Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Cell Physiol ; 239(8): e31299, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38764231

RESUMO

Osteoclasts are the cells primarily responsible for inflammation-induced bone loss, as is particularly seen in rheumatoid arthritis. Increasing evidence suggests that osteoclasts formed under homeostatic versus inflammatory conditions may differ in phenotype. While microRNA-29-3p family members (miR-29a-3p, miR-29b-3p, miR-29c-3p) promote the function of RANKL-induced osteoclasts, the role of miR-29-3p during inflammatory TNF-α-induced osteoclastogenesis is unknown. We used bulk RNA-seq, histology, qRT-PCR, reporter assays, and western blot analysis to examine bone marrow monocytic cell cultures and tissue from male mice in which the function of miR-29-3p family members was decreased by expression of a miR-29-3p tough decoy (TuD) competitive inhibitor in the myeloid lineage (LysM-cre). We found that RANKL-treated monocytic cells expressing the miR-29-3p TuD developed a hypercytokinemia/proinflammatory gene expression profile in vitro, which is associated with macrophages. These data support the concept that miR-29-3p suppresses macrophage lineage commitment and may have anti-inflammatory effects. In correlation, when miR-29-3p activity was decreased, TNF-α-induced osteoclast formation was accentuated in an in vivo model of localized osteolysis and in a cell-autonomous manner in vitro. Further, miR-29-3p targets mouse TNF receptor 1 (TNFR1/Tnfrsf1a), an evolutionarily conserved regulatory mechanism, which likely contributes to the increased TNF-α signaling sensitivity observed in the miR-29-3p decoy cells. Whereas our previous studies demonstrated that the miR-29-3p family promotes RANKL-induced bone resorption, the present work shows that miR-29-3p dampens TNF-α-induced osteoclastogenesis, indicating that miR-29-3p has pleiotropic effects in bone homeostasis and inflammatory osteolysis. Our data supports the concept that the knockdown of miR-29-3p activity could prime myeloid cells to respond to an inflammatory challenge and potentially shift lineage commitment toward macrophage, making the miR-29-3p family a potential therapeutic target for modulating inflammatory response.


Assuntos
Inflamação , MicroRNAs , Osteoclastos , Osteólise , Ligante RANK , MicroRNAs/genética , MicroRNAs/metabolismo , Animais , Osteólise/genética , Osteólise/patologia , Osteólise/metabolismo , Osteoclastos/metabolismo , Osteoclastos/patologia , Camundongos , Ligante RANK/metabolismo , Ligante RANK/genética , Inflamação/genética , Inflamação/patologia , Inflamação/metabolismo , Masculino , Macrófagos/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Osteogênese/genética , Camundongos Endogâmicos C57BL , Monócitos/metabolismo
2.
Ear Nose Throat J ; 101(8): NP321-NP323, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33215535

RESUMO

Hypertrophic pachymeningitis (HP) is defined by inflammation and thickening of the dura mater, and the etiologic factors are idiopathic or secondary to various conditions. To date, HP in the internal auditory canal (IAC) has rarely been reported. There have only been 3 reports of HP in the IAC. Magnetic resonance imaging showed enhancement of along the IAC and vestibule. After antibiotic treatment, enhancement was reduced with visible seventh and eighth nerves. The patient underwent tympanomastoidectomy. To our knowledge, this is the first case of HP associated with a labyrinth fistula complicated by cholesteatoma. We report MRI image with literatures.


Assuntos
Colesteatoma , Fístula , Meningite , Doenças Vestibulares , Colesteatoma/complicações , Colesteatoma/patologia , Dura-Máter/patologia , Fístula/complicações , Fístula/patologia , Humanos , Hipertrofia/complicações , Imageamento por Ressonância Magnética , Meningite/complicações , Doenças Vestibulares/complicações
3.
Endocrinology ; 162(10)2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34192317

RESUMO

The miR-29-3p family (miR-29a, miR-29b, miR-29c) of microRNAs is increased during receptor activator of nuclear factor kappa-B ligand (RANKL)-induced osteoclastogenesis. In vivo, activation of a miR-29-3p tough decoy inhibitor in Cre recombinase under the control of the lysozyme 2 promoter-expressing cells (myeloid lineage) resulted in mice displaying enhanced trabecular and cortical bone volume because of decreased bone resorption. Calcitonin receptor (Calcr) is a miR-29 target that negatively regulates bone resorption. CALCR was significantly increased in RANKL-treated miR-29-decoy osteoclasts, and these cells were more responsive to the inhibitory effect of calcitonin on osteoclast formation. Further, cathepsin K (Ctsk), which is critical for resorption, was decreased in miR-29-decoy cells. CALCR is a Gs-coupled receptor and its activation raises cAMP levels. In turn, cAMP suppresses cathepsin K, and cAMP levels were increased in miR-29-decoy cells. siRNA-mediated knock-down of Calcr in miR-29 decoy osteoclasts allowed recovery of cathepsin K levels in these cells. Overall, using a novel knockin tough decoy mouse model, we identified a new role for miR-29-3p in bone homeostasis. In RANKL-driven osteoclastogenesis, as seen in normal bone remodeling, miR-29-3p promotes resorption. Consequently, inhibition of miR-29-3p activity in the myeloid lineage leads to increased trabecular and cortical bone. Further, this study documents an interrelationship between CALCR and CTSK in osteoclastic bone resorption, which is modulated by miR-29-3p.


Assuntos
Osso e Ossos/metabolismo , Calcitonina/metabolismo , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , Células Mieloides/metabolismo , Actinas/metabolismo , Alelos , Animais , Reabsorção Óssea , Osso Esponjoso/efeitos dos fármacos , Catepsina K/metabolismo , Diferenciação Celular/efeitos dos fármacos , Linhagem da Célula , Feminino , Homeostase , Integrases , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Muramidase/química , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Osteogênese/efeitos dos fármacos , Precursores de Proteínas , Ligante RANK/metabolismo , Microtomografia por Raio-X
4.
J Bone Miner Res ; 36(6): 1104-1116, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33567098

RESUMO

Sexual dimorphism of the skeleton is well documented. At maturity, the male skeleton is typically larger and has a higher bone density than the female skeleton. However, the underlying mechanisms for these differences are not completely understood. In this study, we examined sexual dimorphism in the formation of osteoclasts between cells from female and male mice. We found that the number of osteoclasts in bones was greater in females. Similarly, in vitro osteoclast differentiation was accelerated in female osteoclast precursor (OCP) cells. To further characterize sex differences between female and male osteoclasts, we performed gene expression profiling of cultured, highly purified, murine bone marrow OCPs that had been treated for 3 days with macrophage colony-stimulating factor (M-CSF) and receptor activator of NF-κB ligand (RANKL). We found that 125 genes were differentially regulated in a sex-dependent manner. In addition to genes that are contained on sex chromosomes, transcriptional sexual dimorphism was found to be mediated by genes involved in innate immune and inflammatory response pathways. Furthermore, the NF-κB-NFATc1 axis was activated earlier in female differentiating OCPs, which partially explains the differences in transcriptomic sexual dimorphism in these cells. Collectively, these findings identify multigenic sex-dependent intrinsic difference in differentiating OCPs, which results from an altered response to osteoclastogenic stimulation. In humans, these differences could contribute to the lower peak bone mass and increased risk of osteoporosis that females demonstrate relative to males. © 2021 American Society for Bone and Mineral Research (ASBMR).


Assuntos
Osteoclastos , Caracteres Sexuais , Animais , Células da Medula Óssea , Diferenciação Celular , Células Cultivadas , Feminino , Fator Estimulador de Colônias de Macrófagos , Masculino , Camundongos , Fatores de Transcrição NFATC , Osteogênese , Ligante RANK
5.
J Bone Miner Res ; 35(4): 789-800, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31880824

RESUMO

The Rac1-specific guanosine triphosphatase (GTPase)-activating protein Slit-Robo GAP2 (Srgap2) is dramatically upregulated during RANKL-induced osteoclastogenesis. Srgap2 interacts with the cell membrane to locally inhibit activity of Rac1. In this study, we determined the role of Srgap2 in the myeloid lineage on bone homeostasis and the osteoclastic response to TNFα treatment. The bone phenotype of mice specifically lacking Srgap2 in the myeloid lineage (Srgap2 f/f :LysM-Cre; Srgap2 conditional knockout [cKO]) was investigated using histomorphometric analysis, in vitro cultures and Western blot analysis. Similar methods were used to determine the impact of TNFα challenge on osteoclast formation in Srgap2 cKO mice. Bone parameters in male Srgap2 cKO mice were unaffected. However, female cKO mice displayed higher trabecular bone volume due to increased osteoblast surface and bone formation rate, whereas osteoclastic parameters were unaltered. In vitro, cells from Srgap2 cKO had strongly enhanced Rac1 activation, but RANKL-induced osteoclast formation was unaffected. In contrast, conditioned medium from Srgap2 cKO osteoclasts promoted osteoblast differentiation and had increased levels of the bone anabolic clastokine SLIT3, providing a possible mechanism for increased bone formation in vivo. Rac1 is rapidly activated by the inflammatory cytokine TNFα. Supracalvarial injection of TNFα caused an augmented osteoclastic response in Srgap2 cKO mice. In vitro, cells from Srgap2 cKO mice displayed increased osteoclast formation in response to TNFα. We conclude that Srgap2 plays a prominent role in limiting osteoclastogenesis during inflammation through Rac1, and restricts expression of the paracrine clastokine SLIT3, a positive regulator of bone formation. © 2019 American Society for Bone and Mineral Research.


Assuntos
Reabsorção Óssea , Proteínas Ativadoras de GTPase , Osteogênese , Animais , Osso e Ossos , Diferenciação Celular , Feminino , Proteínas Ativadoras de GTPase/fisiologia , Masculino , Proteínas de Membrana , Camundongos , Neuropeptídeos , Osteoclastos , Ligante RANK , Proteínas rac1 de Ligação ao GTP
6.
J Bone Miner Res ; 35(1): 130-142, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31487060

RESUMO

CD55 is a glycosylphosphatidylinositol (GPI)-anchored protein that regulates complement-mediated and innate and adaptive immune responses. Although CD55 is expressed in various cell types in the bone marrow, its role in bone has not been investigated. In the current study, trabecular bone volume measured by µCT in the femurs of CD55KO female mice was increased compared to wild type (WT). Paradoxically, osteoclast number was increased in CD55KO with no differences in osteoblast parameters. Osteoclasts from CD55KO mice exhibited abnormal actin-ring formation and reduced bone-resorbing activity. Moreover, macrophage colony-stimulating factor (M-CSF) and receptor activator of NF-κB ligand (RANKL) treatment failed to activate Rac guanosine triphosphatase (GTPase) in CD55KO bone marrow macrophage (BMM) cells. In addition, apoptotic caspases activity was enhanced in CD55KO, which led to the poor survival of mature osteoclasts. Our results imply that CD55KO mice have increased bone mass due to defective osteoclast resorbing activity resulting from reduced Rac activity in osteoclasts. We conclude that CD55 plays an important role in the survival and bone-resorption activity of osteoclasts through regulation of Rac activity. © 2019 American Society for Bone and Mineral Research.


Assuntos
Reabsorção Óssea , Osteoclastos , Animais , Células da Medula Óssea , Diferenciação Celular , Feminino , Fator Estimulador de Colônias de Macrófagos , Camundongos , Osteoblastos , Ligante RANK , Transdução de Sinais
7.
J Immunol ; 203(1): 105-116, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31109956

RESUMO

We found that protease-activated receptor 1 (PAR1) was transiently induced in cultured osteoclast precursor cells. Therefore, we examined the bone phenotype and response to resorptive stimuli of PAR1-deficient (knockout [KO]) mice. Bones and bone marrow-derived cells from PAR1 KO and wild-type (WT) mice were assessed using microcomputed tomography, histomorphometry, in vitro cultures, and RT-PCR. Osteoclastic responses to TNF-α (TNF) challenge in calvaria were analyzed with and without a specific neutralizing Ab to the Notch2-negative regulatory region (N2-NRR Ab). In vivo under homeostatic conditions, there were minimal differences in bone mass or bone cells between PAR1 KO and WT mice. However, PAR1 KO myeloid cells demonstrated enhanced osteoclastogenesis in response to receptor activator of NF-κB ligand (RANKL) or the combination of RANKL and TNF. Strikingly, in vivo osteoclastogenic responses of PAR1 KO mice to TNF were markedly enhanced. We found that N2-NRR Ab reduced TNF-induced osteoclastogenesis in PAR1 KO mice to WT levels without affecting WT responses. Similarly, in vitro N2-NRR Ab reduced RANKL-induced osteoclastogenesis in PAR1 KO cells to WT levels without altering WT responses. We conclude that PAR1 functions to limit Notch2 signaling in responses to RANKL and TNF and moderates osteoclastogenic response to these cytokines. This effect appears, at least in part, to be cell autonomous because enhanced osteoclastogenesis was seen in highly purified PAR1 KO osteoclast precursor cells. It is likely that this pathway is involved in regulating the response of bone to diseases associated with inflammatory signals.


Assuntos
Doenças Ósseas/imunologia , Inflamação/imunologia , Osteoclastos/fisiologia , Receptor Notch2/metabolismo , Receptor PAR-1/metabolismo , Animais , Anticorpos Neutralizantes/metabolismo , Células Cultivadas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Osteogênese/genética , Ligante RANK/metabolismo , Receptor Notch2/imunologia , Receptor PAR-1/genética , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo
8.
J Biol Chem ; 291(39): 20643-60, 2016 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-27507811

RESUMO

The signaling pathway downstream of stimulation of receptor activator of nuclear factor κB (RANK) by RANK ligand is crucial for osteoclastogenesis. RANK recruits TNF receptor-associated factor 6 (TRAF6) to TRAF6-binding sites (T6BSs) in the RANK cytoplasmic tail (RANKcyto) to trigger downstream osteoclastogenic signaling cascades. RANKcyto harbors an additional highly conserved domain (HCR) that also activates crucial signaling during RANK-mediated osteoclastogenesis. However, the functional cross-talk between T6BSs and the HCR in the RANK signaling complex remains unclear. To characterize the cross-talk between T6BSs and the HCR, we screened TRAF6-interacting proteins using a proteomics approach. We identified Vav3 as a novel TRAF6 binding partner and evaluated the functional importance of the TRAF6-Vav3 interaction in the RANK signaling complex. We demonstrated that the coiled-coil domain of TRAF6 interacts directly with the Dbl homology domain of Vav3 to form the RANK signaling complex independent of the TRAF6 ubiquitination pathway. TRAF6 is recruited to the RANKcyto mutant, which lacks T6BSs, via the Vav3 interaction; conversely, Vav3 is recruited to the RANKcyto mutant, which lacks the IVVY motif, via the TRAF6 interaction. Finally, we determined that the TRAF6-Vav3 interaction resulting from cross-talk between T6BSs and the IVVY motif in RANKcyto enhances downstream NF-κB, MAPK, and NFATc1 activation by further strengthening TRAF6 signaling, thereby inducing RANK-mediated osteoclastogenesis. Thus, Vav3 is a novel TRAF6 interaction partner that functions in the activation of cooperative signaling between T6BSs and the IVVY motif in the RANK signaling complex.


Assuntos
Sistema de Sinalização das MAP Quinases/fisiologia , Complexos Multiproteicos/metabolismo , Osteoclastos/metabolismo , Proteínas Proto-Oncogênicas c-vav/metabolismo , Receptor Ativador de Fator Nuclear kappa-B/metabolismo , Fator 6 Associado a Receptor de TNF/metabolismo , Motivos de Aminoácidos , Linhagem Celular , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Complexos Multiproteicos/genética , Fatores de Transcrição NFATC/genética , Fatores de Transcrição NFATC/metabolismo , Osteoclastos/citologia , Proteínas Proto-Oncogênicas c-vav/genética , Receptor Ativador de Fator Nuclear kappa-B/genética , Fator 6 Associado a Receptor de TNF/genética , Ubiquitinação/fisiologia
9.
Arthritis Rheumatol ; 68(5): 1301-13, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26663852

RESUMO

OBJECTIVE: CD97, a member of the 7-transmembrane epidermal growth factor family of adhesion G protein-coupled receptors, is expressed on various cell types. This study was undertaken to elucidate the functions of CD97 in bone and inflammation in an experimental mouse model, by examining the effect of CD97 on osteoclastogenesis in vitro, characterizing the skeletal phenotype of CD97-deficient (CD97-knockout [KO]) mice, and assessing the responses to tumor necrosis factor (TNF) treatment. METHODS: Femoral tissue and bone marrow (BM)-derived cells from CD97-KO and wild-type (WT) mice were assessed using histomorphometric analyses, in vitro cultures, and reverse transcription-polymerase chain reaction. Serum cytokine and chemokine levels in the presence or absence of TNF challenge were analyzed by multiplex assay. RESULTS: In cultures of mouse BM-derived macrophages in vitro, RANKL induced the expression of CD97. In vivo, the trabecular bone volume of the femurs of female CD97-KO mice was increased, and this was associated with a decrease in the number of osteoclasts. Compared to WT mice, CD97-KO mice had a reduced potential to form osteoclast-like cells in vitro. Furthermore, TNF treatment augmented the formation of osteoclasts in the calvaria of CD97-KO mice in vivo, by increasing the production of RANKL and other cytokines and chemokines and by reducing the production of osteoprotegerin by calvarial cells. CONCLUSION: These findings demonstrate that CD97 is a positive regulator of osteoclast-like cell differentiation, a mechanism that influences bone homeostasis. However, the presence of CD97 may be essential to suppress the initial osteoclastogenesis that occurs in response to acute and local inflammatory stimuli.


Assuntos
Osso Esponjoso/diagnóstico por imagem , Fêmur/diagnóstico por imagem , Glicoproteínas de Membrana/genética , Osteogênese/genética , Crânio/diagnóstico por imagem , Fator de Necrose Tumoral alfa/farmacologia , Animais , Western Blotting , Osso e Ossos/diagnóstico por imagem , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/metabolismo , Osso e Ossos/patologia , Osso Esponjoso/efeitos dos fármacos , Osso Esponjoso/imunologia , Osso Esponjoso/patologia , Citocinas/imunologia , Feminino , Fêmur/efeitos dos fármacos , Fêmur/metabolismo , Fêmur/patologia , Fator Estimulador de Colônias de Macrófagos/farmacologia , Macrófagos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Knockout , Osteogênese/efeitos dos fármacos , Osteogênese/imunologia , Ligante RANK/farmacologia , Receptores Acoplados a Proteínas G , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Crânio/efeitos dos fármacos , Crânio/patologia , Microtomografia por Raio-X
10.
J Biol Chem ; 290(15): 9660-73, 2015 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-25716317

RESUMO

The signaling pathway downstream of TNF receptor (TNFR) is involved in the induction of a wide range of cellular processes, including cell proliferation, activation, differentiation, and apoptosis. TNFR-associated factor 2 (TRAF2) is a key adaptor molecule in TNFR signaling complexes that promotes downstream signaling cascades, such as nuclear factor-κB (NF-κB) and mitogen-activated protein kinase activation. TRAF-interacting protein (TRIP) is a known cellular binding partner of TRAF2 and inhibits TNF-induced NF-κB activation. Recent findings that TRIP plays a multifunctional role in antiviral response, cell proliferation, apoptosis, and embryonic development have increased our interest in exploring how TRIP can affect the TNFR-signaling pathway on a molecular level. In our current study, we demonstrated that TRIP is negatively involved in the TNF-induced inflammatory response through the down-regulation of proinflammatory cytokine production. Here, we demonstrated that the TRAF2-TRIP interaction inhibits Lys(63)-linked TRAF2 ubiquitination by inhibiting TRAF2 E3 ubiquitin (Ub) ligase activity. The TRAF2-TRIP interaction inhibited the binding of sphingosine 1-phosphate, which is a cofactor of TRAF2 E3 Ub ligase, to the TRAF2 RING domain. Finally, we demonstrated that TRIP functions as a negative regulator of proinflammatory cytokine production by inhibiting TNF-induced NF-κB activation. These results indicate that TRIP is an important cellular regulator of the TNF-induced inflammatory response.


Assuntos
Lisofosfolipídeos/metabolismo , Esfingosina/análogos & derivados , Fator 2 Associado a Receptor de TNF/metabolismo , Peptídeos e Proteínas Associados a Receptores de Fatores de Necrose Tumoral/metabolismo , Ubiquitina/metabolismo , Sítios de Ligação/genética , Citocinas/genética , Citocinas/metabolismo , Expressão Gênica , Células HEK293 , Células HeLa , Humanos , Immunoblotting , Lisina/genética , Lisina/metabolismo , NF-kappa B/metabolismo , Ligação Proteica , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos , Esfingosina/metabolismo , Fator 2 Associado a Receptor de TNF/genética , Peptídeos e Proteínas Associados a Receptores de Fatores de Necrose Tumoral/genética , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Ubiquitinação
11.
J Clin Immunol ; 32(6): 1360-71, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22711011

RESUMO

PURPOSE: Osteoclasts (OCs) are multinucleated giant cells that resorb bone matrix. Accelerated bone destruction by OCs might cause several metabolic bone-related diseases, such as osteoporosis and inflammatory bone loss. D-pinitol (3-O-methyl-D-chiro-inositol) is a prominent component of dietary legumes and is actively converted to D-chiro-inositol, which is a putative insulin-like mediator. In this study, we analyzed the effect of D-chiro-inositol on OC differentiation. METHODS: To analyze the role of D-chiro-inositol on OC differentiation, we examined OC differentiation by the three types of osteoclastogenesis cultures with tartrate-resistant acid phosphatase (TRAP) staining and solution assay. Then, we carried out cell fusion assay with purified TRAP(+) mononuclear OC precursors. Finally, we analyzed the effect of D-chiro-inositol on OC maker expression in response to the regulation of nuclear factor of activated T cells c1 (NFATc1). RESULTS: We demonstrated that D-chiro-inositol acts as an inhibitor of receptor activator of NF-κB ligand-induced OC differentiation. The formation of multinucleated OCs by cell-cell fusion is reduced by treatment with D-chiro-inositol in a dose-dependent manner. In addition, we demonstrated that D-chiro-inositol inhibits the expression of several osteoclastogenic genes by down-regulating NFATc1. CONCLUSIONS: We have shown that D-chiro-inositol is negatively involved in osteoclastogenesis through the inhibition of multinucleated OC formation by cell-cell fusion. The expression of NFATc1 was significantly down-regulated by D-chiro-inositol in OCs and consequently, the expression of OC marker genes was significantly reduced. Hence, these results show that D-chiro-inositol might be a good candidate to treat inflammatory bone-related diseases or secondary osteoporosis in diabetes mellitus.


Assuntos
Regulação para Baixo/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Células Gigantes/efeitos dos fármacos , Inositol/farmacologia , Fatores de Transcrição NFATC/genética , Osteoclastos/efeitos dos fármacos , Ligante RANK/genética , Animais , Biomarcadores/metabolismo , Diferenciação Celular/efeitos dos fármacos , Fusão Celular , Linhagem Celular , Relação Dose-Resposta a Droga , Células Gigantes/patologia , Humanos , Inositol/análogos & derivados , Camundongos , Fatores de Transcrição NFATC/metabolismo , Osteoclastos/citologia , Osteoclastos/metabolismo , Ligante RANK/metabolismo , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA