Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
1.
Int J Mol Sci ; 25(3)2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38339104

RESUMO

One of the extracellular matrix proteins, tenascin-C (TN-C), is known to be upregulated in age-related inflammatory diseases such as cancer and cardiovascular diseases. Expression of this molecule is frequently detected, especially in the macrophage-rich areas of atherosclerotic lesions; however, the role of TN-C in mechanisms underlying the progression of atherosclerosis remains obscure. Previously, we found a hidden bioactive sequence termed TNIIIA2 in the TN-C molecule and reported that the exposure of this sequence would be carried out through limited digestion of TN-C by inflammatory proteases. Thus, we hypothesized that some pro-atherosclerotic phenotypes might be elicited from macrophages when they were stimulated by TNIIIA2. In this study, TNIIIA2 showed the ability to accelerate intracellular lipid accumulation in macrophages. In this experimental condition, an elevation of phagocytic activity was observed, accompanied by a decrease in the expression of transporters responsible for lipid efflux. All these observations were mediated through the induction of excessive ß1-integrin activation, which is a characteristic property of the TNIIIA2 sequence. Finally, we demonstrated that the injection of a drug that targets TNIIIA2's bioactivity could rescue mice from atherosclerotic plaque expansion. From these observations, it was shown that TN-C works as a pro-atherosclerotic molecule through an internal TNIIIA2 sequence. The possible advantages of clinical strategies targeting TNIIIA2 are also indicated.


Assuntos
Aterosclerose , Células Espumosas , Placa Aterosclerótica , Animais , Camundongos , Proteínas da Matriz Extracelular , Fibronectinas/metabolismo , Células Espumosas/metabolismo , Lipídeos , Peptídeos/química , Tenascina/metabolismo
2.
BBA Adv ; 3: 100078, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37082255

RESUMO

ELOVL fatty acid elongase 6 (ELOVL6) controls cellular fatty acid (FA) composition by catalyzing the elongation of palmitate (C16:0) to stearate (C18:0) and palmitoleate (C16:1n-7) to vaccinate (C18:1n-7). Although the transcriptional regulation of ELOVL6 has been well studied, the post-transcriptional regulation of ELOVL6 is not fully understood. Therefore, this study aims to evaluate the role of microRNAs (miRNAs) in regulating human ELOVL6. Bioinformatic analysis identified five putative miRNAs: miR-135b-5p, miR-135a-5p, miR-125a-5p, miR-125b-5p, and miR-22-3p, which potentially bind ELOVL6 3'-untranslated region (UTR). Results from dual-luciferase assays revealed that these miRNAs downregulate ELOVL6 by directly interacting with the 3'-UTR of ELOVL6 mRNA. Moreover, miR-135b-5p and miR-135a-5p suppress cell proliferation and migration in glioblastoma multiforme cells by inhibiting ELOVL6 at the mRNA and protein levels. Taken together, our results provide novel regulatory mechanisms for ELOVL6 at the post-transcriptional level and identify potential candidates for the treatment of patients with glioblastoma multiforme.

4.
BMJ Case Rep ; 16(3)2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36918211

RESUMO

We report a rare case of takotsubo cardiomyopathy caused by subacute thyroiditis in a man in his 50s. He went to the doctor with complaints of loss of appetite, diarrhoea, chills and general malaise. He had consciousness disturbance, thyrotoxicosis and thyroid-stimulating hormone (TSH) suppression. Thyroglobulin and C reactive protein levels in the blood were elevated, but TSH receptor antibody, thyroid-stimulating antibody, antithyroglobulin antibody and antithyroid peroxidase antibody were not. We began treatment with prednisolone and propranolol after he was diagnosed with thyroid storm caused by subacute thyroiditis. The ECG revealed inverted T waves on the fifth day after admission. He was newly diagnosed with takotsubo cardiomyopathy on the day. A large thrombus was detected in the left ventricle, requiring anticoagulation therapy. Thus, even if there are no findings of takotsubo cardiomyopathy or thrombus at the onset of thyroid storm, appropriate monitoring is required because they can develop during the treatment course.


Assuntos
Cardiomiopatia de Takotsubo , Trombose , Crise Tireóidea , Tireoidite Subaguda , Tireoidite , Tireotoxicose , Humanos , Masculino , Ventrículos do Coração/diagnóstico por imagem , Cardiomiopatia de Takotsubo/diagnóstico , Cardiomiopatia de Takotsubo/tratamento farmacológico , Cardiomiopatia de Takotsubo/etiologia , Trombose/diagnóstico por imagem , Trombose/tratamento farmacológico , Crise Tireóidea/complicações , Tireoidite/complicações , Tireoidite/diagnóstico , Tireoidite Subaguda/diagnóstico , Tireotoxicose/complicações , Tireotropina , Pessoa de Meia-Idade
5.
Front Immunol ; 14: 1251784, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38259495

RESUMO

Macrophages are essential for the proper inflammatory and reparative processes that lead to regeneration of skeletal muscle after injury. Recent studies have demonstrated close links between the function of activated macrophages and their cellular metabolism. Sterol regulatory element-binding protein 1 (SREBP1) is a key regulator of lipid metabolism and has been shown to affect the activated states of macrophages. However, its role in tissue repair and regeneration is poorly understood. Here we show that systemic deletion of Srebf1, encoding SREBP1, or macrophage-specific deletion of Srebf1a, encoding SREBP1a, delays resolution of inflammation and impairs skeletal muscle regeneration after injury. Srebf1 deficiency impairs mitochondrial function in macrophages and suppresses the accumulation of macrophages at sites of muscle injury. Lipidomic analyses showed the reduction of major phospholipid species in Srebf1 -/- muscle myeloid cells. Moreover, diet supplementation with eicosapentaenoic acid restored the accumulation of macrophages and their mitochondrial gene expression and improved muscle regeneration. Collectively, our results demonstrate that SREBP1 in macrophages is essential for repair and regeneration of skeletal muscle after injury and suggest that SREBP1-mediated fatty acid metabolism and phospholipid remodeling are critical for proper macrophage function in tissue repair.


Assuntos
Macrófagos , Músculo Esquelético , Proteína de Ligação a Elemento Regulador de Esterol 1 , Fosfolipídeos , Regeneração , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Animais , Camundongos
6.
Cureus ; 14(10): e30067, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36381756

RESUMO

A 19-year-old male presented with fatigue and dyspnea on exertion. He was diagnosed with acute T-cell lymphoblastic leukemia. After following the Group for Research on Adult Acute Lymphoblastic Leukemia (GRAALL) 2003 protocol that incorporates L-asparaginase (L-Asp) treatment, blood glucose levels became elevated for more than one year and insulin secretion was depleted. Anti-glutamic acid decarboxylase (GAD) and anti-islet antigen 2 (IA-2) antibody levels were both positive, which is rare. The patient's HLA genotype was sensitive for type 1 diabetes. L-Asp can cause transient hyperglycemia as a side effect. However, cases with the anti-GAD antibody have not been reported in L-Asp-induced diabetes. In summary, L-Asp-induced continuous hyperglycemia might be associated with a type 1 diabetes-related HLA genotype through elevations of anti-GAD and anti-IA-2 antibodies.

7.
Am J Physiol Gastrointest Liver Physiol ; 323(6): G627-G639, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36283088

RESUMO

Sterol regulatory element-binding proteins (SREBPs) are master transcription factors for lipid synthesis, and SREBP-1 is important for fatty acid and triglyceride synthesis. SREBP-1 has two isoforms, SREBP-1a and SREBP-1c, which are splicing variants transcribed from the Srebf1 gene. Although SREBP-1a exhibits stronger transcriptional activity than SREBP-1c, hepatic SREBP-1c is considered more physiologically important. We generated SREBP-1a flox mice using the CRISPR/Cas9 system and hepatocyte- and macrophage-specific SREBP-1a knockout (KO) mice (LKO, liver-knockout; and mΦKO, macrophage-knockout). There were no significant differences among all the mouse genotypes upon feeding with a normal diet. However, feeding with a methionine- and choline-deficient (MCD) diet resulted in exacerbated liver injury in both KO mice. In LKO mice, fatty liver was unexpectedly exacerbated, leading to macrophage infiltration and inflammation. In contrast, in mΦKO mice, the fatty liver state was similar to that in flox mice, but the polarity of the macrophages in the liver was transformed into a proinflammatory M1 subtype, resulting in the exacerbation of inflammation. Taken together, we found that SREBP-1a does not contribute to hepatic lipogenesis, but in either hepatocytes or macrophages distinctly controls the onset of pathological conditions in MCD diet-induced hepatitis.NEW & NOTEWORTHY Hepatocyte- and macrophage-specific SREBP-1a knockout mice were generated for the first time. This study reveals that SREBP-1a does not contribute to hepatic lipogenesis, but in either hepatocytes or macrophages distinctly controls the onset of pathological conditions in methionine- and choline-deficient diet-induced hepatitis.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Metionina , Colina/metabolismo , Camundongos Endogâmicos C57BL , Hepatócitos/metabolismo , Fígado/metabolismo , Camundongos Knockout , Dieta/efeitos adversos , Inflamação/metabolismo , Macrófagos/metabolismo
8.
Nutrients ; 14(19)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36235573

RESUMO

Fibroblast growth factor 21 (FGF21), which is mainly synthesized and secreted by the liver, plays a crucial role in systemic glucose and lipid metabolism, ameliorating metabolic diseases. In this study, we screened the WAKANYAKU library derived from medicinal herbs to identify compounds that can activate Fgf21 expression in mouse hepatocyte AML12 cells. We identified Scutellaria baicalensis root extract and one of its components, wogonin, as an activator of Fgf21 expression. Wogonin also enhanced the expression of activating transcription factor 4 (ATF4) by a mechanism other than ER stress. Knockdown of ATF4 by siRNA suppressed wogonin-induced Fgf21 expression, highlighting its essential role in wogonin's mode of action. Thus, our results indicate that wogonin would be a strong candidate for a therapeutic to improve metabolic diseases by enhancing hepatic FGF21 production.


Assuntos
Flavanonas , Scutellaria baicalensis , Fator 4 Ativador da Transcrição/genética , Fator 4 Ativador da Transcrição/metabolismo , Animais , Fatores de Crescimento de Fibroblastos , Flavanonas/farmacologia , Flavanonas/uso terapêutico , Glucose , Hepatócitos/metabolismo , Camundongos , Extratos Vegetais/farmacologia , RNA Interferente Pequeno , Scutellaria baicalensis/metabolismo
9.
Cancer Sci ; 113(8): 2738-2752, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35670054

RESUMO

Renal cell carcinoma (RCC) features altered lipid metabolism and accumulated polyunsaturated fatty acids (PUFAs). Elongation of very long-chain fatty acid (ELOVL) family enzymes catalyze fatty acid elongation, and ELOVL5 is indispensable for PUFAs elongation, but its role in RCC progression remains unclear. Here, we show that higher levels of ELOVL5 correlate with poor RCC clinical prognosis. Liquid chromatography/electrospray ionization-tandem mass spectrometry analysis showed decreases in ELOVL5 end products (arachidonic acid and eicosapentaenoic acid) under CRISPR/Cas9-mediated knockout of ELOVL5 while supplementation with these fatty acids partially reversed the cellular proliferation and invasion effects of ELOVL5 knockout. Regarding cellular proliferation and invasion, CRISPR/Cas9-mediated knockout of ELOVL5 suppressed the formation of lipid droplets and induced apoptosis via endoplasmic reticulum stress while suppressing renal cancer cell proliferation and in vivo tumor growth. Furthermore, CRISPR/Cas9-mediated knockout of ELOVL5 inhibited AKT Ser473 phosphorylation and suppressed renal cancer cell invasion through chemokine (C-C motif) ligand-2 downregulation by AKT-mTOR-STAT3 signaling. Collectively, these results suggest that ELOVL5-mediated fatty acid elongation promotes not only cellular proliferation but also invasion in RCC.


Assuntos
Carcinoma de Células Renais , Elongases de Ácidos Graxos , Neoplasias Renais , Acetiltransferases/genética , Acetiltransferases/metabolismo , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Proliferação de Células/genética , Elongases de Ácidos Graxos/genética , Ácidos Graxos , Humanos , Neoplasias Renais/genética , Neoplasias Renais/patologia , Proteínas Proto-Oncogênicas c-akt
10.
J Diabetes Investig ; 13(7): 1129-1131, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35122696

RESUMO

Cyclic adenosine monophosphate-responsive element-binding protein H (CREBH) activates lipoprotein lipase (LPL) activity by modulating apolipoproteins. Activated LPL hydrolyzes triglyceride-rich lipoproteins, such as very low-density lipoprotein (VLDL) and chylomicrons, resulting in remnant lipoproteins. CREBH increases apolipoprotein E (ApoE), a ligand that mediates the clearance of remnant particles and reduces ApoC3, which interferes with remnant clearance. CREBH also improves VLDL receptor (VLDLR) and LDL receptor-related protein 1 (LRP1) protein that mediates remnant clearance. Therefore, CREBH promotes the clearance of remnant particles from the blood, decreasing the atherogenic plaque area. CREBH induces the secretion of fibroblast growth factor 21 (FGF21) into the blood, decreasing plasma triglyceride. CREBH produces ApoA1 and so increases plasma HDL-cholesterol levels.


Assuntos
Arteriosclerose , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico , Metabolismo dos Lipídeos , Animais , Apolipoproteínas E , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Lipoproteínas VLDL/metabolismo , Camundongos , Triglicerídeos
11.
Mucosal Immunol ; 15(2): 289-300, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35013573

RESUMO

Dietary ω3 fatty acids have important health benefits and exert their potent bioactivity through conversion to lipid mediators. Here, we demonstrate that microbiota play an essential role in the body's use of dietary lipids for the control of inflammatory diseases. We found that amounts of 10-hydroxy-cis-12-cis-15-octadecadienoic acid (αHYA) and 10-oxo-cis-12-cis-15-octadecadienoic acid (αKetoA) increased in the feces and serum of specific-pathogen-free, but not germ-free, mice when they were maintained on a linseed oil diet, which is high in α-linolenic acid. Intake of αKetoA, but not αHYA, exerted anti-inflammatory properties through a peroxisome proliferator-activated receptor (PPAR)γ-dependent pathway and ameliorated hapten-induced contact hypersensitivity by inhibiting the development of inducible skin-associated lymphoid tissue through suppression of chemokine secretion from macrophages and inhibition of NF-κB activation in mice and cynomolgus macaques. Administering αKetoA also improved diabetic glucose intolerance by inhibiting adipose tissue inflammation and fibrosis through decreased macrophage infiltration in adipose tissues and altering macrophage M1/M2 polarization in mice fed a high-fat diet. These results collectively indicate that αKetoA is a novel postbiotic derived from α-linolenic acid, which controls macrophage-associated inflammatory diseases and may have potential for developing therapeutic drugs as well as probiotic food products.


Assuntos
Dieta Hiperlipídica , Macrófagos , Tecido Adiposo , Animais , Dieta Hiperlipídica/efeitos adversos , Lipídeos , Macaca fascicularis/metabolismo , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , PPAR gama/metabolismo
12.
Oncol Rep ; 47(2)2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34841437

RESUMO

Renal cell carcinoma (RCC) is an aggressive genitourinary malignancy which has been associated with a poor prognosis, particularly in patients with metastasis, its major subtypes being clear cell RCC (ccRCC), papillary PCC (pRCC) and chromophobe RCC (chRCC). The presence of intracellular lipid droplets (LDs) is considered to be a hallmark of ccRCC. The importance of an altered lipid metabolism in ccRCC has been widely recognized. The elongation of very­long­chain fatty acid (ELOVL) catalyzes the elongation of fatty acids (FAs), modulating lipid composition, and is required for normal bodily functions. However, the involvement of elongases in RCC remains unclear. In the present study, the expression of ELOVL2 in ccRCC was examined; in particular, high levels of seven ELOVL isozymes were observed in primary tumors. Of note, elevated ELOVL2 expression levels were observed in ccRCC, as well as in pRCC and chRCC. Furthermore, a higher level of ELOVL2 was significantly associated with the increased incidence of a poor prognosis of patients with ccRCC and pRCC. The CRISPR/Cas9­mediated knockdown of ELOVL2 resulted in the suppression of the elongation of long­chain polyunsaturated FAs and increased LD production in renal cancer cells. Moreover, ELOVL2 ablation resulted in the suppression of cellular proliferation via the induction of apoptosis in vitro and the attenuation of tumor growth in vivo. On the whole, the present study provides new insight into the tumor proliferation mechanisms involving lipid metabolism, and suggests that ELOVL2 may be an attractive novel target for RCC therapy.


Assuntos
Apoptose/genética , Carcinoma de Células Renais/genética , Elongases de Ácidos Graxos/genética , Neoplasias Renais/genética , Metabolismo dos Lipídeos/genética , Sistemas CRISPR-Cas , Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Progressão da Doença , Técnicas de Silenciamento de Genes , Humanos , Neoplasias Renais/patologia
13.
Nutrients ; 13(10)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34684477

RESUMO

It is unclear whether genetic interactions are involved in the association between vegetable intake and reduced body mass index (BMI) or obesity. We conducted a comprehensive search for single nucleotide polymorphisms (SNPs) which are associated with the interaction between vegetable intake frequency and BMI or obesity. We performed a genome-wide association analysis to evaluate the genetic interactions between self-reported intake of vegetables such as carrot, broccoli, spinach, other green vegetables (green pepper and green beans), pumpkin, and cabbage with BMI and obesity, which is defined as a BMI ≥ 25.0 kg/m2 in the Japanese population (n = 12,225). The mean BMI and prevalence of obesity was 23.9 ± 3.4 kg/m2 and 32.3% in men and 22.1 ± 3.8 kg/m2 and 17.3% in in women, respectively. A significant interaction was observed between rs4445711 and frequency of carrot intake on BMI (p = 4.5 × 10-8). This interaction was slightly attenuated after adjustment for age, sex, alcohol intake, smoking, physical activity and the frequency of total vegetable intake (p = 2.1 × 10-7). A significant interaction was also observed between rs4445711 and frequency of carrot intake on obesity (p = 2.5 × 10-8). No significant interactions that were the same as the interaction between frequency of carrot intake and rs4445711 were observed between the intake frequency of broccoli, spinach, other green vegetables, pumpkin or cabbage and BMI or obesity. The frequency of carrot consumption is implicated in reducing BMI by the intermediary of rs4445711. This novel genetic association may provide new clues to clarify the association between vegetable intake and BMI or obesity.


Assuntos
Índice de Massa Corporal , Daucus carota , Comportamento Alimentar , Obesidade/epidemiologia , Obesidade/genética , Feminino , Frequência do Gene/genética , Genoma Humano , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único
14.
Biochem Biophys Res Commun ; 582: 35-42, 2021 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-34688045

RESUMO

High protein diet (HPD) is an affordable and positive approach in prevention and treatment of many diseases. It is believed that transcriptional regulation is responsible for adaptation after HPD feeding and Kruppel-like factor 15 (KLF15), a zinc finger transcription factor that has been proved to perform transcriptional regulation over amino acid, lipid and glucose metabolism, is known to be involved at least in part in this HPD response. To gain more insight into molecular mechanisms by which HPD controls expressions of genes involved in amino acid metabolism in the liver, we performed RNA-seq analysis of mice fed HPD for a short period (3 days). Compared to a low protein diet, HPD feeding significantly increased hepatic expressions of enzymes involved in the breakdown of all the 20 amino acids. Moreover, using KLF15 knockout mice and in vivo Ad-luc analytical system, we were able to identify Cth (cystathionine gamma-lyase) as a new target gene of KLF15 transcription as well as Ast (aspartate aminotransferase) as an example of KLF15-independent gene despite its remarkable responsiveness to HPD. These findings provide us with a clue to elucidate the entire transcriptional regulatory mechanisms of amino acid metabolic pathways.


Assuntos
Aspartato Aminotransferases/genética , Cistationina gama-Liase/genética , Dieta Rica em Proteínas/métodos , Fatores de Transcrição Kruppel-Like/genética , Transcrição Gênica , Adaptação Fisiológica/genética , Aminoácidos/metabolismo , Animais , Aspartato Aminotransferases/metabolismo , Cistationina gama-Liase/metabolismo , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Genes Reporter , Glucose/metabolismo , Fatores de Transcrição Kruppel-Like/deficiência , Metabolismo dos Lipídeos/genética , Fígado/metabolismo , Luciferases , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Análise de Sequência de RNA , Transdução de Sinais
15.
Cancers (Basel) ; 13(16)2021 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-34439168

RESUMO

The high incidence of germline variants in pheochromocytoma and paraganglioma (PPGL) has been reported mainly in Europe, but not among Japanese populations in Asia. We aimed to study the prevalence of germline variants in Japanese PPGL patients and the genotype-phenotype correlation. We examined 370 PPGL probands, including 43 patients with family history and/or syndromic presentation and 327 patients with apparently sporadic (AS) presentation. Clinical data and blood samples were collected, and the seven major susceptibility genes (MAX, SDHB, SDHC, SDHD, TMEM127, VHL, and RET) were tested using Sanger sequencing. Overall, 120/370 (32.4%) patients had pathogenic or likely pathogenic variants, with 81/327 (24.8%) in AS presentation. SDHB was the most frequently mutated gene (57, 15.4%), followed by SDHD (27, 7.3%), and VHL (18, 4.9%). The incidence of metastatic PPGL was high in SDHB carriers (21/57, 36.8%). A few unique recurrent variants (SDHB c.137G>A and SDHB c.470delT) were detected in this Japanese cohort, highlighting ethnic differences. In summary, almost a quarter of patients with apparently sporadic PPGL in Japan harboured germline variants of the targeted genes. This study reinforces the recommendation in Western guidelines to perform genetic testing for PPGL and genotype-based clinical decision-making in the Japanese population.

16.
Sci Rep ; 11(1): 11137, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-34045514

RESUMO

A growing body of evidence indicates that cellular metabolism is involved in immune cell functions, including cytokine production. Serine is a nutritionally non-essential amino acid that can be generated by de novo synthesis and conversion from glycine. Serine contributes to various cellular responses, but the role in inflammatory responses remains poorly understood. Here, we show that macrophages rely on extracellular serine to suppress aberrant cytokine production. Depleting serine from the culture media reduced the cellular serine content in macrophages markedly, suggesting that macrophages depend largely on extracellular serine rather than cellular synthesis. Under serine deprivation, macrophages stimulated with lipopolysaccharide showed aberrant cytokine expression patterns, including a marked reduction of anti-inflammatory interleukin-10 expression and sustained expression of interleukine-6. Transcriptomic and metabolomics analyses revealed that serine deprivation causes mitochondrial dysfunction: reduction in the pyruvate content, the NADH/NAD+ ratio, the oxygen consumption rate, and the mitochondrial production of reactive oxygen species (ROS). We also found the role of mitochondrial ROS in appropriate cytokine production. Thus, our results indicate that cytokine production in macrophages is tightly regulated by the nutritional microenvironment.


Assuntos
Citocinas/metabolismo , Macrófagos/metabolismo , Mitocôndrias/metabolismo , Serina/metabolismo , Animais , Metabolômica , Camundongos , Consumo de Oxigênio/fisiologia , Espécies Reativas de Oxigênio/metabolismo
17.
J Atheroscler Thromb ; 28(7): 665-678, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-33867421

RESUMO

Familial hypercholesterolemia (FH) is an inherited disorder with retarded clearance of plasma LDL caused by mutations of the genes involved in the LDL receptor-mediated pathway and most of them exhibit autosomal dominant inheritance. Homozygotes of FH (HoFH) may have plasma LDL-C levels, which are at least twice as high as those of heterozygous FH (HeFH) and therefore four times higher than normal levels. Prevalence of HoFH had been estimated as 1 in 1,000,000 before but more recent genetic analysis surveys predict 1 in 170,000 to 300,000. Since LDL receptor activity is severely impaired, HoFH patients do not or very poorly respond to medications to enhance activity, such as statins, and have a poorer prognosis compared to HeFH. HoFH should therefore be clinically distinguished from HeFH. Thorough family studies and genetic analysis are recommended for their accurate diagnosis.Fatal cardiovascular complications could develop even in the first decade of life for HoFH, so aggressive lipid-lowering therapy should be initiated as early as possible. Direct removal of plasma LDL by lipoprotein apheresis has been the principal measure for these patients. However, this treatment alone may not achieve stable LDL-C target levels and combination with drugs should be considered. The lipid-lowering effects of statins and PCSK9 inhibitors substantially vary depending on the remaining LDL receptor activity of individual patients. On the other hand, the action an MTP inhibitor is independent of LDL receptor activity, and it is effective in most HoFH cases.This review summarizes the key clinical issues of HoFH as well as insurance coverage available under the Japanese public healthcare system.


Assuntos
Remoção de Componentes Sanguíneos/métodos , Intervenção Médica Precoce , Hipercolesterolemia Familiar Homozigota , Proteínas Relacionadas a Receptor de LDL/genética , Reguladores do Metabolismo de Lipídeos , LDL-Colesterol/sangue , Intervenção Médica Precoce/métodos , Intervenção Médica Precoce/organização & administração , Fatores de Risco de Doenças Cardíacas , Hipercolesterolemia Familiar Homozigota/diagnóstico , Hipercolesterolemia Familiar Homozigota/tratamento farmacológico , Hipercolesterolemia Familiar Homozigota/epidemiologia , Hipercolesterolemia Familiar Homozigota/genética , Humanos , Cobertura do Seguro , Japão/epidemiologia , Reguladores do Metabolismo de Lipídeos/classificação , Reguladores do Metabolismo de Lipídeos/farmacologia , Prognóstico
18.
J Gastroenterol ; 56(3): 261-273, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33427937

RESUMO

BACKGROUND: Although type 2 diabetes mellitus (T2DM) is a known risk factor for hepatocellular carcinoma (HCC) development, the annual incidence in diabetes patients is far below the threshold of efficient surveillance. This study aimed to elucidate the risk factors for HCC in diabetic patients and to determine the best criteria to identify surveillance candidates. METHODS: The study included 239 patients with T2DM who were diagnosed with non-viral HCC between 2010 and 2015, with ≥ 5 years of follow-up at diabetes clinics of 81 teaching hospitals in Japan before HCC diagnosis, and 3277 non-HCC T2DM patients from a prospective cohort study, as controls. Clinical data at the time of and 5 years before HCC diagnosis were collected. RESULTS: The mean patient age at HCC diagnosis was approximately 73 years, and 80% of the patients were male. The proportion of patients with insulin use increased, whereas the body mass index (BMI), proportion of patients with fatty liver, fasting glucose levels, and hemoglobin A1c (HbA1c) levels decreased significantly in 5 years. In the cohort study, 18 patients developed HCC during the mean follow-up period of 4.7 years with an annual incidence of 0.11%. Multivariate logistic regression analyses showed that the FIB-4 index was an outstanding predictor of HCC development along with male sex, presence of hypertension, lower HbA1c and albumin levels, and higher BMI and gamma-glutamyl transpeptidase levels. Receiver-operating characteristic analyses showed that a FIB-4 cut-off value of 3.61 could help identify high-risk patients, with a corresponding annual HCC incidence rate of 1.1%. CONCLUSION: A simple calculation of the FIB-4 index in diabetes clinics can be the first step toward surveillance of HCC with a non-viral etiology.


Assuntos
Carcinoma Hepatocelular/etiologia , Idoso , Carcinoma Hepatocelular/fisiopatologia , Estudos de Coortes , Complicações do Diabetes/etiologia , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/fisiopatologia , Feminino , Humanos , Japão/epidemiologia , Neoplasias Hepáticas/epidemiologia , Neoplasias Hepáticas/etiologia , Neoplasias Hepáticas/fisiopatologia , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Curva ROC , Sistema de Registros/estatística & dados numéricos , Inquéritos e Questionários
19.
J Gastroenterol Hepatol ; 36(3): 800-810, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32870526

RESUMO

BACKGROUND AND AIM: The incidence of non-alcoholic steatohepatitis (NASH)-related hepatocellular carcinoma (HCC) is progressively increasing. However, the pathophysiology and etiology of NASH progression to HCC are unknown. We hypothesized that steatosis was the key factor in NASH-related hepatocarcinogenesis and aimed to evaluate the effects of long-term liver X receptor (LXR) agonist stimulation on hepatic steatosis induced by a high-fat diet and oxidative stress. METHODS: We used an LXR agonist (T0901317) and CCl4 to induce hepatic steatosis and oxidative stress, respectively. C57BL/6 mice fed with a high-fat diet were treated with either T0901317 + CCl4 (T09 + CCl4 group) or CCl4 alone (CCl4 group). T0901317 (2.5 mg/kg) and CCl4 (0.1 mL/kg) were intraperitoneally administered twice weekly for 24 weeks. RESULTS: The liver-to-body weight ratio was significantly higher in the T09 + CCl4 group than in the CCl4 group. Mice in the T09 + CCl4 group exhibited abnormal lipid metabolism and NASH-like histopathological features. Additionally, all mice in the T09 + CCl4 group developed liver tumors diagnosed as well-differentiated HCC. The genes identified via microarray analysis were related to NASH and HCC development. CONCLUSIONS: By combining long-term LXR agonist stimulation with oxidative stress and a high-fat diet, we successfully reproduced liver conditions in mice similar to those in humans with NASH and progression to HCC. Our results provide new insight into NASH-related HCC progression and therapy.


Assuntos
Carcinoma Hepatocelular/etiologia , Hidrocarbonetos Fluorados/efeitos adversos , Neoplasias Hepáticas/etiologia , Receptores X do Fígado/agonistas , Hepatopatia Gordurosa não Alcoólica/complicações , Estresse Oxidativo , Sulfonamidas/efeitos adversos , Animais , Tetracloreto de Carbono/administração & dosagem , Tetracloreto de Carbono/efeitos adversos , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Progressão da Doença , Hidrocarbonetos Fluorados/administração & dosagem , Injeções Intraperitoneais , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Sulfonamidas/administração & dosagem
20.
BMC Med Genet ; 21(1): 91, 2020 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-32375679

RESUMO

BACKGROUND: Renal hypouricemia (RHUC) is a hereditary disorder where mutations in SLC22A12 gene and SLC2A9 gene cause RHUC type 1 (RHUC1) and RHUC type 2 (RHUC2), respectively. These genes regulate renal tubular reabsorption of urates while there exist other genes counterbalancing the net excretion of urates including ABCG2 and SLC17A1. Urate metabolism is tightly interconnected with glucose metabolism, and SLC2A9 gene may be involved in insulin secretion from pancreatic ß-cells. On the other hand, a myriad of genes are responsible for the impaired insulin secretion independently of urate metabolism. CASE PRESENTATION: We describe a 67 year-old Japanese man who manifested severe hypouricemia (0.7 mg/dl (3.8-7.0 mg/dl), 41.6 µmol/l (226-416 µmol/l)) and diabetes with impaired insulin secretion. His high urinary fractional excretion of urate (65.5%) and low urinary C-peptide excretion (25.7 µg/day) were compatible with the diagnosis of RHUC and impaired insulin secretion, respectively. Considering the fact that metabolic pathways regulating urates and glucose are closely interconnected, we attempted to delineate the genetic basis of the hypouricemia and the insulin secretion defect observed in this patient using whole exome sequencing. Intriguingly, we found homozygous Trp258* mutations in SLC22A12 gene causing RHUC1 while concurrent mutations reported to be associated with hyperuricemia were also discovered including ABCG2 (Gln141Lys) and SLC17A1 (Thr269Ile). SLC2A9, that also facilitates glucose transport, has been implicated to enhance insulin secretion, however, the non-synonymous mutations found in SLC2A9 gene of this patient were not dysfunctional variants. Therefore, we embarked on a search for causal mutations for his impaired insulin secretion, resulting in identification of multiple mutations in HNF1A gene (MODY3) as well as other genes that play roles in pancreatic ß-cells. Among them, the Leu80fs in the homeobox gene NKX6.1 was an unreported mutation. CONCLUSION: We found a case of RHUC1 carrying mutations in SLC22A12 gene accompanied with compensatory mutations associated with hyperuricemia, representing the first report showing coexistence of the mutations with opposed potential to regulate urate concentrations. On the other hand, independent gene mutations may be responsible for his impaired insulin secretion, which contains novel mutations in key genes in the pancreatic ß-cell functions that deserve further scrutiny.


Assuntos
Complicações do Diabetes/genética , Proteínas Facilitadoras de Transporte de Glucose/genética , Transportadores de Ânions Orgânicos/genética , Proteínas de Transporte de Cátions Orgânicos/genética , Erros Inatos do Transporte Tubular Renal/genética , Cálculos Urinários/genética , Idoso , Complicações do Diabetes/complicações , Complicações do Diabetes/patologia , Glucose/metabolismo , Fator 1-alfa Nuclear de Hepatócito/genética , Heterozigoto , Proteínas de Homeodomínio/genética , Homozigoto , Humanos , Insulina/biossíntese , Insulina/genética , Secreção de Insulina/genética , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , Masculino , Mutação/genética , Erros Inatos do Transporte Tubular Renal/complicações , Erros Inatos do Transporte Tubular Renal/patologia , Ácido Úrico/metabolismo , Cálculos Urinários/complicações , Cálculos Urinários/patologia , Sequenciamento do Exoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA