Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 12(9)2022 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-36139034

RESUMO

Reducing the health hazards caused by air pollution is a global challenge and is included in the Sustainable Development Goals. Air pollutants, such as PM2.5, induce respiratory and cardiovascular disorders by causing various inflammatory responses via oxidative stress. Catechins and polyphenols, which are components of green tea, have various protective effects, owing to their antioxidant ability. The main catechin in green tea, epigallocatechin gallate (EGCG), is potentially effective against respiratory diseases, such as idiopathic pulmonary fibrosis and asthma, but its effectiveness against air-pollution-dependent lung injury has not yet been investigated. In this study, we examined the effect of EGCG on urban aerosol-induced acute lung injury in mice. Urban aerosol treatment caused increases in inflammatory cell counts, protein levels, and inflammatory cytokine expression in the lungs of ICR mice, but pretreatment with EGCG markedly suppressed these responses. Analyses of oxidative stress revealed that urban aerosol exposure enhanced reactive oxygen species (ROS) production and the formation of ROS-activated neutrophil extracellular traps (NETs) in the lungs of mice. However, ROS production and NETs formation were markedly suppressed by pretreating the mice with EGCG. Gallocatechin gallate (GCG), a heat-epimerized form of EGCG, also markedly suppressed urban aerosol-dependent inflammatory responses and ROS production in vivo and in vitro. These findings suggest that EGCG and GCG prevent acute lung injury caused by urban aerosols through their inhibitory effects on ROS production. Thus, we believe that foods and medications containing EGCG or GCG may be candidates to prevent the onset and progression of acute lung injury caused by air pollutants.


Assuntos
Lesão Pulmonar Aguda , Poluentes Atmosféricos , Catequina , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Poluentes Atmosféricos/toxicidade , Animais , Antioxidantes/farmacologia , Catequina/análogos & derivados , Catequina/farmacologia , Catequina/uso terapêutico , Citocinas , Camundongos , Camundongos Endogâmicos ICR , Material Particulado/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Aerossóis e Gotículas Respiratórios , Chá
2.
Biomolecules ; 12(4)2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35454172

RESUMO

Although the pathogenesis of chronic obstructive pulmonary disease (COPD) is not yet fully understood, recent studies suggest that the disruption of the intracellular balance of oxidative (such as reactive oxygen species (ROS)) and antioxidant molecules plays an important role in COPD development and progression. Metallothionein is an endogenous metal-binding protein with reported ROS scavenging activity. Although there have been many publications on the protective effects of metallothionein in the kidney and liver, its role in COPD models such as elastase- or cigarette smoke (CS)-induced lung injury is unknown. Thus, in the present study, we analyzed the elastase-induced lung injury model using metallothionein-knockout (MT-KO; MT-1 and -2 gene deletion) mice. The expression of MT-1 and MT-2 in the lungs of MT-KO mice was markedly lower compared with that in the lungs of wildtype (WT) mice. Porcine pancreatic elastase (PPE)-induced lung injury (alveolar enlargement and respiratory impairment) was significantly exacerbated in MT-KO mice compared with WT mice. Additionally, PPE-induced increases in the number of inflammatory cells, inflammatory cytokines, and cell death in lung tissue were significantly more pronounced in MT-KO mice compared with WT mice. Finally, using an in vivo imaging system, we also found that PPE-induced ROS production in the lungs was enhanced in MT-KO mice compared with WT mice. These results suggest that metallothionein may act as an inhibitor against elastase-induced lung injury by suppressing ROS production. These results suggest that metallothionein protein, or compounds that can induce metallothionein, could be useful in the treatment of COPD.


Assuntos
Enfisema , Lesão Pulmonar , Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Animais , Metalotioneína/genética , Camundongos , Camundongos Knockout , Estresse Oxidativo , Elastase Pancreática/metabolismo , Doença Pulmonar Obstrutiva Crônica/induzido quimicamente , Doença Pulmonar Obstrutiva Crônica/genética , Enfisema Pulmonar/induzido quimicamente , Enfisema Pulmonar/genética , Enfisema Pulmonar/metabolismo , Espécies Reativas de Oxigênio , Suínos
3.
Environ Pollut ; 268(Pt A): 115787, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33065363

RESUMO

The number of deaths from air pollution worldwide is estimated at 8.8 million per year, more than the number of deaths from smoking. Air pollutants, such as PM2.5, are known to induce respiratory and cardiovascular diseases by inducing oxidative stress. Thioredoxin (Trx) is a 12-kDa endogenous protein that exerts antioxidant activity by promoting dithiol disulfide exchange reactions. We previously synthesized human serum albumin-fused thioredoxin (HSA-Trx), which has a longer half-life in plasma compared with Trx, and demonstrated its efficacy against various diseases including respiratory diseases. Here, we examined the effect of HSA-Trx on urban aerosol-induced lung injury in mice. Urban aerosols induced lung injury and inflammatory responses in ICR mice, but intravenous administration of HSA-Trx markedly inhibited these responses. We next analyzed reactive oxygen species (ROS) production in murine lungs using an in vivo imaging system. The results show that intratracheal administration of urban aerosols induced ROS production that was inhibited by intravenously administered HSA-Trx. Finally, we found that HSA-Trx inhibited the urban aerosol-induced increase in levels of neutrophilic extracellular trap (NET) indicators (i.e., double-stranded DNA, citrullinated histone H3, and neutrophil elastase) in bronchoalveolar lavage fluid (BALF). Together, these findings suggest that HSA-Trx prevents urban aerosol-induced acute lung injury by suppressing ROS production and neutrophilic inflammation. Thus, HSA-Trx may be a potential candidate drug for preventing the onset or exacerbation of lung injury caused by air pollutants.


Assuntos
Armadilhas Extracelulares , Lesão Pulmonar , Aerossóis , Albuminas , Animais , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/prevenção & controle , Camundongos , Camundongos Endogâmicos ICR , Estresse Oxidativo , Tiorredoxinas/metabolismo
4.
Oxid Med Cell Longev ; 2019: 9693726, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31316722

RESUMO

Trace metals such as zinc (Zn), copper (Cu), and nickel (Ni) play important roles in various physiological functions such as immunity, cell division, and protein synthesis in a wide variety of species. However, excessive amounts of these trace metals cause disorders in various tissues of the central nervous system, respiratory system, and other vital organs. Our previous analysis focusing on neurotoxicity resulting from interactions between Zn and Cu revealed that Cu2+ markedly enhances Zn2+-induced neuronal cell death by activating oxidative stress and the endoplasmic reticulum (ER) stress response. However, neurotoxicity arising from interactions between zinc and metals other than copper has not been examined. Thus, in the current study, we examined the effect of Ni2+ on Zn2+-induced neurotoxicity. Initially, we found that nontoxic concentrations (0-60 µM) of Ni2+ enhance Zn2+-induced neurotoxicity in an immortalized hypothalamic neuronal cell line (GT1-7) in a dose-dependent manner. Next, we analyzed the mechanism enhancing neuronal cell death, focusing on the ER stress response. Our results revealed that Ni2+ treatment significantly primed the Zn2+-induced ER stress response, especially expression of the CCAAT-enhancer-binding protein homologous protein (CHOP). Finally, we examined the effect of carnosine (an endogenous peptide) on Ni2+/Zn2+-induced neurotoxicity and found that carnosine attenuated Ni2+/Zn2+-induced neuronal cell death and ER stress occurring before cell death. Based on our results, Ni2+ treatment significantly enhances Zn2+-induced neuronal cell death by priming the ER stress response. Thus, compounds that decrease the ER stress response, such as carnosine, may be beneficial for neurological diseases.


Assuntos
Morte Celular/efeitos dos fármacos , Neurônios/citologia , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Níquel/farmacologia , Zinco/farmacologia , Carnosina/farmacologia , Linhagem Celular , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Humanos , Neurônios/metabolismo
5.
Metallomics ; 11(7): 1310-1320, 2019 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-31236550

RESUMO

Cadmium is a toxic metal contained in food, water and the atmosphere, and exposure to cadmium can cause respiratory diseases in humans. Various health problems caused by cadmium result from oxidative stress-dependent cellular injury. Metallothioneins are intracellular, cysteine-rich, metal-binding proteins that have a detoxifying action on heavy metals such as cadmium in various organs. In addition, expression of metallothioneins is induced by metals with low biological toxicity, such as zinc. Therefore, in this study we examined whether polaprezinc, a chelate compound consisting of carnosine and zinc, can suppress cadmium-induced lung epithelial cell death. We found that cell viability markers (intracellular ATP levels and mitochondrial activity) and cytotoxicity (lactate dehydrogenase release) were decreased and increased, respectively by cadmium treatment; however, polaprezinc significantly reversed these changes. Moreover, cadmium-dependent endoplasmic reticulum stress responses were suppressed by polaprezinc treatment. We then examined the protective mechanisms of polaprezinc, focusing on oxidative stress. Cadmium induced the production of reactive oxygen species (ROS) in A549 cells in a dose-dependent manner and polaprezinc significantly suppressed this cadmium-induced ROS production. Finally, we examined whether polaprezinc exerts an antioxidative action by inducing metallothioneins. We found that polaprezinc dose-dependently induced metallothioneins using real-time RT-PCR, ELISA, and western blotting analyses. These results indicate that polaprezinc can suppress cadmium-induced lung epithelial cell death and oxidative stress by inducing metallothioneins. We therefore suggest that polaprezinc may have therapeutic effects against respiratory diseases, such as chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis.


Assuntos
Cádmio/efeitos adversos , Carnosina/análogos & derivados , Morte Celular/efeitos dos fármacos , Compostos Organometálicos/farmacologia , Substâncias Protetoras/farmacologia , Mucosa Respiratória/efeitos dos fármacos , Células A549 , Carnosina/farmacologia , Citoproteção/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Humanos , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Espécies Reativas de Oxigênio/metabolismo , Mucosa Respiratória/metabolismo , Mucosa Respiratória/patologia , Compostos de Zinco/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA