Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Quant Imaging Med Surg ; 14(2): 1673-1685, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38415151

RESUMO

Background: Myelin water imaging (MWI) is a myelin-specific technique, which has great potential for the assessment of demyelination and remyelination. This study develops a new MWI method, which employs a short repetition time adiabatic inversion recovery (STAIR) technique in combination with a commonly used fast spin echo (FSE) sequence and provides quantification of myelin water (MW) fractions. Method: Whole-brain MWI was performed using the short repetition time adiabatic inversion recovery prepared-fast spin echo (STAIR-FSE) technique on eight healthy volunteers (mean age: 38±14 years, four-males) and seven patients with multiple sclerosis (MS) (mean age: 53.7±8.7 years, two-males) on a 3T clinical magnetic resonance imaging scanner. To facilitate the quantification of apparent myelin water fraction (aMWF), a proton density-weighted FSE was also used during the scans to allow total water imaging. The aMWF measurements of MS lesions and normal-appearing white matter (NAWM) regions in MS patients were compared with those measured in normal white matter (NWM) regions in healthy volunteers. Both the analysis of variance (ANOVA) test and paired comparison were performed for the comparison. Results: The MW in the whole-brain was selectively imaged and quantified using the STAIR-FSE technique in all participants. MS lesions showed much lower signal intensities than NAWM in the STAIR-FSE images. ANOVA analysis revealed a significant difference in the aMWF measurements between the three groups. Moreover, the aMWF measurements in MS lesions were significantly lower than those in both NWM of healthy volunteers and NAWM of MS patients. Lower aMWF measurements in NAWM were also found in comparison with those in NWM. Conclusions: The STAIR-FSE technique is capable of measuring aMWF values for the indirect detection of myelin loss in MS, thus facilitating clinical translation of whole brain MWI and quantification, which show great potential for the detection and evaluation of changes in myelin in the brain of patients with MS for future larger cohort studies.

2.
Bioconjug Chem ; 30(10): 2502-2518, 2019 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-31536323

RESUMO

Unlike conventional 1H magnetic resonance imaging (MRI), 19F MRI features unambiguous detection of fluorine spins due to negligible background signals. Therefore, it is considered a promising noninvasive and selective imaging method for the diagnosis of cancers and other diseases. For 19F MRI, fluorine-rich molecules such as perfluorocarbons (PFC) have been formulated into nanoemulsions and used as its tracer agent. Along with advancements in other types of nanoparticles as targeted theranostics and stimuli-triggered probes and combined with the advantages of 19F MRI, PFC nanoemulsions are being empowered with these additional functionalities and becoming a promising theranostic platform. In this Review, we provide an overview of fluorine-based materials for sensitive 19F MRI of biological and pathological conditions. In particular, we describe designs and applications of recently reported stimuli-responsive and theranostic 19F MRI probes. Finally, challenges and future perspectives regarding the further development of 19F MRI probes for their clinical applications are described.


Assuntos
Imagem por Ressonância Magnética de Flúor-19/métodos , Sondas Moleculares/uso terapêutico , Animais , Flúor/química , Flúor/uso terapêutico , Humanos , Sondas Moleculares/química
3.
Radiology ; 287(2): 476-484, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29369752

RESUMO

Purpose To investigate whether high-intensity focused ultrasound (HIFU)-induced macrophage infiltration could be longitudinally monitored with fluorine 19 (19F) magnetic resonance (MR) imaging in a quantitative manner. Materials and Methods BALB/c mice were subcutaneously inoculated with 4T1 cells and were separated into three groups: untreated mice (control, n = 9), HIFU-treated mice (HIFU, n = 9), and HIFU- and clodronate-treated mice (HIFU+Clod, n = 9). Immediately after HIFU treatment, all mice were intravenously given perfluorocarbon (PFC) emulsion. MR imaging examinations were performed 2, 4, 7, 10, and 14 days after HIFU treatment. Two-way repeated measures analysis of variance was used to analyze the changes in 19F signal over time and differences between groups. Histologic examinations were performed to confirm in vivo data. Results Fluorine 19 signals were detected at the rims of tumors and the peripheries of ablated lesions. Mean 19F signal in tumors was significantly higher in HIFU-treated mice than in control mice up to day 4 (0.82 ± 0.26 vs 0.42 ± 0.17, P < .001). Fluorine 19 signals were higher in the HIFU+Clod group than in the control group from day 4 (0.82 ± 0.23, P < .001) to day 14 (0.55 ± 0.16 vs 0.28 ± 0.06, P < .05). Histologic examination revealed macrophage infiltration around ablated lesions. Immunofluorescence staining confirmed PFC labeling of macrophages. Conclusion Fluorine 19 MR imaging can longitudinally capture and quantify HIFU-induced macrophage infiltration in preclinical tumor models. © RSNA, 2018 Online supplemental material is available for this article.


Assuntos
Linhagem Celular Tumoral/efeitos dos fármacos , Flúor/farmacocinética , Ablação por Ultrassom Focalizado de Alta Intensidade , Inflamação/patologia , Macrófagos/efeitos dos fármacos , Neoplasias Experimentais/patologia , Animais , Sobrevivência Celular , Modelos Animais de Doenças , Imunofluorescência , Inflamação/diagnóstico por imagem , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias Experimentais/diagnóstico por imagem
4.
Theranostics ; 7(3): 562-572, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28255351

RESUMO

Perfluorocarbon nanoemulsions (PFCNEs) have recently been undergoing rigorous study to investigate their ability to improve the therapeutic efficacy of tumor ablation by high intensity focused ultrasound (HIFU). For precise control of PFCNE delivery and thermal ablation, their accumulation and distribution in a tumor should be quantitatively analyzed. Here, we used fluorine-19 (19F) magnetic resonance imaging (MRI) to quantitatively track PFCNE accumulation in a tumor, and analyzed how intra-tumoral PFCNE quantities affect the therapeutic efficacy of HIFU treatment. Ablation outcomes were assessed by intra-voxel incoherent motion analysis and bioluminescent imaging up to 14 days after the procedure. Assessment of PFCNE delivery and treatment outcomes showed that 2-3 mg/mL of PFCNE in a tumor produces the largest ablation volume under the same HIFU insonation conditions. Histology showed varying degrees of necrosis depending on the amount of PFCNE delivered. 19F MRI promises to be a valuable platform for precisely guiding PFCNE-enhanced HIFU ablation of tumors.


Assuntos
Técnicas de Ablação/métodos , Carcinoma/diagnóstico por imagem , Carcinoma/terapia , Imagem por Ressonância Magnética de Flúor-19/métodos , Fluorocarbonos/administração & dosagem , Hipertermia Induzida/métodos , Sonicação/métodos , Animais , Carcinoma/patologia , Modelos Animais de Doenças , Emulsões/administração & dosagem , Histocitoquímica , Camundongos Endogâmicos BALB C , Camundongos Nus , Transplante Heterólogo , Resultado do Tratamento
5.
Contrast Media Mol Imaging ; 2017: 4896310, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29362559

RESUMO

The presence of tumor-associated macrophages (TAMs) is significantly associated with poor prognosis of tumors. Currently, magnetic resonance imaging- (MRI-) based TAM imaging methods that use nanoparticles such as superparamagnetic iron oxide and perfluorocarbon nanoemulsions are available for quantitative monitoring of TAM burden in tumors. However, whether MRI-based measurements of TAMs can be used as prognostic markers has not been evaluated yet. In this study, we used positron emission tomography (PET) with 18F-2-fluoro-2-deoxy-D-glucose (18F-FDG) as a radioactive tracer and fluorine-19- (19F-) MRI for imaging mouse breast cancer models to determine any association between TAM infiltration and tumor metabolism. Perfluorocarbon nanoemulsions were intravenously administered to track and quantify TAM infiltration using a 7T MR scanner. To analyze glucose uptake in tumors, 18F-FDG-PET images were acquired immediately after 19F-MRI. Coregistered 18F-FDG-PET and 19F-MR images enabled comparison of spatial patterns of glucose uptake and TAM distribution in tumors. 19F-MR signal intensities from tumors exhibited a strong inverse correlation with 18F-FDG uptake while having a significant positive correlation with tumor growth from days 2 to 7. These results show that combination of 19F-MRI and 18F-FDG-PET can improve our understanding of the relationship between TAM and tumor microenvironment.


Assuntos
Imagem por Ressonância Magnética de Flúor-19/métodos , Flúor/farmacologia , Fluordesoxiglucose F18/farmacologia , Macrófagos/metabolismo , Neoplasias Mamárias Experimentais , Tomografia por Emissão de Pósitrons/métodos , Microambiente Tumoral , Animais , Feminino , Macrófagos/patologia , Neoplasias Mamárias Experimentais/diagnóstico por imagem , Neoplasias Mamárias Experimentais/metabolismo , Camundongos
6.
Radiology ; 282(1): 194-201, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27440581

RESUMO

Purpose To investigate whether the magnitude of in vivo fluorine 19 (19F) magnetic resonance (MR) imaging signal is associated with subsequent development of colitis-associated dysplasia after in situ fluorination of inflammatory macrophages in a mouse model of inflammatory bowel disease (IBD). Materials and Methods Experiments were approved by the institutional animal care and use committee. Mice in the experimental group (n = 10) were administered azoxymethane and dextran sulfate sodium to induce colitis-associated dysplasia. Five mice were in the noninduced control group. Animals were injected with a commercially available perfluorocarbon and were examined in vivo with an 11.7-T MR imager for up to 110 days. Colons were then harvested followed by high-spatial-resolution ex vivo MR imaging. Multiple colon segments with or without 19F signal were histologically graded and were correlated with 19F signal intensity by using a Spearman correlation test. The signal intensity in mice with colitis-associated dysplasia was compared with that in control mice with a two-tailed Mann-Whitney U test. Results Patchy distributions of 19F signal intensity in the colon wall were seen on in vivo and ex vivo images, representing chronic inflammation as shown by immunohistochemistry. Histologic scores of inflammation and site-specific development of colitis-associated dysplasia in the descending colon showed good correlation with normalized 19F signal intensity (r = 0.88, P = .033 for the ascending colon; r = 0.82, P = .006 for the descending colon). A significantly (P = .002) higher normalized 19F signal-to-noise ratio was found at sites that developed dysplasia (mean, 0.58 ± 0.09 [standard deviation]) as compared with sites that did not (mean, 0.17 ± 0.22). Conclusion 19F MR imaging cell tracking of macrophages can be used to assess local inflammation in a mouse model of IBD. The resulting local 19F signal intensity, representing the magnitude of inflammation, has a positive correlation with the development of colitis-associated dysplasia. © RSNA, 2016 Online supplemental material is available for this article.


Assuntos
Rastreamento de Células/métodos , Colite/diagnóstico por imagem , Macrófagos/patologia , Imageamento por Ressonância Magnética/métodos , Animais , Colite/patologia , Modelos Animais de Doenças , Feminino , Radioisótopos de Flúor , Processamento de Imagem Assistida por Computador , Camundongos , Razão Sinal-Ruído
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA