Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cancer Commun (Lond) ; 44(1): 47-75, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38133457

RESUMO

BACKGROUND: Transmembrane 4 L six family member 5 (TM4SF5) translocates subcellularly and functions metabolically, although it is unclear how intracellular TM4SF5 translocation is linked to metabolic contexts. It is thus of interests to understand how the traffic dynamics of TM4SF5 to subcellular endosomal membranes are correlated to regulatory roles of metabolisms. METHODS: Here, we explored the metabolic significance of TM4SF5 localization at mitochondria-lysosome contact sites (MLCSs), using in vitro cells and in vivo animal systems, via approaches by immunofluorescence, proximity labelling based proteomics analysis, organelle reconstitution etc. RESULTS: Upon extracellular glucose repletion following depletion, TM4SF5 became enriched at MLCSs via an interaction between mitochondrial FK506-binding protein 8 (FKBP8) and lysosomal TM4SF5. Proximity labeling showed molecular clustering of phospho-dynamic-related protein I (DRP1) and certain mitophagy receptors at TM4SF5-enriched MLCSs, leading to mitochondrial fission and autophagy. TM4SF5 bound NPC intracellular cholesterol transporter 1 (NPC1) and free cholesterol, and mediated export of lysosomal cholesterol to mitochondria, leading to impaired oxidative phosphorylation but intact tricarboxylic acid (TCA) cycle and ß-oxidation. In mouse models, hepatocyte Tm4sf5 promoted mitophagy and cholesterol transport to mitochondria, both with positive relations to liver malignancy. CONCLUSIONS: Our findings suggested that TM4SF5-enriched MLCSs regulate glucose catabolism by facilitating cholesterol export for mitochondrial reprogramming, presumably while hepatocellular carcinogenesis, recapitulating aspects for hepatocellular carcinoma metabolism with mitochondrial reprogramming to support biomolecule synthesis in addition to glycolytic energetics.


Assuntos
Proteínas de Membrana , Mitocôndrias , Animais , Camundongos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Movimento Celular/fisiologia , Mitocôndrias/metabolismo , Lisossomos , Colesterol/metabolismo
2.
BMB Rep ; 55(12): 609-614, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36104259

RESUMO

Mutation of the gene for adenomatous polyposis coli (APC), as seen in ApcMin/+ mice, leads to intestinal adenomas and carcinomas via stabilization of ß-catenin. Transmembrane 4 L six family member 5 (TM4SF5) is involved in the development of non-alcoholic fatty liver disease, fibrosis, and cancer. However, the functional linkage between TM4SF5 and APC or ß-catenin has not been investigated for pathological outcomes. After interbreeding ApcMin/+ with TM4SF5-overexpressing transgenic (TgTM4SF5) mice, we explored pathological outcomes in the intestines and livers of the offspring. The intestines of 26-week-old dual-transgenic mice (ApcMin/+:TgTM4SF5) had intramucosal adenocarcinomas beyond the single-crypt adenomas in ApcMin/+ mice. Additional TM4SF5 overexpression increased the stabilization of ß-catenin via reduced glycogen synthase kinase 3ß (GSK3ß) phosphorylation on Ser9. Additionally, the livers of the dualtransgenic mice showed distinct sinusoidal dilatation and features of hepatic portal hypertension associated with fibrosis, more than did the relatively normal livers in ApcMin/+ mice. Interestingly, TM4SF5 overexpression in the liver was positively linked to increased GSK3ß phosphorylation (opposite to that seen in the colon), ß-catenin level, and extracellular matrix (ECM) protein expression, indicating fibrotic phenotypes. Consistent with these results, 78-week-old TgTM4SF5 mice similarly had sinusoidal dilatation, immune cell infiltration, and fibrosis. Altogether, systemic overexpression of TM4SF5 aggravates pathological abnormalities in both the colon and the liver. [BMB Reports 2022; 55(12): 609-614].


Assuntos
Hipertensão Portal , Proteínas de Membrana , Animais , Camundongos , Proteína da Polipose Adenomatosa do Colo/genética , Proteína da Polipose Adenomatosa do Colo/metabolismo , beta Catenina/metabolismo , Fibrose , Glicogênio Sintase Quinase 3 beta , Proteínas de Membrana/genética , Camundongos Transgênicos
3.
Mol Ther Oncolytics ; 24: 452-466, 2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35211652

RESUMO

The transmembrane 4 L six family member 5 (TM4SF5) is aberrantly expressed in hepatocellular and colorectal cancers, and has been implicated in tumor progression, suggesting that it could serve as a novel therapeutic target. Previously, we screened a murine antibody phage-display library to generate a novel monoclonal antibody, Ab27, that is specific to the extracellular loop 2 of TM4SF5. In this study, we evaluated the effects of chimeric Ab27 using cancer cells expressing endogenous TM4SF5 or stably overexpressing TM4SF5 in vivo and in vitro. Monotherapy with Ab27 significantly decreased tumor growth in liver and colon cancer xenograft models, including a sorafenib-resistant model, and decreased the phosphorylation of focal adhesion kinase (FAK), p27Kip1, and signal transducer and activator of transcription 3 (STAT3). No general Ab27 toxicity was observed in vivo. Combination treatment with Ab27 and sorafenib or doxorubicin exerted higher antitumor activity than monotherapy. In addition, we humanized the Ab27 sequence by the complementarity-determining region (CDR) grafting method. The humanized antibody Ab27-hz9 had reduced immunogenicity but exhibited target recognition and antitumor activity comparable with those of Ab27. Both Ab27 and Ab27-hz9 efficiently targeted tumor cells expressing TM4SF5 in vivo. These observations strongly support the further development of Ab27-hz9 as a novel therapeutic agent against liver and colorectal cancers.

4.
Cell Mol Life Sci ; 79(1): 49, 2021 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-34921636

RESUMO

Aberrant extracellular matrix and immune cell alterations within the tumor microenvironment promote the pathological progression of liver carcinogenesis. Although transmembrane 4 L six family member 5 (TM4SF5) is involved in liver fibrosis and cancer, its mechanism avoiding immune surveillance during carcinogenesis remains unknown. We investigated how TM4SF5-mediated signaling caused immune evasion using in vitro primary cells and in vivo liver tissues from genetic or chemically induced mouse models. TM4SF5-transgenic and diethylnitrosamine (DEN)-induced liver cancer mouse models exhibited fibrotic and cancerous livers, respectively, with enhanced TM4SF5, pY705STAT3, collagen I, and laminin γ2 levels. These TM4SF5-mediated effects were abolished by TM4SF5 inhibitor, 4'-(p-toluenesulfonylamido)-4-hydroxychalcone (TSAHC). TM4SF5-dependent tumorigenesis involved natural killer (NK) cell exhaustion-like phenotypes including the reduction of NK cell number or function, which were blocked with TSAHC treatment. TM4SF5 expression in cancer cells downregulated stimulatory ligands and receptors for NK cell cytotoxicity, including SLAMF6, SLAMF7, MICA/B, and others. TM4SF5 suppression or inhibition reduced STAT3 signaling activity and recovered the receptor levels and NK cell surveillance, leading to reduced fibrotic and cancerous phenotypes, and longer survival. Altogether, these findings suggest that TM4SF5-mediated STAT3 activity for extracellular matrix modulation is involved in the progression of liver disease to HCC and that TM4SF5 appears to suppress NK cells during liver carcinogenesis.


Assuntos
Carcinoma Hepatocelular/imunologia , Células Matadoras Naturais/imunologia , Neoplasias Hepáticas/imunologia , Proteínas de Membrana/fisiologia , Microambiente Tumoral/imunologia , Animais , Linhagem Celular Tumoral , Humanos , Células Matadoras Naturais/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
5.
Cell Rep ; 37(7): 110018, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34788612

RESUMO

Chronic injury to hepatocytes results in inflammation, steatohepatitis, fibrosis, and nonalcoholic fatty liver disease (NAFLD). The tetraspanin TM4SF5 is implicated in fibrosis and cancer. We investigate the role of TM4SF5 in communication between hepatocytes and macrophages (MΦs) and its possible influence on the inflammatory microenvironment that may lead to NAFLD. TM4SF5 induction in differentiated MΦs promotes glucose uptake, glycolysis, and glucose sensitivity, leading to M1-type MΦ activation. Activated M1-type MΦs secrete pro-inflammatory interleukin-6 (IL-6), which induces the secretion of CCL20 and CXCL10 from TM4SF5-positive hepatocytes. Although TM4SF5-dependent secretion of these chemokines enhances glycolysis in M0 MΦs, further chronic exposure reprograms MΦs for an increase in the proportion of M2-type MΦs in the population, which may support diet- and chemical-induced NAFLD progression. We suggest that TM4SF5 expression in MΦs and hepatocytes is critically involved in modulating the inflammatory environment during NAFLD progression.


Assuntos
Hepatócitos/metabolismo , Macrófagos/metabolismo , Proteínas de Membrana/metabolismo , Animais , Quimiocinas/metabolismo , Citocinas/metabolismo , Hepatócitos/patologia , Inflamação/metabolismo , Fígado/imunologia , Fígado/patologia , Macrófagos/imunologia , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo
6.
Arch Biochem Biophys ; 710: 109004, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34364885

RESUMO

Transmembrane 4 L six family member 5 (TM4SF5) is involved in nonalcoholic steatosis and further aggravation of liver disease. However, its mechanism for regulating FA accumulation is unknown. We investigated how TM4SF5 in hepatocytes affected FA accumulation during acute FA supply. TM4SF5-expressing hepatocytes and mouse livers accumulated less FAs, compared with those of TM4SF5 deficiency or inactivation. Binding of TM4SF5 to SLC27A2 increased gradually upon acute FA treatment, whereas TM4SF5 constitutively bound SLC27A5. Suppression of either SLC27A2 or SLC27A5 in hepatocytes expressing TM4SF5 differentially modulated initial and maximal FA uptake levels for a fast turnover of fatty acid. Altogether, TM4SF5 negatively modulates FA accumulation into hepatocytes via association with the transporters for an energy homeostasis, when FA are supplied acutely.


Assuntos
Proteínas de Transporte de Ácido Graxo/metabolismo , Ácidos Graxos/metabolismo , Hepatócitos/metabolismo , Proteínas de Membrana/metabolismo , Animais , Transporte Biológico Ativo , Linhagem Celular , Metabolismo Energético , Proteínas de Transporte de Ácido Graxo/antagonistas & inibidores , Proteínas de Transporte de Ácido Graxo/genética , Células HEK293 , Células Hep G2 , Humanos , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Modelos Biológicos , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Consumo de Oxigênio , RNA Interferente Pequeno/genética
7.
J Nanosci Nanotechnol ; 21(8): 4492-4497, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-33714350

RESUMO

Hydrophobic ceramic coatings are used for a variety of applications. Generally, hydrophobic coating surfaces are obtained by reducing the surface energy of the coating material or by forming a highly textured surface. Reducing the surface energy of the coating material requires additional costs and processing and changes the surface properties of the ceramic coating. In this study, we introduce a simple method to improve the hydrophobicity of ceramic coatings by implementing a textured surface without chemical modification of the surface. The ceramic coating solution was first prepared by adding cellulose nanofibers (CNFs) and then applied to a polypropylene (PP) substrate. The surface roughness increased as the amount of added CNFs increased, increasing the water contact angle of the surface. When the amount of CNFs added was corresponding to 10% of the solid content, the surface roughness average of the area was 43.8 µm. This is an increase of approximately 140% from 3.1 µm (the value of the surface roughness of the surface without added CNFs). In addition, the water contact angle of the coating with added CNF increased to 145.0°, which was 46% higher than that without the CNFs. The hydrophobicity of ceramic coatings with added CNFs was better because of changes in the surface topography. After coating and drying, the CNFs randomly accumulated inside the ceramic coating layer, forming a textured surface. Thus, hydrophobicity was improved by implementing a rugged ceramic surface without revealing the surface of the CNFs inside the ceramic layer.

8.
J Pathol ; 253(1): 55-67, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32918742

RESUMO

Nonalcoholic fatty liver disease is a chronic condition involving steatosis, steatohepatitis and fibrosis, and its progression remains unclear. Although the tetraspanin transmembrane 4 L six family member 5 (TM4SF5) is involved in hepatic fibrosis and cancer, its role in nonalcoholic steatohepatitis (NASH) progression is unknown. We investigated the contribution of TM4SF5 to liver pathology using transgenic and KO mice, diet- or drug-treated mice, in vitro primary cells, and in human tissue. TM4SF5-overexpressing mice exhibited nonalcoholic steatosis and NASH in an age-dependent manner. Initially, TM4SF5-positive hepatocytes and liver tissue exhibited lipid accumulation, decreased Sirtuin 1 (SIRT1), increased sterol regulatory-element binding proteins (SREBPs) and inactive STAT3 via suppressor of cytokine signaling (SOCS)1/3 upregulation. In older mice, TM4SF5 promoted inflammatory factor induction, SIRT1 expression and STAT3 activity, but did not change SOCS or SREBP levels, leading to active STAT3-mediated ECM production for NASH progression. A TM4SF5-associated increase in chemokines promoted SIRT1 expression and progression to NASH with fibrosis. Suppression of the chemokine CCL20 reduced immune cell infiltration and ECM production. Liver tissue from high-fat diet- or CCl4 -treated mice and human patients exhibited TM4SF5-dependent steatotic or steatohepatitic livers with links between TM4SF5-mediated SIRT1 modulation and SREBP or SOCS/STAT3 signaling axes. TM4SF5-mediated STAT3 activation in fibrotic NASH livers increased collagen I and laminin γ2. Both collagen I α1 and laminin γ2 suppression resulted in reduced SIRT1 and active STAT3, but no change in SREBP1 or SOCS, and abolished CCl4 -mediated mouse liver damage. TM4SF5-mediated signaling pathways that involve SIRT1, SREBPs and SOCS/STAT3 promoted progression to NASH. Therefore, TM4SF5 and its downstream effectors may be promising therapeutic targets to treat nonalcoholic fatty liver disease. © 2020 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/enzimologia , Matriz Extracelular/enzimologia , Metabolismo dos Lipídeos , Cirrose Hepática Experimental/enzimologia , Fígado/enzimologia , Proteínas de Membrana/metabolismo , Hepatopatia Gordurosa não Alcoólica/enzimologia , Sirtuína 1/metabolismo , Animais , Tetracloreto de Carbono , Linhagem Celular Tumoral , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/genética , Doença Hepática Induzida por Substâncias e Drogas/patologia , Dieta Hiperlipídica , Progressão da Doença , Matriz Extracelular/patologia , Humanos , Fígado/patologia , Cirrose Hepática Experimental/induzido quimicamente , Cirrose Hepática Experimental/genética , Cirrose Hepática Experimental/patologia , Proteínas de Membrana/genética , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/patologia , Transdução de Sinais
9.
Exp Mol Med ; 50(4): 1-14, 2018 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-29657326

RESUMO

Vitamin D, traditionally known as an essential nutrient, is a precursor of a potent steroid hormone that regulates a broad spectrum of physiological processes. In addition to its classical roles in bone metabolism, epidemiological, preclinical, and cellular research during the last decades, it revealed that vitamin D may play a key role in the prevention and treatment of many extra-skeletal diseases such as cancer. Vitamin D, as a prohormone, undergoes two-step metabolism in liver and kidney to produce a biologically active metabolite, calcitriol, which binds to the vitamin D receptor (VDR) for the regulation of expression of diverse genes. In addition, recent studies have revealed that vitamin D can also be metabolized and activated through a CYP11A1-driven non-canonical metabolic pathway. Numerous anticancer properties of vitamin D have been proposed, with diverse effects on cancer development and progression. However, accumulating data suggest that the metabolism and functions of vitamin D are dysregulated in many types of cancer, conferring resistance to the antitumorigenic effects of vitamin D and thereby contributing to the development and progression of cancer. Thus, understanding dysregulated vitamin D metabolism and function in cancer will be critical for the development of promising new strategies for successful vitamin D-based cancer therapy.


Assuntos
Neoplasias/metabolismo , Vitamina D/metabolismo , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Hormônios/metabolismo , Humanos , Redes e Vias Metabólicas/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/patologia , Receptores de Calcitriol/metabolismo , Vitamina D/farmacologia , Vitamina D/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA