Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
J Med Phys ; 49(1): 33-40, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38828071

RESUMO

Purpose: This study aimed to develop a deep learning model for the prediction of V20 (the volume of the lung parenchyma that received ≥20 Gy) during intensity-modulated radiation therapy using chest X-ray images. Methods: The study utilized 91 chest X-ray images of patients with lung cancer acquired routinely during the admission workup. The prescription dose for the planning target volume was 60 Gy in 30 fractions. A convolutional neural network-based regression model was developed to predict V20. To evaluate model performance, the coefficient of determination (R2), root mean square error (RMSE), and mean absolute error (MAE) were calculated with conducting a four-fold cross-validation method. The patient characteristics of the eligible data were treatment period (2018-2022) and V20 (19.3%; 4.9%-30.7%). Results: The predictive results of the developed model for V20 were 0.16, 5.4%, and 4.5% for the R2, RMSE, and MAE, respectively. The median error was -1.8% (range, -13.0% to 9.2%). The Pearson correlation coefficient between the calculated and predicted V20 values was 0.40. As a binary classifier with V20 <20%, the model showed a sensitivity of 75.0%, specificity of 82.6%, diagnostic accuracy of 80.6%, and area under the receiver operator characteristic curve of 0.79. Conclusions: The proposed deep learning chest X-ray model can predict V20 and play an important role in the early determination of patient treatment strategies.

3.
J Neurooncol ; 168(3): 415-423, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38644464

RESUMO

AIM: We aimed to investigate the impact of concurrent antibody-drug conjugates (ADC) and radiotherapy on symptomatic radiation necrosis (SRN) in breast cancer patients with brain metastases (BM). METHODS: This multicenter retrospective study uses four institutional data. Eligibility criteria were histologically proven breast cancer, diagnosed BM with gadolinium-enhanced MRI, a Karnofsky performance status of 60 or higher, and radiotherapy for all BM lesions between 2017 and 2022. Patients with leptomeningeal dissemination were excluded. Concurrent ADC was defined as using ADC within four weeks before or after radiotherapy. The cumulative incidence of SRN until December 2023 with death as a competing event was compared between the groups with and without concurrent ADC. Multivariable analysis was performed using the Fine-Gray model. RESULTS: Among the 168 patients enrolled, 48 (29%) received ADC, and 19 (11%) had concurrent ADC. Of all, 36% were HER2-positive, 62% had symptomatic BM, and 33% had previous BM radiation histories. In a median follow-up of 31 months, 18 SRNs (11%) were registered (11 in grade 2 and 7 in grade 3). The groups with and without concurrent ADC had 5 SRNs in 19 patients and 13 SRNs in 149, and the two-year cumulative incidence of SRN was 27% vs. 7% (P = 0.014). Concurrent ADC was associated with a higher risk of SRN on multivariable analysis (subdistribution hazard ratio, 3.0 [95% confidence interval: 1.1-8.3], P = 0.030). CONCLUSIONS: This study suggests that concurrent ADC and radiotherapy are associated with a higher risk of SRN in HER2-positive breast cancer patients.


Assuntos
Neoplasias Encefálicas , Neoplasias da Mama , Imunoconjugados , Necrose , Lesões por Radiação , Humanos , Neoplasias da Mama/patologia , Neoplasias da Mama/radioterapia , Feminino , Estudos Retrospectivos , Neoplasias Encefálicas/secundário , Neoplasias Encefálicas/radioterapia , Pessoa de Meia-Idade , Lesões por Radiação/etiologia , Lesões por Radiação/patologia , Lesões por Radiação/epidemiologia , Adulto , Idoso , Seguimentos , Quimiorradioterapia/efeitos adversos
4.
J Radiat Res ; 65(3): 328-336, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38602048

RESUMO

This study aimed to explore the distribution of external radiation therapy (RT) facilities, the status of related device installations and the adoption of high-precision RT using Survey of Medical Institutions from the Ministry of Health, Labour and Welfare in Japan. Analysis, categorized by the hospital size and prefecture, provides specific insights into the trends in treatment facility healthcare capabilities. Data on the number of RT facilities, high-precision RT facilities, RT devices and treatment planning systems (TPS) categorized by the number of beds and prefecture from 1996 to 2020 were analyzed. In addition, the study examined the correlation between the high-precision implementation rate and the number of TPSs or radiation oncologists and other medical staff. High-precision RT exceeded 95% in large facilities (800+ beds) but remained <50% in medium-sized facilities (300-499 beds). In a prefecture-by-prefecture analysis, calculation of the maximum-minimum ratio of RT facilities per million population and per 30 km2 revealed a disparity of 3.7 and 73.1 times in the population ratio and the density ratio, respectively. Although a correlation was found between the number of TPSs per RT device or the number of medical physicists per million population and the rate of high-precision RT implementation, no correlation was found among other professions. Detailed analysis based on the hospital size and prefecture provided more specific information on the medical functions of RT facilities in Japan. These findings can potentially contribute to the future development of RT, including the standardization of treatment techniques and optimal resource allocation.


Assuntos
Radioterapia , Japão , Humanos , Inquéritos e Questionários , Radioterapia/estatística & dados numéricos , Planejamento da Radioterapia Assistida por Computador
5.
Artigo em Inglês | MEDLINE | ID: mdl-38493900

RESUMO

PURPOSE: This study aimed to identify factors affecting pain response to develop a patient classification system for palliative radiation therapy (RT). METHODS AND MATERIALS: Our prospective observational study (UMIN000044984) provided data on patients who received palliative RT for painful tumors. The eligibility criteria were having a numerical rating scale (NRS) score of 2 or more before treatment and receiving palliative RT between August 2021 and September 2022. Post-RT follow-up was scheduled prospectively at 2, 4, 12, 24, 36, and 52 weeks. Pain response was assessed using the International Consensus Pain Response Endpoints criteria, with the primary outcome being the response rate within 12 weeks. Multivariable logistic regression was performed to identify factors affecting pain response and develop the classification system. Each class evaluated the differences in response rate, time to response, and progression. RESULTS: Of the 488 registered lesions, 366 from 261 patients met the criteria. Most patients had bone metastases (75%), of whom 72% were using opioids and 22% underwent reirradiation. Conventional RT (eg, 8-Gy single fraction, 20 Gy in 5 fractions) was administered to 93% of patients. Over a median of 6.8 months of follow-up, the average NRS decreased from 6.1 to 3.4 at 12 weeks for 273 evaluable lesions, with a 60% response rate. Opioid use and reirradiation negatively affected the response rate in multivariate analysis (P < .01). Lesions were categorized into class 1 (no opioid use and no reirradiation; 89 lesions), class 2 (neither class 1 nor 3; 211 lesions), and class 3 (opioid use and reirradiation; 66 lesions), with respective response rates of 75%, 61%, and 36% (P < .001). Time to response was similar across the classes (P = .91), but the progression rates at 24 weeks differed (11%, 27%, and 63%, respectively; P < .001). CONCLUSIONS: Opioid use and reirradiation are factors leading to significant variations in pain response rates and time to progression.

6.
Jpn J Radiol ; 42(6): 656-661, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38386259

RESUMO

PURPOSE: This retrospective study aimed to assess the efficacy and safety of palliative radiotherapy for painful non-bone lesions in patients with advanced cancer. MATERIALS AND METHODS: We enrolled patients with painful non-bone lesions who underwent conventional palliative radiotherapy between September 2018 and September 2022. The treatment targets included primary tumor lesions, lymph node metastases, non-bone hematogenous metastases, and other lesions. The primary endpoint was the overall pain response rate in evaluable patients, determined based on the International Consensus Pain Response Endpoint criteria. The secondary endpoints included overall survival, pain recurrence, and adverse events. RESULTS: Of the 420 screened patients, 142 received palliative radiotherapy for painful non-bone lesions, and 112 were evaluable. A pain response was achieved in 67 patients (60%) of the 112 evaluable patients within a median of 1.2 months. Among these patients, 25 exhibited complete response, 42 partial response, 18 indeterminate response, and 27 pain progression. The median survival time was 5.5 months, recorded at a median follow-up of 6.0 months, during which 67 patients died. Multivariate analysis identified poor performance status scores of 2-4, opioid use, and re-irradiation as independent factors associated with a reduced likelihood of achieving a pain response. Pain recurrence occurred in 18 patients over a median of 4.1 months. Seventeen patients had grade 1-2 adverse events, while none experienced grade 3 or higher toxicity. CONCLUSION: Palliative radiotherapy can potentially be a safe and well-tolerated modality for managing painful non-bone lesions, with a low rate of adverse events.


Assuntos
Dor do Câncer , Cuidados Paliativos , Humanos , Masculino , Cuidados Paliativos/métodos , Feminino , Estudos Retrospectivos , Idoso , Pessoa de Meia-Idade , Idoso de 80 Anos ou mais , Dor do Câncer/radioterapia , Dor do Câncer/etiologia , Adulto , Neoplasias/radioterapia , Neoplasias/complicações , Resultado do Tratamento , Medição da Dor
7.
Jpn J Radiol ; 42(6): 662-672, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38413551

RESUMO

PURPOSE:  We aimed to evaluate the efficacy and safety of re-irradiation stereotactic body radiation therapy (SBRT) in patients with metastatic epidural spinal cord compression (MESCC) following high-dose conventional radiotherapy. MATERIALS AND METHODS:  Twenty-one patients met the following eligibility criteria: with an irradiation history of 50 Gy2 equivalent dose in 2-Gy fractions (EQD2) or more, diagnosed MESCC in the cervical or thoracic spines, and treated with re-irradiation SBRT of 24 Gy in 2 fractions between April 2018 and March 2023. Prior treatment was radiotherapy alone, not including surgery. The primary endpoint was a 1-year local failure rate. Overall survival (OS) and treatment-related adverse events were assessed as the secondary endpoints. Since our cohort includes one treatment-related death (TRD) of esophageal perforation, the cumulative esophageal dose was evaluated to find the dose constraints related to severe toxicities. RESULTS:  The median age was 68, and 14 males were included. The primary tumor sites (esophagus/lung/head and neck/others) were 6/6/7/2, and the median initial radiotherapy dose was 60 Gy2 EQD2 (range: 50-105 Gy2, 60-70/ > 70 Gy2 were 11/4). Ten patients underwent surgery followed by SBRT and 11 SBRT alone. At the median follow-up time of 10.4 months, 17 patients died of systemic disease progression including one TRD. No radiation-induced myelopathy or nerve root injuries occurred. Local failure occurred in six patients, with a 1-year local failure rate of 29.3% and a 1-year OS of 55.0%. Other toxicities included five cases of vertebral compression fractures (23.8%) and one radiation pneumonitis. The cumulative esophageal dose was recommended as follows: Dmax < 203, D0.035 cc < 187, and D1cc < 167 (Gy3 in biological effective dose). CONCLUSION:  Re-irradiation spine SBRT may be effective for selected patients with cervical or thoracic MESCC, even with high-dose irradiation histories. The cumulative dose assessment across the original and re-irradiated esophagus was recommended to decrease the risk of severe esophageal toxicities.


Assuntos
Radiocirurgia , Reirradiação , Compressão da Medula Espinal , Neoplasias da Coluna Vertebral , Humanos , Masculino , Feminino , Radiocirurgia/métodos , Radiocirurgia/efeitos adversos , Reirradiação/métodos , Idoso , Compressão da Medula Espinal/radioterapia , Compressão da Medula Espinal/etiologia , Compressão da Medula Espinal/cirurgia , Estudos Retrospectivos , Pessoa de Meia-Idade , Neoplasias da Coluna Vertebral/radioterapia , Neoplasias da Coluna Vertebral/secundário , Idoso de 80 Anos ou mais , Dosagem Radioterapêutica , Resultado do Tratamento , Adulto
8.
Jpn J Radiol ; 42(4): 415-423, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37979018

RESUMO

PURPOSE: This study evaluated the trends in the platform for stereotactic radiotherapy to the brain (SRT), utilizing the open data of the National Database published by the Ministry of Health, Labour, and Welfare. MATERIALS AND METHODS: This study analyzed data from FY2014 to FY2021. The practices included in the study were gamma knife surgery (GKS) and SRT with a linear accelerator (LINAC). The total number of outpatient and inpatient cases in each SRT system was evaluated annually. RESULTS: From April 2014 to March 2022, the study included 212,016 cases (102,691 GKS and 109,325 LINAC) of the registered 1,996,540 radiotherapy cases. In the first year, 13,117 (54.1%) cases were GKS, and 11,128 (45.9%) were LINAC; after that, GKS decreased, and LINAC increased, reaching the same rate in FY2017. Compared to the first year, the final year showed 11,702 GKS (- 1415 or - 10.8%) and 17,169 LINAC (+ 6041 or + 54.3%), with an increase of 4626 total SRT cases to 28,871 (+ 19.1%). The percentage of outpatient treatment also increased from 4.6 to 11.8% for GKS and from 44.7 to 57.9% for LINAC. CONCLUSION: The study found a gradual decrease in the selection of GKS, an increasing trend in the selection of LINAC, and an increase in the overall number of stereotactic irradiations. In particular, the proportion of outpatient treatment increased, indicating that more than half of LINAC was selected for outpatient treatment.


Assuntos
Neoplasias Encefálicas , Radiocirurgia , Humanos , Japão , Estudos Retrospectivos , Aceleradores de Partículas , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/cirurgia , Encéfalo , Resultado do Tratamento
9.
Med Phys ; 51(3): 1571-1582, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38112216

RESUMO

BACKGROUND: Inadequate computed tomography (CT) number calibration curves affect dose calculation accuracy. Although CT number calibration curves registered in treatment planning systems (TPSs) should be consistent with human tissues, it is unclear whether adequate CT number calibration is performed because CT number calibration curves have not been assessed for various types of CT number calibration phantoms and TPSs. PURPOSE: The purpose of this study was to investigate CT number calibration curves for mass density (ρ) and relative electron density (ρe ). METHODS: A CT number calibration audit phantom was sent to 24 Japanese photon therapy institutes from the evaluating institute and scanned using their individual clinical CT scan protocols. The CT images of the audit phantom and institute-specific CT number calibration curves were submitted to the evaluating institute for analyzing the calibration curves registered in the TPSs at the participating institutes. The institute-specific CT number calibration curves were created using commercial phantom (Gammex, Gammex Inc., Middleton, WI, USA) or CIRS phantom (Computerized Imaging Reference Systems, Inc., Norfolk, VA, USA)). At the evaluating institute, theoretical CT number calibration curves were created using a stoichiometric CT number calibration method based on the CT image, and the institute-specific CT number calibration curves were compared with the theoretical calibration curve. Differences in ρ and ρe over the multiple points on the curve (Δρm and Δρe,m , respectively) were calculated for each CT number, categorized for each phantom vendor and TPS, and evaluated for three tissue types: lung, soft tissues, and bones. In particular, the CT-ρ calibration curves for Tomotherapy TPSs (ACCURAY, Sunnyvale, CA, USA) were categorized separately from the Gammex CT-ρ calibration curves because the available tissue-equivalent materials (TEMs) were limited by the manufacturer recommendations. In addition, the differences in ρ and ρe for the specific TEMs (ΔρTEM and Δρe,TEM , respectively) were calculated by subtracting the ρ or ρe of the TEMs from the theoretical CT-ρ or CT-ρe calibration curve. RESULTS: The mean ± standard deviation (SD) of Δρm and Δρe,m for the Gammex phantom were -1.1 ± 1.2 g/cm3 and -0.2 ± 1.1, -0.3 ± 0.9 g/cm3 and 0.8 ± 1.3, and -0.9 ± 1.3 g/cm3 and 1.0 ± 1.5 for lung, soft tissues, and bones, respectively. The mean ± SD of Δρm and Δρe,m for the CIRS phantom were 0.3 ± 0.8 g/cm3 and 0.9 ± 0.9, 0.6 ± 0.6 g/cm3 and 1.4 ± 0.8, and 0.2 ± 0.5 g/cm3 and 1.6 ± 0.5 for lung, soft tissues, and bones, respectively. The mean ± SD of Δρm for Tomotherapy TPSs was 2.1 ± 1.4 g/cm3 for soft tissues, which is larger than those for other TPSs. The mean ± SD of Δρe,TEM for the Gammex brain phantom (BRN-SR2) was -1.8 ± 0.4, implying that the tissue equivalency of the BRN-SR2 plug was slightly inferior to that of other plugs. CONCLUSIONS: Latent deviations between human tissues and TEMs were found by comparing the CT number calibration curves of the various institutes.


Assuntos
Planejamento da Radioterapia Assistida por Computador , Tomografia Computadorizada por Raios X , Humanos , Calibragem , Planejamento da Radioterapia Assistida por Computador/métodos , Tomografia Computadorizada por Raios X/métodos , Cabeça , Osso e Ossos , Imagens de Fantasmas
10.
J Radiat Res ; 65(2): 159-167, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38151953

RESUMO

Previous studies have primarily focused on quality of imaging in radiotherapy planning computed tomography (RTCT), with few investigations on imaging doses. To our knowledge, this is the first study aimed to investigate the imaging dose in RTCT to determine baseline data for establishing national diagnostic reference levels (DRLs) in Japanese institutions. A survey questionnaire was sent to domestic RT institutions between 10 October and 16 December 2021. The questionnaire items were volume computed tomography dose index (CTDIvol), dose-length product (DLP), and acquisition parameters, including use of auto exposure image control (AEC) or image-improving reconstruction option (IIRO) for brain stereotactic irradiation (brain STI), head and neck (HN) intensity-modulated radiotherapy (IMRT), lung stereotactic body radiotherapy (lung SBRT), breast-conserving radiotherapy (breast RT), and prostate IMRT protocols. Details on the use of motion-management techniques for lung SBRT were collected. Consequently, we collected 328 responses. The 75th percentiles of CTDIvol were 92, 33, 86, 23, and 32 mGy and those of DLP were 2805, 1301, 2416, 930, and 1158 mGy·cm for brain STI, HN IMRT, lung SBRT, breast RT, and prostate IMRT, respectively. CTDIvol and DLP values in institutions that used AEC or IIRO were lower than those without use for almost all sites. The 75th percentiles of DLP in each treatment technique for lung SBRT were 2541, 2034, 2336, and 2730 mGy·cm for free breathing, breath holding, gating technique, and real-time tumor tracking technique, respectively. Our data will help in establishing DRLs for RTCT protocols, thus reducing imaging doses in Japan.


Assuntos
Encéfalo , Radiocirurgia , Tomografia Computadorizada por Raios X , Humanos , Masculino , Japão , Doses de Radiação , Valores de Referência , Inquéritos e Questionários , Tomografia Computadorizada por Raios X/métodos , Encéfalo/efeitos da radiação
11.
J Radiat Res ; 64(5): 842-849, 2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37607667

RESUMO

This study aims to evaluate the dosimetric accuracy of a deep learning (DL)-based deliverable volumetric arc radiation therapy (VMAT) plan generated using DL-based automated planning assistant system (AIVOT, prototype version) for patients with prostate cancer. The VMAT data (cliDose) of 68 patients with prostate cancer treated with VMAT treatment (70-74 Gy/28-37 fr) at our hospital were used (n = 55 for training and n = 13 for testing). First, a HD-U-net-based 3D dose prediction model implemented in AIVOT was customized using the VMAT data. Thus, a predictive VMAT plan (preDose) comprising AIVOT that predicted the 3D doses was generated. Second, deliverable VMAT plans (deliDose) were created using AIVOT, the radiation treatment planning system Eclipse (version 15.6) and its vender-supplied objective functions. Finally, we compared these two estimated DL-based VMAT treatment plans-i.e. preDose and deliDose-with cliDose. The average absolute dose difference of all DVH parameters for the target tissue between cliDose and deliDose across all patients was 1.32 ± 1.35% (range: 0.04-6.21%), while that for all the organs at risks was 2.08 ± 2.79% (range: 0.00-15.4%). The deliDose was superior to the cliDose in all DVH parameters for bladder and rectum. The blinded plan scoring of deliDose and cliDose was 4.54 ± 0.50 and 5.0 ± 0.0, respectively (All plans scored ≥4 points, P = 0.03.) This study demonstrated that DL-based deliverable plan for prostate cancer achieved the clinically acceptable level. Thus, the AIVOT software exhibited a potential for automated planning with no intervention for patients with prostate cancer.


Assuntos
Aprendizado Profundo , Neoplasias da Próstata , Radioterapia de Intensidade Modulada , Masculino , Humanos , Planejamento da Radioterapia Assistida por Computador , Dosagem Radioterapêutica , Neoplasias da Próstata/radioterapia , Software , Órgãos em Risco
12.
Phys Imaging Radiat Oncol ; 27: 100468, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37520638

RESUMO

We investigated the risk of secondary cancers in rectum and bladder for prostate cancer radiotherapy using a feasibility assessment tool. We calculated the risk of secondary cancer by generating a dose-volume histogram based on an ideal dose falloff function (f-value). This study found a smaller f-value was associated with a lower secondary cancer risk in the rectum but a higher risk in the bladder. The study suggests setting the f-value at 0-0.1 as the optimization goal for the rectum and 0.4 for the bladder is reasonable and feasible for reducing the risk of secondary cancer and other adverse events.

13.
Med Dosim ; 48(3): 187-192, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37068981

RESUMO

This study aimed to quantitatively evaluate the influence of enhanced contrast on the CT myelography image of the spinal cord and/or cauda equina in addition to the target volume in spine SBRT treatment planning. In total, 19 patients who had previously undergone spine SBRT were randomly selected. The rigid image registration accuracy of CT myelography that aligned with the treatment planning CT was evaluated by calculating the normalized mutual information (NMI) and Pearson's correlation coefficient for the vertebral landmarks. At postregistration, the contrast-enhanced region of the CT myelography image was replaced with water-mass density, and the original treatment plan was recalculated on this image. For comparison, the dose was also recalculated on the contrast-enhanced CT myelography images. The NMI and Pearson's correlation coefficients for landmarks were 0.39 ± 0.12 and 0.97 ± 0.04, respectively. The mean D0.035cc of the spinal cord and/or cauda equina on the CT myelography image with the contrast-enhanced region replaced by water-mass density showed -0.37% ± 0.64% changes compared with that of the treatment planning CT. Conversely, the mean D0.035cc in contrast-enhanced CT myelography changed by -1.39% ± 0.51%. The percentage change in D98% for the planning target volume was confirmed to be small by replacing the contrast-enhanced region with water-mass density (p < 0.01). The dose calculation of the target volume, spinal cord, and/or cauda equina using the CT myelography image that replaced the contrast-enhanced region with water-mass density could be a more appropriate procedure with less dose calculation uncertainty.

14.
Jpn J Clin Oncol ; 53(7): 572-580, 2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37002189

RESUMO

OBJECTIVE: We aimed to evaluate recent trends in characteristics and treatments among patients with brain metastases in clinical practice. METHODS: All newly diagnosed patients with brain metastases during 2016-2021 at a single cancer center were enrolled. We collected the detailed features of each patient and estimated the number of candidates considered to meet the following criteria used in common clinical trials: Karnofsky performance status ≥ 70 and mutated non-small cell lung cancer, breast cancer or melanoma. The brain metastases treatments were classified as follows: (i) stereotactic radiosurgery, (ii) stereotactic radiosurgery and systemic therapy, (iii) whole-brain radiotherapy, (iv) whole-brain radiotherapy and systemic therapy, (v) surgery, (vi) immune checkpoint inhibitor or targeted therapy, (vii) cytotoxic agents and (ix) palliative care. Overall survival and intracranial progression-free survival were estimated from brain metastases diagnosis to death or intracranial progression. RESULTS: A total of 800 brain metastases patients were analyzed; 597 (74.6%) underwent radiotherapy, and 422 (52.7%) underwent systemic therapy. In addition, 250 (31.3%) patients were considered candidates for common clinical trials. Compared to 2016, the later years tended to shift from whole-brain radiotherapy to stereotactic radiosurgery (whole-brain radiotherapy: 35.7-29.1% and stereotactic radiosurgery: 33.4-42.8%) and from cytotoxic agents to immune checkpoint inhibitor/targeted therapy (cytotoxic agents: 10.1-5.0 and immune checkpoint inhibitor/targeted therapy: 7.8-10.9%). There was also an increase in the proportion of systemic therapy combined with radiation therapy (from 26.4 to 36.5%). The median overall survival and progression-free survival were 12.7 and 5.3 months, respectively. CONCLUSIONS: This study revealed the diversity of brain metastases patient characteristics, recent changes in treatment selection and the percentage of candidates in clinical trials.


Assuntos
Neoplasias Encefálicas , Metástase Neoplásica , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/secundário , Neoplasias Encefálicas/terapia , Inibidores de Checkpoint Imunológico/uso terapêutico , Metástase Neoplásica/diagnóstico , Metástase Neoplásica/radioterapia , Metástase Neoplásica/terapia , Radiocirurgia , Avaliação de Estado de Karnofsky , Neoplasias da Mama/patologia , Melanoma/patologia , Neoplasias Pulmonares/patologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Terapia de Alvo Molecular , Cuidados Paliativos , Análise de Sobrevida , Progressão da Doença , Ensaios Clínicos como Assunto
16.
J Neurooncol ; 160(1): 191-200, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36114369

RESUMO

AIM: This study aimed to evaluate the clinical benefits of systemic therapy (ST) combined with stereotactic radiosurgery (SRS) for brain metastases (BM). METHODS: The patient data were extracted from the institutional disease database from 2016 to 2021. Surgical and whole-brain radiotherapy cases and poor Karnofsky performance status (KPS < 70) were excluded. The eligible patients were divided into monotherapy (SRS alone or ST alone) and combined therapy (SRS and ST, combined within a month). Univariate and multivariate Cox proportional hazards analyses were used to examine factors associated with increased risk of death and intracranial progression. The propensity score for selecting treatment was calculated based on existing prognostic covariates. Two groups were matched 1:1 and compared for intracranial progression-free survival (PFS) and overall survival (OS). RESULTS: We identified 1605 patients and analyzed 928 (monotherapy: n = 494, combined therapy: n = 434). In a multivariable model, the combined therapy was independently associated with improved PFS and OS relative to the monotherapy. At the median follow-up of 383 days in the matched dataset, the combined therapy group showed significantly longer PFS (median, 7.4 vs. 5.0 months, P < 0.001) and OS (median, 23.1 vs. 17.2 months, P = 0.036) than the monotherapy group. The overall intracranial progression and mortality risk was reduced in the combined therapy group, with an estimated HR of 0.70 and 0.78. CONCLUSIONS: Combined therapy exhibited longer PFS and OS than monotherapy in BM patients. The results support the recent trend toward combining systemic and local therapies, encouraging future clinical trials.


Assuntos
Neoplasias Encefálicas , Radiocirurgia , Humanos , Pontuação de Propensão , Seguimentos , Estudos Retrospectivos , Radiocirurgia/métodos , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/secundário , Prognóstico
17.
Sci Rep ; 12(1): 13706, 2022 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-35961992

RESUMO

Deep inspiration breath-hold (DIBH) is widely used to reduce the cardiac dose in left-sided breast cancer radiotherapy. This study aimed to develop a deep learning chest X-ray model for cardiac dose prediction to select patients with a potentially high risk of cardiac irradiation and need for DIBH radiotherapy. We used 103 pairs of anteroposterior and lateral chest X-ray data of left-sided breast cancer patients (training cohort: n = 59, validation cohort: n = 19, test cohort: n = 25). All patients underwent breast-conserving surgery followed by DIBH radiotherapy: the treatment plan consisted of three-dimensional, two opposing tangential radiation fields. The prescription dose of the planning target volume was 42.56 Gy in 16 fractions. A convolutional neural network-based regression model was developed to predict the mean heart dose (∆MHD) reduction between free-breathing (MHDFB) and DIBH. The model performance is evaluated as a binary classifier by setting the cutoff value of ∆MHD > 1 Gy. The patient characteristics were as follows: the median (IQR) age was 52 (47-61) years, MHDFB was 1.75 (1.14-2.47) Gy, and ∆MHD was 1.00 (0.52-1.64) Gy. The classification performance of the developed model showed a sensitivity of 85.7%, specificity of 90.9%, a positive predictive value of 92.3%, a negative predictive value of 83.3%, and a diagnostic accuracy of 88.0%. The AUC value of the ROC curve was 0.864. The proposed model could predict ∆MHD in breast radiotherapy, suggesting the potential of a classifier in which patients are more desirable for DIBH.


Assuntos
Neoplasias da Mama , Aprendizado Profundo , Neoplasias Unilaterais da Mama , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/radioterapia , Suspensão da Respiração , Feminino , Coração/diagnóstico por imagem , Coração/efeitos da radiação , Humanos , Pessoa de Meia-Idade , Órgãos em Risco , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Neoplasias Unilaterais da Mama/diagnóstico por imagem , Neoplasias Unilaterais da Mama/radioterapia , Raios X
18.
Radiol Phys Technol ; 15(3): 249-254, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35790662

RESUMO

In this study, a prototype device was developed to quickly remove the mask used to immobilize the head and neck by remotely releasing the quick fasteners. As a first step in investigating the usefulness of this prototype, we performed repeated removal tests and examined the accuracy of dose calculation. The results showed that the quick-release fasteners of a Type-S system (CIVCO Medical Solutions, Iowa, USA) could be removed remotely and accurately (success rate: 100%). Additionally, the dose errors in treatment planning were negligible (< 1.0%), and the gamma pass rate was equivalent (99.9%). Therefore, this prototype device with a remote system would help manage patient safety in emergencies, such as a disaster or a sudden change in the patient's condition. However, age-related deterioration with long-term clinical use or its ability to link with beam-off still requires further exploration.


Assuntos
Neoplasias de Cabeça e Pescoço , Imobilização , Cabeça , Neoplasias de Cabeça e Pescoço/radioterapia , Humanos , Imobilização/métodos , Pescoço , Planejamento da Radioterapia Assistida por Computador/métodos
19.
Radiat Oncol ; 17(1): 133, 2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-35902868

RESUMO

BACKGROUND: JCOG1015A1 is an ancillary research study to determine the organ-specific dose constraints in head and neck carcinoma treated with intensity-modulated radiation therapy (IMRT) using data from JCOG1015. METHODS: Individual patient data and dose-volume histograms of organs at risk (OAR) were collected from 74 patients with nasopharyngeal carcinoma treated with IMRT who enrolled in JCOG1015. The incidence of late toxicities was evaluated using the cumulative incidence method or prevalence proportion. ROC analysis was used to estimate the optimal DVH cut-off value that predicted toxicities. RESULTS: The 5-year cumulative incidences of Grade (G) 1 myelitis, ≥ G1 central nervous system (CNS) necrosis, G2 optic nerve disorder, ≥ G2 dysphagia, ≥ G2 laryngeal edema, ≥ G2 hearing impaired, ≥ G2 middle ear inflammation, and ≥ G1 hypothyroidism were 10%, 5%, 2%, 11%, 5%, 26%, 34%, and 34%, respectively. Significant associations between DVH parameters and incidences of toxicities were observed in the brainstem for myelitis (D1cc ≥ 55.8 Gy), in the brain for CNS necrosis (D1cc ≥ 72.1 Gy), in the eyeball for optic nerve disorder (Dmax ≥ 36.6 Gy), and in the ipsilateral inner ear for hearing impaired (Dmean ≥ 44 Gy). The optic nerve, pharyngeal constrictor muscle (PCM), and thyroid showed tendencies between DVH parameters and toxicity incidence. The prevalence proportion of G2 xerostomia at 2 years was 17 versus 6% (contralateral parotid gland Dmean ≥ 25.8 Gy vs less). CONCLUSIONS: The dose constraint criteria were appropriate for most OAR in this study, although more strict dose constraints might be necessary for the inner ear, PCM, and brainstem.


Assuntos
Neoplasias de Cabeça e Pescoço , Mielite , Neoplasias Nasofaríngeas , Radioterapia de Intensidade Modulada , Neoplasias de Cabeça e Pescoço/radioterapia , Humanos , Mielite/etiologia , Neoplasias Nasofaríngeas/radioterapia , Necrose/etiologia , Órgãos em Risco , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada/efeitos adversos , Radioterapia de Intensidade Modulada/métodos
20.
Brachytherapy ; 21(6): 956-967, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35902335

RESUMO

PURPOSE: To quantify dose delivery errors for high-dose-rate image-guided brachytherapy (HDR-IGBT) using an independent end-to-end dose delivery quality assurance test at multiple institutions. The novelty of our study is that this is the first multi-institutional end-to-end dose delivery study in the world. MATERIALS AND METHODS: The postal audit used a polymer gel dosimeter in a cylindrical acrylic container for the afterloading system. Image acquisition using computed tomography, treatment planning, and irradiation were performed at each institution. Dose distribution comparison between the plan and gel measurement was performed. The percentage of pixels satisfying the absolute-dose gamma criterion was reviewed. RESULTS: Thirty-five institutions participated in this study. The dose uncertainty was 3.6% ± 2.3% (mean ± 1.96σ). The geometric uncertainty with a coverage factor of k = 2 was 3.5 mm. The tolerance level was set to the gamma passing rate of 95% with the agreement criterion of 5% (global)/3 mm, which was determined from the uncertainty estimation. The percentage of pixels satisfying the gamma criterion was 90.4% ± 32.2% (mean ± 1.96σ). Sixty-six percent (23/35) of the institutions passed the verification. Of the institutions that failed the verification, 75% (9/12) had incorrect inputs of the offset between the catheter tip and indexer length in treatment planning and 17% (2/12) had incorrect catheter reconstruction in treatment planning. CONCLUSIONS: The methodology should be useful for comprehensively checking the accuracy of HDR-IGBT dose delivery and credentialing clinical studies. The results of our study highlight the high risk of large source positional errors while delivering dose for HDR-IGBT in clinical practices.


Assuntos
Braquiterapia , Humanos , Braquiterapia/métodos , Dosagem Radioterapêutica , Dosímetros de Radiação , Catéteres , Tomografia Computadorizada por Raios X , Radiometria/métodos , Imagens de Fantasmas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA