Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
JACC Basic Transl Sci ; 7(4): 384-403, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35540097

RESUMO

The authors show that increased poly(adenosine diphosphate-ribose) polymerase 1 (PARP1) and pyruvate kinase muscle isozyme 2 (PKM2) expression is a common feature of a decompensated right ventricle in patients with pulmonary arterial hypertension and animal models. The authors find in vitro that overactivated PARP1 promotes cardiomyocyte dysfunction by favoring PKM2 expression and nuclear function, glycolytic gene expression, activation of nuclear factor κB-dependent proinflammatory factors. Pharmacologic and genetic inhibition of PARP1 or enforced tetramerization of PKM2 attenuates maladaptive remodeling improving right ventricular (RV) function in multiple rodent models. Taken together, these data implicate the PARP1/PKM2 axis as a critical driver of maladaptive RV remodeling and a new promising target to directly sustain RV function in patients with pulmonary arterial hypertension.

2.
Thorax ; 77(3): 247-258, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34226205

RESUMO

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a chronic lung disease characterised by exuberant tissue remodelling and associated with high unmet medical needs. Outcomes are even worse when IPF results in secondary pulmonary hypertension (PH). Importantly, exaggerated resistance to cell death, excessive proliferation and enhanced synthetic capacity are key endophenotypes of both fibroblasts and pulmonary artery smooth muscle cells, suggesting shared molecular pathways. Under persistent injury, sustained activation of the DNA damage response (DDR) is integral to the preservation of cells survival and their capacity to proliferate. Checkpoint kinases 1 and 2 (CHK1/2) are key components of the DDR. The objective of this study was to assess the role of CHK1/2 in the development and progression of IPF and IPF+PH. METHODS AND RESULTS: Increased expression of DNA damage markers and CHK1/2 were observed in lungs, remodelled pulmonary arteries and isolated fibroblasts from IPF patients and animal models. Blockade of CHK1/2 expression or activity-induced DNA damage overload and reverted the apoptosis-resistant and fibroproliferative phenotype of disease cells. Moreover, inhibition of CHK1/2 was sufficient to interfere with transforming growth factor beta 1-mediated fibroblast activation. Importantly, pharmacological inhibition of CHK1/2 using LY2606368 attenuated fibrosis and pulmonary vascular remodelling leading to improvement in respiratory mechanics and haemodynamic parameters in two animal models mimicking IPF and IPF+PH. CONCLUSION: This study identifies CHK1/2 as key regulators of lung fibrosis and provides a proof of principle for CHK1/2 inhibition as a potential novel therapeutic option for IPF and IPF+PH.


Assuntos
Hipertensão Pulmonar , Fibrose Pulmonar Idiopática , Animais , Fibroblastos/metabolismo , Humanos , Hipertensão Pulmonar/tratamento farmacológico , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/metabolismo , Fibrose Pulmonar Idiopática/metabolismo , Pulmão/metabolismo , Miócitos de Músculo Liso/metabolismo
3.
JA Clin Rep ; 7(1): 72, 2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34585308

RESUMO

BACKGROUND: Neurotoxicity caused by a local anesthetic after regional anesthesia is a rare but serious problem for anesthesiologists. It is difficult to diagnose neurotoxicity from anesthetics because of the large number of possible diagnoses. In this case report, careful monitoring by neurological examinations helped to diagnose local neurotoxicity caused after epidural anesthesia. CASE DESCRIPTION: A 41-year-old pregnant woman who underwent emergency cesarean delivery under combined spinal-epidural anesthesia suffered left leg paralysis after surgery. Multiple neurological examinations (e.g., electromyography, nerve conduction study) revealed that the paralysis was induced by the neurotoxicity of ropivacaine. The neurological examinations were also useful to monitor the recovery process. CONCLUSIONS: This is the first clinical case report that describes the diagnosis of and recovery from local anesthesia-induced neurotoxicity monitored by electromyography and nerve conduction study. Neurological disorders caused by regional anesthetics should be carefully examined and diagnosed using these neurological examinations.

4.
Am J Respir Crit Care Med ; 203(5): 614-627, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33021405

RESUMO

Rationale: Pulmonary arterial hypertension (PAH) is a life-threatening condition characterized by abnormally elevated pulmonary pressures and right ventricular failure. Excessive proliferation and resistance to apoptosis of pulmonary artery smooth muscle cells (PASMCs) is one of the most important drivers of vascular remodeling in PAH, for which available treatments have limited effectiveness.Objectives: To gain insights into the mechanisms leading to the development of the disease and identify new actionable targets.Methods: Protein expression profiling was conducted by two-dimensional liquid chromatography coupled to tandem mass spectrometry in isolated PASMCs from controls and patients with PAH. Multiple molecular, biochemical, and pharmacologic approaches were used to decipher the role of NUDT1 (nudrix hyrolase 1) in PAH.Measurements and Main Results: Increased expression of the detoxifying DNA enzyme NUDT1 was detected in cells and tissues from patients with PAH and animal models. In vitro, molecular or pharmacological inhibition of NUDT1 in PAH-PASMCs induced accumulation of oxidized nucleotides in the DNA, irresolvable DNA damage (comet assay), disruption of cellular bioenergetics (Seahorse), and cell death (terminal deoxynucleotidyl transferase dUTP nick end labeling assay). In two animal models with established PAH (i.e., monocrotaline and Sugen/hypoxia-treated rats), pharmacological inhibition of NUDT1 using (S)-Crizotinib significantly decreased pulmonary vascular remodeling and improved hemodynamics and cardiac function.Conclusions: Our results indicate that, by overexpressing NUDT1, PAH-PASMCs hijack persistent oxidative stress in preventing incorporation of oxidized nucleotides into DNA, thus allowing the cell to escape apoptosis and proliferate. Given that NUDT1 inhibitors are under clinical investigation for cancer, they may represent a new therapeutic option for PAH.


Assuntos
Enzimas Reparadoras do DNA/genética , DNA/metabolismo , Estresse Oxidativo/genética , Monoéster Fosfórico Hidrolases/genética , Hipertensão Arterial Pulmonar/genética , Artéria Pulmonar/metabolismo , Remodelação Vascular/genética , 8-Hidroxi-2'-Desoxiguanosina/metabolismo , Adulto , Idoso , Animais , Apoptose/genética , Western Blotting , Estudos de Casos e Controles , Proliferação de Células/genética , Cromatografia Líquida , Ensaio Cometa , Enzimas Reparadoras do DNA/antagonistas & inibidores , Enzimas Reparadoras do DNA/metabolismo , Modelos Animais de Doenças , Feminino , Proteína Forkhead Box M1/metabolismo , Humanos , Técnicas In Vitro , Masculino , Pessoa de Meia-Idade , Músculo Liso Vascular/citologia , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Oxirredução , Monoéster Fosfórico Hidrolases/antagonistas & inibidores , Monoéster Fosfórico Hidrolases/metabolismo , Hipertensão Arterial Pulmonar/metabolismo , Pirofosfatases/antagonistas & inibidores , Pirofosfatases/genética , Pirofosfatases/metabolismo , RNA Mensageiro/metabolismo , Ratos , Espectrometria de Massas em Tandem , Regulação para Cima
5.
FASEB J ; 33(9): 9785-9796, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31162976

RESUMO

Vascular smooth muscle cells (VSMCs) play critical roles in the stability and tonic regulation of vascular homeostasis. VSMCs can switch back and forth between highly proliferative synthetic and fully differentiated contractile phenotypes in response to changes in the vessel environment. Although abnormal phenotypic switching of VSMCs is a hallmark of vascular disorders such as atherosclerosis and restenosis after angioplasty, how control of VSMC phenotypic switching is dysregulated in pathologic conditions remains obscure. We found that inhibition of canonical transient receptor potential 6 (TRPC6) channels facilitated contractile differentiation of VSMCs through plasma membrane hyperpolarization. TRPC6-deficient VSMCs exhibited more polarized resting membrane potentials and higher protein kinase B (Akt) activity than wild-type VSMCs in response to TGF-ß1 stimulation. Ischemic stress elicited by oxygen-glucose deprivation suppressed TGF-ß1-induced hyperpolarization and VSMC differentiation, but this effect was abolished by TRPC6 deletion. TRPC6-mediated Ca2+ influx and depolarization coordinately promoted the interaction of TRPC6 with lipid phosphatase and tensin homolog deleted from chromosome 10 (PTEN), a negative regulator of Akt activation. Given the marked up-regulation of TRPC6 observed in vascular disorders, our findings suggest that attenuation of TRPC6 channel activity in pathologic VSMCs could be a rational strategy to maintain vascular quality control by fine-tuning of VSMC phenotypic switching.-Numaga-Tomita, T., Shimauchi, T., Oda, S., Tanaka, T., Nishiyama, K., Nishimura, A., Birnbaumer, L., Mori, Y., Nishida, M. TRPC6 regulates phenotypic switching of vascular smooth muscle cells through plasma membrane potential-dependent coupling with PTEN.


Assuntos
Potenciais da Membrana/fisiologia , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Canal de Cátion TRPC6/metabolismo , Animais , Aorta , Linhagem Celular , Membrana Celular , Camundongos , PTEN Fosfo-Hidrolase/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Canal de Cátion TRPC6/genética
6.
JA Clin Rep ; 4(1): 79, 2018 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-32026013

RESUMO

BACKGROUND: Arginine vasopressin has been used for the management of refractory vasodilatory shock. However, it is still unclear whether arginine vasopressin is useful for hypotension in patients with spinal cord injury. CASE DESCRIPTION: A 78-year-old man with autonomic dysreflexia and paralysis below the level corresponding to Th2 due to spinal cord injury previously underwent cholecystectomy. During the surgery, accidental hemorrhage led him to refractory hemorrhagic shock unresponsive to fluid resuscitation and catecholamine. Lasting hypotension was improved with arginine vasopressin. CONCLUSION: We described a rare case report on the use of arginine vasopressin for management of refractory hemorrhagic shock in a patient with autonomic dysreflexia.

7.
Sci Rep ; 7(1): 7511, 2017 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-28790356

RESUMO

Excess production of reactive oxygen species (ROS) caused by hyperglycemia is a major risk factor for heart failure. We previously reported that transient receptor potential canonical 3 (TRPC3) channel mediates pressure overload-induced maladaptive cardiac fibrosis by forming stably functional complex with NADPH oxidase 2 (Nox2). Although TRPC3 has been long suggested to form hetero-multimer channels with TRPC6 and function as diacylglycerol-activated cation channels coordinately, the role of TRPC6 in heart is still obscure. We here demonstrated that deletion of TRPC6 had no impact on pressure overload-induced heart failure despite inhibiting interstitial fibrosis in mice. TRPC6-deficient mouse hearts 1 week after transverse aortic constriction showed comparable increases in fibrotic gene expressions and ROS production but promoted inductions of inflammatory cytokines, compared to wild type hearts. Treatment of TRPC6-deficient mice with streptozotocin caused severe reduction of cardiac contractility with enhancing urinary and cardiac lipid peroxide levels, compared to wild type and TRPC3-deficient mice. Knockdown of TRPC6, but not TRPC3, enhanced basal expression levels of cytokines in rat cardiomyocytes. TRPC6 could interact with Nox2, but the abundance of TRPC6 was inversely correlated with that of Nox2. These results strongly suggest that Nox2 destabilization through disrupting TRPC3-Nox2 complex underlies attenuation of hyperglycemia-induced heart failure by TRPC6.


Assuntos
Diabetes Mellitus Experimental/genética , Insuficiência Cardíaca/genética , Hiperglicemia/genética , NADPH Oxidase 2/genética , Canais de Cátion TRPC/genética , Animais , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/metabolismo , Regulação da Expressão Gênica , Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Hiperglicemia/induzido quimicamente , Hiperglicemia/complicações , Hiperglicemia/metabolismo , Peróxidos Lipídicos/metabolismo , Camundongos , Camundongos Knockout , Contração Miocárdica , Miocárdio/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , NADPH Oxidase 2/metabolismo , Cultura Primária de Células , Ligação Proteica , Ratos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Estreptozocina , Canais de Cátion TRPC/deficiência , Canal de Cátion TRPC6
8.
JCI Insight ; 2(15)2017 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-28768915

RESUMO

Myocardial atrophy is a wasting of cardiac muscle due to hemodynamic unloading. Doxorubicin is a highly effective anticancer agent but also induces myocardial atrophy through a largely unknown mechanism. Here, we demonstrate that inhibiting transient receptor potential canonical 3 (TRPC3) channels abolishes doxorubicin-induced myocardial atrophy in mice. Doxorubicin increased production of ROS in rodent cardiomyocytes through hypoxic stress-mediated upregulation of NADPH oxidase 2 (Nox2), which formed a stable complex with TRPC3. Cardiomyocyte-specific expression of TRPC3 C-terminal minipeptide inhibited TRPC3-Nox2 coupling and suppressed doxorubicin-induced reduction of myocardial cell size and left ventricular (LV) dysfunction, along with its upregulation of Nox2 and oxidative stress, without reducing hypoxic stress. Voluntary exercise, an effective treatment to prevent doxorubicin-induced cardiotoxicity, also downregulated the TRPC3-Nox2 complex and promoted volume load-induced LV compliance, as demonstrated in TRPC3-deficient hearts. These results illustrate the impact of TRPC3 on LV compliance and flexibility and, focusing on the TRPC3-Nox2 complex, provide a strategy for prevention of doxorubicin-induced cardiomyopathy.

9.
Mol Endocrinol ; 30(1): 118-32, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26652903

RESUMO

Insulin resistance is a condition in which cells are defective in response to the actions of insulin in tissue glucose uptake. Overstimulation of ß-adrenergic receptors (ßARs) leads to the development of heart failure and is associated with the pathogenesis of insulin resistance in the heart. However, the mechanisms by which sustained ßAR stimulation affects insulin resistance in the heart are incompletely understood. In this study, we demonstrate that sustained ßAR stimulation resulted in the inhibition of insulin-induced glucose uptake, and a reduction of insulin induced glucose transporter (GLUT)4 expression that were mediated by the ß2AR subtype in cardiomyocytes and heart tissue. Overstimulation of ß2AR inhibited the insulin-induced translocation of GLUT4 to the plasma membrane of cardiomyocytes. Additionally, ßAR mediated cardiac insulin resistance by reducing glucose uptake and GLUT4 expression via the cAMP-dependent and protein kinase A-dependent pathways. Treatment with ß-blockers, including propranolol and metoprolol antagonized isoproterenol-mediated insulin resistance in the heart. The data in this present study confirm a critical role for protein kinase A in ßAR-mediated insulin resistance.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Transportador de Glucose Tipo 4/metabolismo , Resistência à Insulina/fisiologia , Miocárdio/metabolismo , Receptores Adrenérgicos beta/metabolismo , Agonistas Adrenérgicos beta/farmacologia , Antagonistas Adrenérgicos beta/farmacologia , Animais , Células HEK293 , Humanos , Isoproterenol/farmacologia , Metoprolol/farmacologia , Camundongos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Propranolol/farmacologia , Ratos , Transdução de Sinais/efeitos dos fármacos
10.
Acta Anaesthesiol Taiwan ; 52(3): 146-8, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25199695

RESUMO

A 54-year-old patient with Becker muscular dystrophy and dilated cardiomyopathy underwent laparoscopic cholecystectomy under total intravenous anesthesia. Muscle relaxation was induced by rocuronium (0.4 mg/kg body weight) under train-of-four (TOF) ratio monitoring. The TOF ratio was 0 at intubation, and 0.2 at the end of surgery. Residual muscle relaxant activity was successfully reversed by sugammadex (2 mg/kg body weight) without any hemodynamic adverse effects (TOF ratio 1.0 at extubation). The clinical and hemodynamic findings suggest that sugammadex can be safely used in patients with Becker muscular dystrophy and dilated cardiomyopathy.


Assuntos
Cardiomiopatia Dilatada/fisiopatologia , Distrofia Muscular de Duchenne/fisiopatologia , gama-Ciclodextrinas/farmacologia , Humanos , Masculino , Pessoa de Meia-Idade , Sugammadex
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA