Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Stem Cells Int ; 2013: 659739, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24367382

RESUMO

Patient-specific induced pluripotent stem (iPS) cells can be generated by introducing transcription factors that are highly expressed in embryonic stem (ES) cells into somatic cells. This opens up new possibilities for cell transplantation-based regenerative medicine by overcoming the ethical issues and immunological problems associated with ES cells. Despite the development of various methods for the generation of iPS cells that have resulted in increased efficiency, safety, and general versatility, it remains unknown which types of iPS cells are suitable for clinical use. Therefore, the aims of the present study were to assess (1) the differentiation potential, time course, and efficiency of different types of iPS cell lines to differentiate into cardiomyocytes in vitro and (2) the properties of the iPS cell-derived cardiomyocytes. We found that high-quality iPS cells exhibited better cardiomyocyte differentiation in terms of the time course and efficiency of differentiation than low-quality iPS cells, which hardly ever differentiated into cardiomyocytes. Because of the different properties of the various iPS cell lines such as cardiac differentiation efficiency and potential safety hazards, newly established iPS cell lines must be characterized prior to their use in cardiac regenerative medicine.

2.
J Mol Cell Cardiol ; 52(3): 650-9, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22146296

RESUMO

The efficient induction of cardiomyocyte differentiation from embryonic stem (ES) cells is crucial for cardiac regenerative medicine. Although Wnts play important roles in cardiac development, complex questions remain as to when, how and what types of Wnts are involved in cardiogenesis. We found that Wnt2 was strongly up-regulated during cardiomyocyte differentiation from ES cells. Therefore, we investigated when and how Wnt2 acts in cardiogenesis during ES cell differentiation. Wnt2 was strongly expressed in the early developing murine heart. We applied this embryonic Wnt2 expression pattern to ES cell differentiation, to elucidate Wnt2 function in cardiomyocyte differentiation. Wnt2 knockdown revealed that intrinsic Wnt2 was essential for efficient cardiomyocyte differentiation from ES cells. Moreover, exogenous Wnt2 increased cardiomyocyte differentiation from ES cells. Interestingly, the effects on cardiogenesis of intrinsic Wnt2 knockdown and exogenous Wnt2 addition were temporally restricted. During cardiomyocyte differentiation from ES cells, Wnt2 didn't activate canonical Wnt pathway but utilizes JNK/AP-1 pathway which is required for cardiomyocyte differentiation from ES cells. Therefore we conclude that Wnt2 plays strong positive stage-specific role in cardiogenesis through non-canonical Wnt pathway in murine ES cells.


Assuntos
Diferenciação Celular , Células-Tronco Embrionárias/citologia , Mesoderma/citologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Transdução de Sinais , Proteína Wnt2/metabolismo , Animais , Diferenciação Celular/genética , Linhagem Celular , Células Cultivadas , Chlorocebus aethiops , Células-Tronco Embrionárias/metabolismo , Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Inativação Gênica , Coração/embriologia , Humanos , Sistema de Sinalização das MAP Quinases , Mesoderma/metabolismo , Camundongos , Camundongos Endogâmicos ICR , Camundongos Transgênicos , Fatores de Tempo , Fator de Transcrição AP-1/metabolismo , Proteína Wnt2/genética
3.
Circ Res ; 106(6): 1083-91, 2010 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-20167925

RESUMO

RATIONALE: The transcriptional networks guiding heart development remain poorly understood, despite the identification of several essential cardiac transcription factors. OBJECTIVE: To isolate novel cardiac transcription factors, we performed gene chip analysis and found that Zac1, a zinc finger-type transcription factor, was strongly expressed in the developing heart. This study was designed to investigate the molecular and functional role of Zac1 as a cardiac transcription factor. METHODS AND RESULTS: Zac1 was strongly expressed in the heart from cardiac crescent stages and in the looping heart showed a chamber-restricted pattern. Zac1 stimulated luciferase reporter constructs driven by ANF, BNP, or alphaMHC promoters. Strong functional synergy was seen between Zac1 and Nkx2-5 on the ANF promoter, which carries adjacent Zac1 and Nkx2-5 DNA-binding sites. Zac1 directly associated with the ANF promoter in vitro and in vivo, and Zac1 and Nkx2-5 physically associated through zinc fingers 5 and 6 in Zac1, and the homeodomain in Nkx2-5. Zac1 is a maternally imprinted gene and is the first such gene found to be involved in heart development. Homozygous and paternally derived heterozygous mice carrying an interruption in the Zac1 locus showed decreased levels of chamber and myofilament genes, increased apoptotic cells, partially penetrant lethality and morphological defects including atrial and ventricular septal defects, and thin ventricular walls. CONCLUSIONS: Zac1 plays an essential role in the cardiac gene regulatory network. Our data provide a potential mechanistic link between Zac1 in cardiogenesis and congenital heart disease manifestations associated with genetic or epigenetic defects in an imprinted gene network.


Assuntos
Proteínas de Ciclo Celular/genética , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Cardiopatias Congênitas/genética , Coração/embriologia , Fatores de Transcrição/genética , Animais , Apoptose/genética , Fator Natriurético Atrial/genética , Fator Natriurético Atrial/metabolismo , Sítios de Ligação , Células COS , Proteínas de Ciclo Celular/metabolismo , Chlorocebus aethiops , Perfilação da Expressão Gênica/métodos , Genes Supressores de Tumor , Impressão Genômica , Idade Gestacional , Cardiopatias Congênitas/embriologia , Cardiopatias Congênitas/metabolismo , Cardiopatias Congênitas/patologia , Proteína Homeobox Nkx-2.5 , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Camundongos Mutantes , Morfogênese/genética , Mutação , Peptídeo Natriurético Tipo C/genética , Peptídeo Natriurético Tipo C/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Regiões Promotoras Genéticas , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Ratos , Fatores de Transcrição/metabolismo , Ativação Transcricional , Transfecção
4.
Nat Methods ; 7(1): 61-6, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19946277

RESUMO

Several applications of pluripotent stem cell (PSC)-derived cardiomyocytes require elimination of undifferentiated cells. A major limitation for cardiomyocyte purification is the lack of easy and specific cell marking techniques. We found that a fluorescent dye that labels mitochondria, tetramethylrhodamine methyl ester perchlorate, could be used to selectively mark embryonic and neonatal rat cardiomyocytes, as well as mouse, marmoset and human PSC-derived cardiomyocytes, and that the cells could subsequently be enriched (>99% purity) by fluorescence-activated cell sorting. Purified cardiomyocytes transplanted into testes did not induce teratoma formation. Moreover, aggregate formation of PSC-derived cardiomyocytes through homophilic cell-cell adhesion improved their survival in the immunodeficient mouse heart. Our approaches will aid in the future success of using PSC-derived cardiomyocytes for basic and clinical applications.


Assuntos
Separação Celular/métodos , Células-Tronco Embrionárias/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Miócitos Cardíacos/citologia , Coloração e Rotulagem/métodos , Animais , Animais Recém-Nascidos , Callithrix , Diferenciação Celular , Transplante de Células , Células Cultivadas , Embrião de Mamíferos/citologia , Células-Tronco Embrionárias/metabolismo , Citometria de Fluxo , Corantes Fluorescentes/análise , Coração/embriologia , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Mitocôndrias/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/transplante , Ratos , Rodaminas/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA