Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 9(33): eadg8631, 2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37595031

RESUMO

Abundant formation of endogenous supersulfides, which include reactive persulfide species and sulfur catenated residues in thiols and proteins (supersulfidation), has been observed. We found here that supersulfides catalyze S-nitrosoglutathione (GSNO) metabolism via glutathione-dependent electron transfer from aldehydes by exploiting alcohol dehydrogenase 5 (ADH5). ADH5 is a highly conserved bifunctional enzyme serving as GSNO reductase (GSNOR) that down-regulates NO signaling and formaldehyde dehydrogenase (FDH) that detoxifies formaldehyde in the form of glutathione hemithioacetal. C174S mutation significantly reduced the supersulfidation of ADH5 and almost abolished GSNOR activity but spared FDH activity. Notably, Adh5C174S/C174S mice manifested improved cardiac functions possibly because of GSNOR elimination and consequent increased NO bioavailability. Therefore, we successfully separated dual functions (GSNOR and FDH) of ADH5 (mediated by the supersulfide catalysis) through the biochemical analysis for supersulfides in vitro and characterizing in vivo phenotypes of the GSNOR-deficient organisms that we established herein. Supersulfides in ADH5 thus constitute a substantial catalytic center for GSNO metabolism mediating electron transfer from aldehydes.


Assuntos
Aldeídos , Óxido Nítrico , Animais , Camundongos , Transporte de Elétrons , Catálise , Glutationa
2.
Sci Signal ; 15(716): eabj0644, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-35015570

RESUMO

After ligand stimulation, many G protein­coupled receptors (GPCRs) undergo ß-arrestin­dependent desensitization, during which they are internalized and either degraded or recycled to the plasma membrane. Some GPCRs are not subject to this type of desensitization because they lack the residues required to interact with ß-arrestins. We identified a mechanism of redox-dependent alternative internalization (REDAI) that promotes the internalization and degradation of the purinergic P2Y6 receptor (P2Y6R). Synthetic and natural compounds containing electrophilic isothiocyanate groups covalently modified P2Y6R at Cys220, which promoted the ubiquitylation of Lys137 and receptor internalization and degradation in various mouse and human cultured cell lines. Endogenous electrophiles also promoted ligand-dependent P2Y6R internalization and degradation. P2Y6R is highly abundant in inflammatory cells and promotes the pathogenesis of colitis. Deficiency in P2Y6R protected mice against experimentally induced colitis, and mice expressing a form of P2Y6R in which Cys220 was mutated to nonmodifiable serine were more sensitive to the induction of colitis. Several other GPCRs, including A2BAR, contain cysteine and lysine residues at the appropriate positions to mediate REDAI, and isothiocyanate stimulated the internalization of A2BAR and of a form of P2Y2R with insertions of the appropriate residues. Thus, endogenous and exogenous electrophiles may limit colitis progression through cysteine modification of P2Y6R and may also mediate internalization of other GPCRs.


Assuntos
Colite , Receptores Purinérgicos P2 , Animais , Colite/genética , Humanos , Camundongos , Oxirredução , Receptores Purinérgicos P2/metabolismo , beta-Arrestinas/metabolismo
3.
Sci Signal ; 12(587)2019 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-31239323

RESUMO

Chronic exposure to methylmercury (MeHg), an environmental electrophilic pollutant, reportedly increases the risk of human cardiac events. We report that exposure to a low, non-neurotoxic dose of MeHg precipitated heart failure induced by pressure overload in mice. Exposure to MeHg at 10 ppm did not induce weight loss typical of higher doses but caused mitochondrial hyperfission in myocardium through the activation of Drp1 by its guanine nucleotide exchange factor filamin-A. Treatment of neonatal rat cardiomyocytes with cilnidipine, an inhibitor of the interaction between Drp1 and filamin-A, suppressed mitochondrial hyperfission caused by low-dose MeHg exposure. Modification of cysteine residues in proteins with polysulfides is important for redox signaling and mitochondrial homeostasis in mammalian cells. We found that MeHg targeted rat Drp1 at Cys624, a redox-sensitive residue whose SH side chain forms a bulky and nucleophilic polysulfide (Cys624-S(n)H). MeHg exposure induced the depolysulfidation of Cys624-S(n)H in Drp1, which led to filamin-dependent activation of Drp1 and mitochondrial hyperfission. Treatment with NaHS, which acts as a donor for reactive polysulfides, reversed MeHg-evoked Drp1 depolysulfidation and vulnerability to mechanical load in rodent and human cardiomyocytes and mouse hearts. These results suggest that depolysulfidation of Drp1 at Cys624-S(n)H by low-dose MeHg increases cardiac fragility to mechanical load through filamin-dependent mitochondrial hyperfission.


Assuntos
Dinaminas/metabolismo , Insuficiência Cardíaca , Hemodinâmica/efeitos dos fármacos , Compostos de Metilmercúrio/toxicidade , Mitocôndrias Cardíacas , Animais , Insuficiência Cardíaca/induzido quimicamente , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Humanos , Masculino , Camundongos , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Ratos
4.
Front Pharmacol ; 9: 523, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29872396

RESUMO

Cardiac hypertrophy, induced by neurohumoral factors, including angiotensin II and endothelin-1, is a major predisposing factor for heart failure. These ligands can induce hypertrophic growth of neonatal rat cardiomyocytes (NRCMs) mainly through Ca2+-dependent calcineurin/nuclear factor of activated T cell (NFAT) signaling pathways activated by diacylglycerol-activated transient receptor potential canonical 3 and 6 (TRPC3/6) heteromultimer channels. Although extracellular nucleotide, adenosine 5'-triphosphate (ATP), is also known as most potent Ca2+-mobilizing ligand that acts on purinergic receptors, ATP never induces cardiomyocyte hypertrophy. Here we show that ATP-induced production of nitric oxide (NO) negatively regulates hypertrophic signaling mediated by TRPC3/6 channels in NRCMs. Pharmacological inhibition of NO synthase (NOS) potentiated ATP-induced increases in NFAT activity, protein synthesis, and transcriptional activity of brain natriuretic peptide. ATP significantly increased NO production and protein kinase G (PKG) activity compared to angiotensin II and endothelin-1. We found that ATP-induced Ca2+ signaling requires inositol 1,4,5-trisphosphate (IP3) receptor activation. Interestingly, inhibition of TRPC5, but not TRPC6 attenuated ATP-induced activation of Ca2+/NFAT-dependent signaling. As inhibition of TRPC5 attenuates ATP-stimulated NOS activation, these results suggest that NO-cGMP-PKG axis activated by IP3-mediated TRPC5 channels underlies negative regulation of TRPC3/6-dependent hypertrophic signaling induced by ATP stimulation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA