XAV939 also completely inhibits liver metastasis induced by POU5F1-positive cells.


Assuntos
Neoplasias Colorretais , Células Neoplásicas Circulantes , Humanos , Antígeno CTLA-4 , Linhagem Celular Tumoral , Via de Sinalização Wnt , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo
5.
EMBO J ; 42(22): e114032, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37781951

RESUMO

Bone marrow-derived cells (BMDCs) infiltrate hypoxic tumors at a pre-angiogenic state and differentiate into mature macrophages, thereby inducing pro-tumorigenic immunity. A critical factor regulating this differentiation is activation of SREBP2-a well-known transcription factor participating in tumorigenesis progression-through unknown cellular mechanisms. Here, we show that hypoxia-induced Golgi disassembly and Golgi-ER fusion in monocytic myeloid cells result in nuclear translocation and activation of SREBP2 in a SCAP-independent manner. Notably, hypoxia-induced SREBP2 activation was only observed in an immature lineage of bone marrow-derived cells. Single-cell RNA-seq analysis revealed that SREBP2-mediated cholesterol biosynthesis was upregulated in HSCs and monocytes but not in macrophages in the hypoxic bone marrow niche. Moreover, inhibition of cholesterol biosynthesis impaired tumor growth through suppression of pro-tumorigenic immunity and angiogenesis. Thus, our findings indicate that Golgi-ER fusion regulates SREBP2-mediated metabolic alteration in lineage-specific BMDCs under hypoxia for tumor progression.


Assuntos
Monócitos , Neoplasias , Humanos , Monócitos/metabolismo , Medula Óssea , Colesterol/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 2/genética , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo , Hipóxia
6.
PNAS Nexus ; 2(10): pgad306, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37822765

RESUMO

An acidic tumor microenvironment plays a critical role in tumor progression. However, understanding of metabolic reprogramming of tumors in response to acidic extracellular pH has remained elusive. Using comprehensive metabolomic analyses, we demonstrated that acidic extracellular pH (pH 6.8) leads to the accumulation of N1-acetylspermidine, a protumor metabolite, through up-regulation of the expression of spermidine/spermine acetyltransferase 1 (SAT1). Inhibition of SAT1 expression suppressed the accumulation of intra- and extracellular N1-acetylspermidine at acidic pH. Conversely, overexpression of SAT1 increased intra- and extracellular N1-acetylspermidine levels, supporting the proposal that SAT1 is responsible for accumulation of N1-acetylspermidine. While inhibition of SAT1 expression only had a minor effect on cancer cell growth in vitro, SAT1 knockdown significantly decreased tumor growth in vivo, supporting a contribution of the SAT1-N1-acetylspermidine axis to protumor immunity. Immune cell profiling revealed that inhibition of SAT1 expression decreased neutrophil recruitment to the tumor, resulting in impaired angiogenesis and tumor growth. We showed that antineutrophil-neutralizing antibodies suppressed growth in control tumors to a similar extent to that seen in SAT1 knockdown tumors in vivo. Further, a SAT1 signature was found to be correlated with poor patient prognosis. Our findings demonstrate that extracellular acidity stimulates recruitment of protumor neutrophils via the SAT1-N1-acetylspermidine axis, which may represent a metabolic target for antitumor immune therapy.

7.
Br J Cancer ; 128(12): 2206-2217, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37076565

RESUMO

BACKGROUND: Driver alterations may represent novel candidates for driver gene-guided therapy; however, intrahepatic cholangiocarcinoma (ICC) with multiple genomic aberrations makes them intractable. Therefore, the pathogenesis and metabolic changes of ICC need to be understood to develop new treatment strategies. We aimed to unravel the evolution of ICC and identify ICC-specific metabolic characteristics to investigate the metabolic pathway associated with ICC development using multiregional sampling to encompass the intra- and inter-tumoral heterogeneity. METHODS: We performed the genomic, transcriptomic, proteomic and metabolomic analysis of 39-77 ICC tumour samples and eleven normal samples. Further, we analysed their cell proliferation and viability. RESULTS: We demonstrated that intra-tumoral heterogeneity of ICCs with distinct driver genes per case exhibited neutral evolution, regardless of their tumour stage. Upregulation of BCAT1 and BCAT2 indicated the involvement of 'Val Leu Ile degradation pathway'. ICCs exhibit the accumulation of ubiquitous metabolites, such as branched-chain amino acids including valine, leucine, and isoleucine, to negatively affect cancer prognosis. We revealed that this metabolic pathway was almost ubiquitously altered in all cases with genomic diversity and might play important roles in tumour progression and overall survival. CONCLUSIONS: We propose a novel ICC onco-metabolic pathway that could enable the development of new therapeutic interventions.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Humanos , Proteômica , Aminoácidos de Cadeia Ramificada , Colangiocarcinoma/genética , Colangiocarcinoma/patologia , Ductos Biliares Intra-Hepáticos/patologia , Neoplasias dos Ductos Biliares/genética , Transaminases
8.
Cell Rep ; 42(1): 111929, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36656712

RESUMO

The cellular interactions in the tumor microenvironment of colorectal cancer (CRC) are poorly understood, hindering patient treatment. In the current study, we investigate whether events occurring at the invasion front are of particular importance for CRC treatment strategies. To this end, we analyze CRC tissues by combining spatial transcriptomics from patients with a public single-cell transcriptomic atlas to determine cell-cell interactions at the invasion front. We show that CRC cells are localized specifically at the invasion front. These cells induce human leukocyte antigen G (HLA-G) to produce secreted phosphoprotein 1 (SPP1)+ macrophages while conferring CRC cells with anti-tumor immunity, as well as proliferative and invasive properties. Taken together, these findings highlight the signaling between CRC cell populations and stromal cell populations at the cellular level.


Assuntos
Neoplasias Colorretais , Antígenos HLA-G , Humanos , Antígenos HLA-G/genética , Osteopontina , Transcriptoma/genética , Neoplasias Colorretais/patologia , Macrófagos , Microambiente Tumoral
9.
Microbiol Immunol ; 67(1): 22-31, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36258658

RESUMO

Smoking is one of the risk factors most closely related to the severity of coronavirus disease 2019 (COVID-19). However, the relationship between smoking history and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infectivity is unknown. In this study, we evaluated the ACE2 expression level in the lungs of current smokers, ex-smokers, and nonsmokers. The ACE2 expression level of ex-smokers who smoked cigarettes until recently (cessation period shorter than 6 months) was higher than that of nonsmokers and ex-smokers with a long history of nonsmoking (cessation period longer than 6 months). We also showed that the efficiency of SARS-CoV-2 infection was enhanced in a manner dependent on the angiotensin-converting enzyme 2 (ACE2) expression level. Using RNA-seq analysis on the lungs of smokers, we identified that the expression of inflammatory signaling genes was correlated with ACE2 expression. Notably, with increasing duration of smoking cessation among ex-smokers, not only ACE2 expression level but also the expression levels of inflammatory signaling genes decreased. These results indicated that smoking enhances the expression levels of ACE2 and inflammatory signaling genes. Our data suggest that the efficiency of SARS-CoV-2 infection is enhanced by smoking-mediated upregulation of ACE2 expression level.


Assuntos
COVID-19 , Humanos , Enzima de Conversão de Angiotensina 2/genética , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/metabolismo , SARS-CoV-2/metabolismo , Fumar/efeitos adversos
10.
Sci Rep ; 12(1): 16277, 2022 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-36175487

RESUMO

Glioblastoma is the most common brain tumor with dismal outcomes in adults. Metabolic remodeling is now widely acknowledged as a hallmark of cancer cells, but glioblastoma-specific metabolic pathways remain unclear. Here we show, using a large-scale targeted proteomics platform and integrated molecular pathway-level analysis tool, that the de novo pyrimidine synthesis pathway and serine synthesis pathway (SSP) are the major enriched pathways in vivo for patients with glioblastoma. Among the enzymes associated with nucleotide synthesis, RRM1 and NME1 are significantly upregulated in glioblastoma. In the SSP, SHMT2 and PSPH are upregulated but the upstream enzyme PSAT1 is downregulated in glioblastoma. Kaplan-Meier curves of overall survival for the GSE16011 and The Cancer Genome Atlas datasets revealed that high SSP activity correlated with poor outcome. Enzymes relating to the pyrimidine synthesis pathway and SSP might offer therapeutic targets for new glioblastoma treatments.


Assuntos
Glioblastoma , Adulto , Vias Biossintéticas , Glioblastoma/genética , Humanos , Nucleotídeos , Pirimidinas , Serina
11.
Front Immunol ; 13: 876390, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35784371

RESUMO

NLRP1 (NACHT and leucine-rich repeat-containing protein family, pyrin domain-containing protein 1) is an innate immune sensor that is involved in the formation of inflammasome complexes. NLRP1 hyperactivity has been reported to cause inherited autoinflammatory diseases including familial keratosis lichenoides chronica and NLRP1-associated autoinflammation with arthritis and dyskeratosis. We generated Nlrp1b (the mouse homologue of human NLRP1) gain-of-function knock-in (Nlrp1b KI) mice with UVB irradiation-induced autoinflammatory skin lesions. We demonstrated that UVB irradiation induces IL-1ß upregulation and IL-1ß-dependent inflammation via caspase-1 activation in these Nlrp1b KI mice. RNA sequencing revealed the upregulation of inflammasome pathway-related genes, keratinocyte stress marker genes, and keratinocyte differentiation marker genes in the Nlrp1b KI mice after UVB irradiation. The skin inflammation and hyperkeratosis from UVB irradiation in the Nlrp1b KI mice were inhibited by both intraperitoneal and subcutaneous administration of anti-IL-1ß antibodies before UVB irradiation. UVB irradiation and the IL-1ß pathway are important in the pathogenesis of NLRP1-associated autoinflammatory skin lesions.


Assuntos
Proteínas Reguladoras de Apoptose/genética , Inflamassomos , Dermatopatias , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Caspase 1/metabolismo , Inflamassomos/genética , Inflamassomos/metabolismo , Inflamação/genética , Interleucina-1beta/imunologia , Camundongos , Mutação , Raios Ultravioleta
12.
Nat Commun ; 12(1): 7280, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34907192

RESUMO

Regulatory T (Treg) cells are important negative regulators of immune homeostasis, but in cancers they tone down the anti-tumor immune response. They are distinguished by high expression levels of the chemokine receptor CCR4, hence their targeting by the anti-CCR4 monoclonal antibody mogamulizumab holds therapeutic promise. Here we show that despite a significant reduction in peripheral effector Treg cells, clinical responses are minimal in a cohort of patients with advanced CCR4-negative solid cancer in a phase Ib study (NCT01929486). Comprehensive immune-monitoring reveals that the abundance of CCR4-expressing central memory CD8+ T cells that are known to play roles in the antitumor immune response is reduced. In long survivors, characterised by lower CCR4 expression in their central memory CD8+ T cells possessed and/or NK cells with an exhausted phenotype, cell numbers are eventually maintained. Our study thus shows that mogamulizumab doses that are currently administered to patients in clinical studies may not differentiate between targeting effector Treg cells and central memory CD8+ T cells, and dosage refinement might be necessary to avoid depletion of effector components during immune therapy.


Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Antineoplásicos/uso terapêutico , Linfócitos T CD8-Positivos/efeitos dos fármacos , Células T de Memória/efeitos dos fármacos , Idoso , Idoso de 80 Anos ou mais , Linfócitos T CD8-Positivos/metabolismo , Relação Dose-Resposta a Droga , Feminino , Humanos , Imunoterapia , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/metabolismo , Masculino , Pessoa de Meia-Idade , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Receptores CCR4/antagonistas & inibidores , Receptores CCR4/metabolismo , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/metabolismo , Resultado do Tratamento
13.
BMC Genomics ; 22(1): 104, 2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-33541264

RESUMO

BACKGROUND: The human microbiome forms very complex communities that consist of hundreds to thousands of different microorganisms that not only affect the host, but also participate in disease processes. Several state-of-the-art methods have been proposed for learning the structure of microbial communities and to investigate the relationship between microorganisms and host environmental factors. However, these methods were mainly designed to model and analyze single microbial communities that do not interact with or depend on other communities. Such methods therefore cannot comprehend the properties between interdependent systems in communities that affect host behavior and disease processes. RESULTS: We introduce a novel hierarchical Bayesian framework, called BALSAMICO (BAyesian Latent Semantic Analysis of MIcrobial COmmunities), which uses microbial metagenome data to discover the underlying microbial community structures and the associations between microbiota and their environmental factors. BALSAMICO models mixtures of communities in the framework of nonnegative matrix factorization, taking into account environmental factors. We proposes an efficient procedure for estimating parameters. A simulation then evaluates the accuracy of the estimated parameters. Finally, the method is used to analyze clinical data. In this analysis, we successfully detected bacteria related to colorectal cancer. CONCLUSIONS: These results show that the method not only accurately estimates the parameters needed to analyze the connections between communities of microbiota and their environments, but also allows for the effective detection of these communities in real-world circumstances.


Assuntos
Algoritmos , Microbiota , Teorema de Bayes , Simulação por Computador , Humanos , Metagenoma , Metagenômica
14.
NPJ Precis Oncol ; 4: 20, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32656360

RESUMO

Although hepatoblastoma is the most common pediatric liver cancer, its genetic heterogeneity and therapeutic targets are not well elucidated. Therefore, we conducted a multiomics analysis, including mutatome, DNA methylome, and transcriptome analyses, of 59 hepatoblastoma samples. Based on DNA methylation patterns, hepatoblastoma was classified into three clusters exhibiting remarkable correlation with clinical, histological, and genetic features. Cluster F was largely composed of cases with fetal histology and good outcomes, whereas clusters E1 and E2 corresponded primarily to embryonal/combined histology and poor outcomes. E1 and E2, albeit distinguishable by different patient age distributions, were genetically characterized by hypermethylation of the HNF4A/CEBPA-binding regions, fetal liver-like expression patterns, upregulation of the cell cycle pathway, and overexpression of NQO1 and ODC1. Inhibition of NQO1 and ODC1 in hepatoblastoma cells induced chemosensitization and growth suppression, respectively. Our results provide a comprehensive description of the molecular basis of hepatoblastoma and rational therapeutic strategies for high-risk cases.

15.
Sci Rep ; 10(1): 9275, 2020 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-32518284

RESUMO

Cancer cells adapt to various stress conditions by optimizing gene expression profiles via transcriptional and translational regulation. However, whether and how EXOSC9, a component of the RNA exosome complex, regulates adaptation to stress conditions and tumorigenicity in cancer cells remain unclear. Here, we examined the effects of EXOSC9 depletion on cancer cell growth under various stress conditions. EXOSC9 depletion attenuated growth and survival under various stress conditions in cancer cells. Interestingly, this also decreased the number of P-bodies, which are messenger ribonucleoprotein particles (mRNPs) required for stress adaptation. Meanwhile, EXOSC2/EXOSC4 depletion also attenuated P-body formation and stress resistance with decreased EXOSC9 protein. EXOSC9-mediated stress resistance and P-body formation were found to depend on the intact RNA-binding motif of this protein. Further, RNA-seq analyses identified 343 EXOSC9-target genes, among which, APOBEC3G contributed to defects in stress resistance and P-body formation in MDA-MB-231 cells. Finally, EXOSC9 also promoted xenografted tumor growth of MDA-MB-231 cells in an intact RNA-binding motif-dependent manner. Database analyses further showed that higher EXOSC9 activity, estimated based on the expression of 343 target genes, was correlated with poorer prognosis in some cancer patients. Thus, drugs targeting activity of the RNA exosome complex or EXOSC9 might be useful for cancer treatment.


Assuntos
Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , Proteínas de Ligação a RNA/metabolismo , Estresse Fisiológico/fisiologia , Desaminase APOBEC-3G/genética , Desaminase APOBEC-3G/metabolismo , Animais , Sítios de Ligação , Linhagem Celular Tumoral , Estruturas Citoplasmáticas/metabolismo , Dano ao DNA , Estresse do Retículo Endoplasmático , Complexo Multienzimático de Ribonucleases do Exossomo/genética , Exossomos/genética , Exossomos/metabolismo , Feminino , Humanos , Camundongos Endogâmicos BALB C , Estresse Oxidativo , Proteínas de Ligação a RNA/genética , Ensaios Antitumorais Modelo de Xenoenxerto
16.
EMBO J ; 39(7): e103949, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32125007

RESUMO

Histone H3 lysine-9 di-methylation (H3K9me2) and lysine-27 tri-methylation (H3K27me3) are linked to repression of gene expression, but the functions of repressive histone methylation dynamics during inflammatory responses remain enigmatic. Here, we report that lysine demethylases 7A (KDM7A) and 6A (UTX) play crucial roles in tumor necrosis factor (TNF)-α signaling in endothelial cells (ECs), where they are regulated by a novel TNF-α-responsive microRNA, miR-3679-5p. TNF-α rapidly induces co-occupancy of KDM7A and UTX at nuclear factor kappa-B (NF-κB)-associated elements in human ECs. KDM7A and UTX demethylate H3K9me2 and H3K27me3, respectively, and are both required for activation of NF-κB-dependent inflammatory genes. Chromosome conformation capture-based methods furthermore uncover increased interactions between TNF-α-induced super enhancers at NF-κB-relevant loci, coinciding with KDM7A and UTX recruitments. Simultaneous pharmacological inhibition of KDM7A and UTX significantly reduces leukocyte adhesion in mice, establishing the biological and potential translational relevance of this mechanism. Collectively, these findings suggest that rapid erasure of repressive histone marks by KDM7A and UTX is essential for NF-κB-dependent regulation of genes that control inflammatory responses of ECs.


Assuntos
Células Endoteliais/imunologia , Histona Desmetilases/metabolismo , Histonas/metabolismo , Histona Desmetilases com o Domínio Jumonji/metabolismo , MicroRNAs/genética , Animais , Adesão Celular , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Histonas/química , Células Endoteliais da Veia Umbilical Humana , Humanos , Lisina/metabolismo , Masculino , Metilação , Camundongos , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo
17.
Cell Rep ; 29(1): 89-103.e7, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31577958

RESUMO

Tolerance to severe tumor microenvironments, including hypoxia and nutrient starvation, is a common feature of aggressive cancer cells and can be targeted. However, metabolic alterations that support cancer cells upon nutrient starvation are not well understood. Here, by comprehensive metabolome analyses, we show that glutamine deprivation leads to phosphoethanolamine (PEtn) accumulation in cancer cells via the downregulation of PEtn cytidylyltransferase (PCYT2), a rate-limiting enzyme of phosphatidylethanolamine biosynthesis. PEtn accumulation correlated with tumor growth under nutrient starvation. PCYT2 suppression was partially mediated by downregulation of the transcription factor ELF3. Furthermore, PCYT2 overexpression reduced PEtn levels and tumor growth. In addition, PEtn accumulation and PCYT2 downregulation in human breast tumors correlated with poor prognosis. Thus, we show that glutamine deprivation leads to tumor progression by regulating PE biosynthesis via the ELF3-PCYT2 axis. Furthermore, manipulating glutamine-responsive genes could be a therapeutic approach to limit cancer progression.


Assuntos
Regulação para Baixo/genética , Etanolaminas/metabolismo , Glutamina/metabolismo , RNA Nucleotidiltransferases/genética , Inanição/metabolismo , Animais , Linhagem Celular , Linhagem Celular Tumoral , Progressão da Doença , Células HeLa , Células Hep G2 , Células Endoteliais da Veia Umbilical Humana , Humanos , Células MCF-7 , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas c-ets/genética , Transcrição Gênica/genética
18.
Nat Commun ; 10(1): 3925, 2019 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-31477700

RESUMO

Mismatch repair (MMR)-deficient cancers are characterized by microsatellite instability (MSI) and hypermutation. However, it remains unclear how MSI and hypermutation arise and contribute to cancer development. Here, we show that MSI and hypermutation are triggered by replication stress in an MMR-deficient background, enabling clonal expansion of cells harboring ARF/p53-module mutations and cells that are resistant to the anti-cancer drug camptothecin. While replication stress-associated DNA double-strand breaks (DSBs) caused chromosomal instability (CIN) in an MMR-proficient background, they induced MSI with concomitant suppression of CIN via a PARP-mediated repair pathway in an MMR-deficient background. This was associated with the induction of mutations, including cancer-driver mutations in the ARF/p53 module, via chromosomal deletions and base substitutions. Immortalization of MMR-deficient mouse embryonic fibroblasts (MEFs) in association with ARF/p53-module mutations was ~60-fold more efficient than that of wild-type MEFs. Thus, replication stress-triggered MSI and hypermutation efficiently lead to clonal expansion of cells with abrogated defense systems.


Assuntos
Proliferação de Células/genética , Replicação do DNA/genética , Fibroblastos/metabolismo , Instabilidade de Microssatélites , Mutação , Animais , Células Cultivadas , Instabilidade Cromossômica , Quebras de DNA de Cadeia Dupla , Reparo de Erro de Pareamento de DNA/genética , Embrião de Mamíferos/citologia , Fibroblastos/citologia , Células HCT116 , Células HeLa , Humanos , Camundongos Knockout
19.
Nat Commun ; 10(1): 3888, 2019 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-31467274

RESUMO

The biological significance of micro (mi)RNAs has traditionally been evaluated according to their RNA expression levels based on the assumption that miRNAs recognize and regulate their targets in an unvarying fashion. Here we show that a fraction of mature miRNAs including miR-17-5p, -21-5p, and -200c-3p and let-7a-5p harbor methyl marks that potentially alter their stability and target recognition. Importantly, methylation of these miRNAs was significantly increased in cancer tissues as compared to paired normal tissues. Furthermore, miR-17-5p methylation level in serum samples distinguished early pancreatic cancer patients from healthy controls with extremely high sensitivity and specificity. These findings provide a basis for diagnostic strategies for early-stage cancer and add a dimension to our understanding of miRNA biology.


Assuntos
Neoplasias Gastrointestinais/genética , Neoplasias Gastrointestinais/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/genética , Linhagem Celular Tumoral , Epigenômica , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Metilação , MicroRNAs/sangue , Simulação de Dinâmica Molecular , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
20.
Cancer Res ; 79(20): 5367-5381, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31439548

RESUMO

Cancer-associated fibroblasts (CAF) constitute a major component of the tumor microenvironment. Recent observations in genetically engineered mouse models and clinical studies have suggested that there may exist at least two functionally different populations of CAFs, that is, cancer-promoting CAFs (pCAF) and cancer-restraining CAFs (rCAF). Although various pCAF markers have been identified, the identity of rCAFs remains unknown because of the lack of rCAF-specific marker(s). In this study, we found that Meflin, a glycosylphosphatidylinositol-anchored protein that is a marker of mesenchymal stromal/stem cells and maintains their undifferentiated state, is expressed by pancreatic stellate cells that are a source of CAFs in pancreatic ductal adenocarcinoma (PDAC). In situ hybridization analysis of 71 human PDAC tissues revealed that the infiltration of Meflin-positive CAFs correlated with favorable patient outcome. Consistent herewith, Meflin deficiency led to significant tumor progression with poorly differentiated histology in a PDAC mouse model. Similarly, genetic ablation of Meflin-positive CAFs resulted in poor differentiation of tumors in a syngeneic transplantation model. Conversely, delivery of a Meflin-expressing lentivirus into the tumor stroma or overexpression of Meflin in CAFs suppressed the growth of xenograft tumors. Lineage tracing revealed that Meflin-positive cells gave rise to α-smooth muscle actin-positive CAFs that are positive or negative for Meflin, suggesting a mechanism for generating CAF heterogeneity. Meflin deficiency or low expression resulted in straightened stromal collagen fibers, which represent a signature for aggressive tumors, in mouse or human PDAC tissues, respectively. Together, the data suggest that Meflin is a marker of rCAFs that suppress PDAC progression. SIGNIFICANCE: Meflin marks and functionally contributes to a subset of cancer-associated fibroblasts that exert antitumoral effects.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/79/20/5367/F1.large.jpg.


Assuntos
Carcinoma Ductal Pancreático/patologia , Fibroblastos/patologia , Imunoglobulinas/fisiologia , Neoplasias Pancreáticas/patologia , Animais , Biomarcadores Tumorais , Carcinogênese , Carcinoma Ductal Pancreático/química , Diferenciação Celular , Linhagem Celular Tumoral , Progressão da Doença , Fibroblastos/química , Regulação Neoplásica da Expressão Gênica , Genes Sintéticos , Xenoenxertos , Humanos , Imunoglobulinas/análise , Imunoglobulinas/deficiência , Imunoglobulinas/genética , Células-Tronco Mesenquimais/patologia , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Transplante de Neoplasias , Neoplasias Pancreáticas/química , Prognóstico , Proteínas Recombinantes de Fusão/metabolismo , Células Estromais/metabolismo , Células Estromais/patologia , Vitamina D/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA