Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
AAPS J ; 25(2): 27, 2023 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-36805860

RESUMO

Traditional vaccinations need to be injected with needles, and since some people have a strong aversion to needles, a needle-free alternative delivery system is important. In this study, we employed ionic liquids (ILs) for transcutaneous delivery of cancer antigen-derived peptides to obtain anticancer therapeutic effects in a needle-free manner. ILs successfully increased the in vitro skin permeability of a peptide from Wilms tumor 1 (WT1), one of the more promising cancer antigens, plus or minus an adjuvant, resiquimod (R848), a toll-like receptor 7 agonist. In vivo studies demonstrated that concomitant transcutaneous delivery of WT1 peptide and R848 by ILs induced WT1-specific cytotoxic T lymphocyte (CTL) in mice, resulting in tumor growth inhibition in Lewis lung carcinoma-bearing mice. Interestingly, administrating R848 in ILs before WT1 peptides in ILs increased tumor growth inhibition effects compared to co-administration of both. We found that the prior application of R848 increased the infiltration of leukocytes in the skin and that subsequent delivery of WT1 peptides was more likely to induce WT1-specific CTL. Furthermore, sequential immunization with IL-based formulations was applicable to different types of peptides and cancer models without induction of skin irritation. IL-based transcutaneous delivery of cancer antigen-derived peptides and adjuvants, either alone or together, could be a novel approach to needle-free cancer therapeutic vaccines.


Assuntos
Vacinas Anticâncer , Líquidos Iônicos , Neoplasias , Animais , Camundongos , Vacinas de Subunidades Antigênicas , Adjuvantes Imunológicos , Modelos Animais de Doenças
2.
J Immunol ; 201(10): 2969-2976, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30333124

RESUMO

Treating cancer with vaccines has been a challenge. In this study, we introduce a novel Ag delivery platform for cancer vaccines that delivers an encapsulated Ag to splenic marginal zone B (MZ-B) cells via the aid of a PEGylated liposome (PL) system. Splenic MZ-B cells have recently attracted interest as alternative APCs. In mice, preimmunization with empty (no Ag encapsulation) PLs triggered the efficient delivery of a subsequent dose of Ag-containing PLs, injected 3 d later, to the spleen compared with a single dose of Ag-containing PLs. In addition, immunization with empty PLs allowed three subsequent sequential injections of OVA-PLs to efficiently induce a CTL response against OVA-expressing murine thymoma (EG7-OVA) cells and resulted in in vivo growth inhibition of subsequently inoculated EG7-OVA cells. However, these sequential treatments require repeated immunizations to achieve their antitumor effect. Therefore, to improve the antitumor effect of our novel vaccine system, an adjuvant, α-galactosylceramide (αGC), was incorporated into the OVA-PLs (αGC/OVA-PLs). As expected, the incorporation of αGC reduced the required number of immunizations with OVA-PLs to the point that a single immunization treatment with empty PLs and an injection of αGC/OVA-PL efficiently triggered a potent CTL induction, resulting in a rejection of the development and a suppression of the growth of tumors that had already developed s.c. Results of this study indicate that a novel Ag delivery platform that grants efficient Ag delivery to splenic MZ-B cells shows promise as a therapeutic modality for conquering tumor growth and/or progression.


Assuntos
Antígenos de Neoplasias/administração & dosagem , Linfócitos B/imunologia , Vacinas Anticâncer/administração & dosagem , Lipossomos/imunologia , Baço/imunologia , Animais , Antígenos de Neoplasias/imunologia , Vacinas Anticâncer/imunologia , Citotoxicidade Imunológica/imunologia , Lipossomos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA