Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cells Tissues Organs ; 213(2): 147-160, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-36599327

RESUMO

The vomeronasal organ (VNO) is a tubular pheromone-sensing organ in which the lumen is covered with sensory and non-sensory epithelia. This study used immunohistochemistry and lectin histochemistry techniques to evaluate developmental changes, specifically of the glycoconjugate profile, in the horse VNO epithelium. Immunostaining analysis revealed PGP9.5 expression in some vomeronasal non-sensory epithelium (VNSE) cells and in the vomeronasal receptor cells of the vomeronasal sensory epithelium (VSE) in fetuses, young foals, and adult horses. Olfactory marker protein expression was exclusively localized in receptor cells of the VSE in fetuses, young foals, and adult horses and absent in VNSE. To identify the glycoconjugate type, lectin histochemistry was performed using 21 lectins. Semi-quantitative analysis revealed that the intensities of glycoconjugates labeled with WGA, DSL, LEL, and RCA120 were significantly higher in adult horse VSE than those in foal VSE, whereas the intensities of glycoconjugates labeled with LCA and PSA were significantly lower in adult horse VSE. The intensities of glycoconjugates labeled with s-WGA, WGA, BSL-II, DSL, LEL, STL, ConA, LCA, PSA, DBA, SBA, SJA, RCA120, jacalin, and ECL were significantly higher in adult horse VNSE than those in foal VNSE, whereas the intensity of glycoconjugates labeled with UEA-I was lower in adult horse VNSE. Histochemical analysis of each lectin revealed that various glycoconjugates in the VSE were present in the receptor, supporting, and basal cells of foals and adult horses. A similar pattern of lectin histochemistry was also observed in the VNSE of foals and adult horses. In conclusion, these results suggest that there is an increase in the level of N-acetylglucosamine (labeled by WGA, DSL, LEL) and galactose (labeled by RCA120) in horse VSE during postnatal development, implying that they may influence the function of VNO in adult horses.


Assuntos
Órgão Vomeronasal , Masculino , Humanos , Cavalos , Animais , Órgão Vomeronasal/metabolismo , Antígeno Prostático Específico/metabolismo , Epitélio/metabolismo , Lectinas/metabolismo , Glicoconjugados/análise , Glicoconjugados/metabolismo
2.
Toxics ; 10(4)2022 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-35448455

RESUMO

We examined the protective effects of esculetin and fucoidan against the neurotoxicity of ZnO NPs in rats. Ninety rats were divided into nine groups and pre-treated with esculetin or fucoidan 1 h before ZnO NP administration on a daily basis for 2 weeks. Serum and brain homogenates were examined by enzyme-linked immunosorbent assay (ELISA), and neurons, microglia, and astrocytes in the hippocampal region were examined with immunohistochemical analysis. The serum levels of interleukin-1-beta (IL-1ß), 3-nitrotyrosine (3-NT), superoxide dismutase (SOD), and 8-hydroxy-2'-deoxyguanosine (8-OHdG) were altered in the ZnO NP treatment groups. Brain IL-1ß and TNF-α levels were elevated after ZnO NP administration, and these effects were inhibited by esculetin and fucoidan. SOD, 8-OHdG, and acetylcholinesterase (AChE) levels in the brain were decreased after ZnO NP administration. The brain levels of beclin-1 and caspase-3 were elevated after ZnO NP treatment, and these effects were significantly ameliorated by esculetin and fucoidan. The number of reactive astrocytes measured by counting glial fibrillary acidic protein (GFAP)-positive cells, but not microglia, increased following ZnO NP treatment, and esculetin and fucoidan ameliorated the changes. Esculetin and fucoidan may be beneficial for preventing ZnO NP-mediated autophagy and apoptosis by the modulation of reactive astrocyte and proinflammatory cytokines in the rat brain.

3.
Brain Sci ; 11(9)2021 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-34573138

RESUMO

Trimethyltin (TMT) is an environmental neurotoxin that mediates dopaminergic neuronal injury in the brain. In this study, we characterized the toxic mechanism and possible protective compounds against TMT-induced neurotoxicity in human dopaminergic neuroblastoma SH-SY5Y cells. Antioxidants such as melatonin, N-acetylcysteine (NAC), α-tocopherol, and allopurinol alleviated TMT toxicity. Apoptosis induced by TMT was identified by altered expression of cleaved caspase-3, Bax, Bcl-2, and Bcl-xL through Western blot analysis. The iron chelator deferoxamine ameliorated the alteration of apoptosis-related proteins through TMT exposure. TMT also induced delayed ultrastructural necrotic features such as mitochondrial swelling and cytoplasmic membrane rupture; NAC reduced these necrotic injuries. Esculetin, meloxicam, celecoxib, and phenidone decreased TMT toxicity. Elevation of the pro-inflammatory cytokines IL-1ß, TNF-α, and NF-ĸB and reduction of the antioxidant enzymes catalase and glutathione peroxidase-1 (GPx-1) were induced by TMT and ameliorated by inhibitors of LOX and COX-2 enzymes. Both NMDA and non-NMDA antagonists attenuated TMT toxicity. The free calcium ion modulators nimodipine and BAPTA/AM contributed to neuronal survival against TMT toxicity. Inhibitors of the phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin pathway, an autophagy regulator, decreased TMT toxicity. These results imply that TMT neurotoxicity is the chief participant in LOX- and COX-2-mediated apoptosis, partly via necrosis and autophagy in SH-SY5Y cells.

4.
Phytomedicine ; 77: 153276, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32659677

RESUMO

BACKGROUND: Skin aging, potentially caused by exposure to particulate matter (PM)2.5, is characterized by wrinkling, abnormal pigmentation, and skin dryness triggered by several keratinocyte-derived paracrine factors. Sulforaphane (4-methylsulfinylbutyl isothiocyanate, SFN), commonly found in cruciferous vegetables, has diverse biological effects on skin tissue. PURPOSE: In the present study, we have investigated whether SFN may alleviate PM2.5-induced premature skin aging. METHODS: We used keratinocyte/melanocyte or keratinocyte/fibroblast coculture models of skin cells and measured the parameters of melanogenesis, collagen homeostasis and inflammation. RESULTS: SFN inhibited the development of reactive oxygen species in keratinocytes exposed to PM2.5. In keratinocyte/melanocyte cocultures, it significantly inhibited the upregulation of melanogenic paracrine mediators (including endothelin-1 and prostaglandin E2) in keratinocytes exposed to PM2.5; the synthesis of melanogenic proteins including microphthalmia-associated transcription factor, tyrosinase-related protein 1, and tyrosinase; and the levels of melanin in melanocytes. SFN treatment of keratinocyte/fibroblast cocultures significantly reduced the PM2.5-induced expression of NF-κB-mediated cytokines including interleukin-1ß, interleukin-6, tumor necrosis factor α, and cyclooxygenase-2. In fibroblasts of the keratinocyte/fibroblast coculture system, the expression levels of phospho-NF-κB, cysteine-rich protein 61, and matrix metalloproteinase-1 were significantly decreased whereas procollagen type I synthesis was significantly increased. CONCLUSION: Collectively, our results suggest that SFN mitigates PM2.5-induced premature skin aging by suppressing melanogenesis and maintaining collagen homeostasis. It acts by regulating the release of paracrine factors from keratinocytes.


Assuntos
Colágeno/metabolismo , Isotiocianatos/farmacologia , Queratinócitos/efeitos dos fármacos , Material Particulado/efeitos adversos , Envelhecimento da Pele/efeitos dos fármacos , Técnicas de Cocultura , Citocinas/metabolismo , Fibroblastos/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Humanos , Queratinócitos/metabolismo , Melaninas/biossíntese , Melanócitos/efeitos dos fármacos , Melanócitos/metabolismo , Comunicação Parácrina/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Sulfóxidos
5.
Mol Neurobiol ; 57(8): 3412-3423, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32529488

RESUMO

Cathepsins are a family of lysosomal/endosomal proteolytic enzymes that include serine, aspartate, and cysteine proteases. The role of cathepsin in neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease, remains elusive. We evaluated the expression level and localization of different cathepsins in the olfactory bulbs of mice with experimental autoimmune encephalomyelitis (EAE), a model of human multiple sclerosis. Quantitative real-time PCR results and Western blotting analyses revealed that serine, aspartate, and cysteine cathepsins are expressed at significantly higher levels in the olfactory bulbs of mice with EAE in the paralytic stage compared with those of control mice. Immunohistochemical analyses indicated that cathepsin A, D, and S were expressed in the glomerulus layer, external plexiform layer, and mitral cell layer. Furthermore, cathepsins were detected in astrocytes, microglia, inflammatory cells, and vascular cells in the olfactory bulb of EAE mice at the paralytic stage. Collectively, these results suggest that the upregulation of cathepsins in the olfactory bulb of mice with EAE is associated with transient olfactory dysfunction in autoimmune encephalomyelitis.


Assuntos
Catepsinas/metabolismo , Encefalomielite Autoimune Experimental/metabolismo , Microglia/metabolismo , Bulbo Olfatório/metabolismo , Animais , Astrócitos/metabolismo , Feminino , Inflamação/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Esclerose Múltipla/metabolismo , Transtornos do Olfato/metabolismo , Transtornos do Olfato/fisiopatologia , Bulbo Olfatório/fisiopatologia
6.
Int Immunopharmacol ; 84: 106534, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32361191

RESUMO

Nitrogen-containing bisphosphonates, such as alendronate, have been widely used to treat osteoporosis because they may target multiple signals in the mevalonate cascade. The present study evaluated the therapeutic effects of alendronate on experimental autoimmune encephalomyelitis (EAE), which is a prototypical autoimmune disease model. EAE was induced in C57BL/6 mice by immunization with myelin oligodendrocyte glycoprotein (MOG)35-55 peptide. The mice were checked daily for clinical symptoms, such as paralysis, and the levels of inflammatory cytokines were analyzed using ELISA, western blot analyses, and immunohistochemistry. The daily oral administration of alendronate to EAE-induced mice significantly reduced the severity of paralysis and lowered T cell proliferation. Additionally, histopathological examinations confirmed that alendronate mitigated inflammation in the spinal cord after EAE induction, suppressed the infiltration of CD68-positive inflammatory cells, and reduced the production of various pro-inflammatory cytokines, including interleukin (IL)-1ß, IL-6, tumor necrosis factor (TNF)-α, and interferon (IFN)-γ, as well as inducible nitric oxide synthase (iNOS). Furthermore, the alendronate-treated group exhibited a decrease in the number of iNOS-positive inflammatory cells compared to the vehicle-treated group. Taken together, the present results suggest that alendronate alleviated neuro-inflammation in the spinal cords of EAE-induced mice, which is an animal model of multiple sclerosis, possibly by inhibiting the downstream effects of the mevalonate cascade.


Assuntos
Alendronato/uso terapêutico , Anti-Inflamatórios/uso terapêutico , Encefalomielite Autoimune Experimental/tratamento farmacológico , Alendronato/farmacologia , Animais , Anti-Inflamatórios/farmacologia , Proliferação de Células/efeitos dos fármacos , Citocinas/genética , Citocinas/imunologia , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/patologia , Feminino , Camundongos Endogâmicos C57BL , Esclerose Múltipla/tratamento farmacológico , Óxido Nítrico Sintase Tipo II/imunologia , Medula Espinal/efeitos dos fármacos , Medula Espinal/imunologia , Medula Espinal/patologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia
7.
Neurosci Lett ; 715: 134619, 2020 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-31715292

RESUMO

Spinal cord injury (SCI) is associated with inflammation with concurrent oxidative stress and glial activation. The aim of this study was to evaluate whether hesperidin, a representative flavonoid in citrus fruits, ameliorates SCI-induced motor dysfunction and neuro-pathologic degeneration in rat model. Rats received hesperidin (100 mg/kg body weight/daily, oral administration) from 7 days prior to SCI to 7 days post SCI. Behavioral test was done on rats with SCI until 6 weeks. For the study of inflammatory molecules in SCI rats with hesperidin treatment, rats were sacrificed at day 4 post SCI, and spinal cords were collected and studied histopathologically. Behavioral tests on hind-limbs of rats with SCI revealed that treatment of hesperidin in rats with SCI significantly ameliorate the hind-limb paralysis beginning at day 21 post SCI. Hesperidin treatment in rats with SCI reduced the neuropathological changes (e.g., hemorrhage, inflammatory cell infiltration, and tissue loss) and pro-inflammatory cytokines including tumor necrotic factor-α and interleukin-1ß. In addition, oxidative stress related molecules including superoxide dismutase, catalase, nuclear factor erythroid 2-related factor-2 and heme oxygenase-1 were also increased by hesperidin treatment. Furthermore, Fe2+, bilirubin and p38 mitogen activated protein kinase, these by-product of heme catabolism in serum and spinal cord of rats with hesperidin-treatment groups were significantly increased compared with those of vehicle-treatment group. Collectively, this study implies that hesperidin accelerates recovery of locomotor function and tissue repair of damaged spinal cord, with concurrent upregulation of heme oxygenase-1 as far as rat SCI model is concerned.


Assuntos
Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Heme Oxigenase (Desciclizante)/metabolismo , Hesperidina/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Paralisia/prevenção & controle , Transdução de Sinais/efeitos dos fármacos , Traumatismos da Medula Espinal/prevenção & controle , Animais , Bilirrubina/sangue , Membro Posterior/efeitos dos fármacos , Ferro/sangue , Masculino , Ratos , Medula Espinal/metabolismo , Traumatismos da Medula Espinal/complicações , Proteínas Quinases p38 Ativadas por Mitógeno/sangue
8.
Anat Cell Biol ; 52(4): 369-377, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31949974

RESUMO

Citrus species contain significant amounts of flavonoids that possess antioxidant activities; furthermore, dietary citrus is not associated with adverse effects or cytotoxicity in healthy individuals. Hesperidin, which is an abundant flavanone glycoside in the peel of citrus fruits, possesses a variety of biological capabilities that include antioxidant and anti-inflammatory actions. Over the last few decades, many studies have been investigated the biological actions of hesperidin and its aglycone, hesperetin, as well as their underlying mechanisms. Due to the antioxidant effects of hesperidin and its derivatives, the cardioprotective and anti-cancer effects of these compounds have been widely reviewed. Although the biological activities of hesperidin in neurodegenerative diseases have been evaluated, its potential involvement in a variety of central nervous system (CNS) disorders, including autoimmune demyelinating disease, requires further investigation in terms of the underlying mechanisms. Thus, the present review will focus on the potential role of hesperidin in diverse models of CNS neuroinflammation, including experimental autoimmune encephalomyelitis, with special consideration given to its antioxidant and anti-inflammatory effects in neurodegenerative disease models. Additionally, current evidence provides information regarding the nutraceutical use of hesperidin to prevent various CNS disorders.

9.
Exp Neurobiol ; 27(5): 419-436, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30429651

RESUMO

Chemotherapeutic agents induce long-term side effects, including cognitive impairment and mood disorders, particularly in breast cancer survivors who have undergone chemotherapy. However, the precise mechanisms underpinning chemotherapy-induced hippocampal dysfunction remain unknown. In this study, we investigated the detrimental effects of chronic treatment with a combination of adriamycin and cyclophosphamide (AC) on the neuronal architecture and functions of the hippocampi of female C57BL/6 mice. After chronic AC administration, mice showed memory impairment (measured using a novel object recognition memory task) and depression-like behavior (measured using the tail suspension test and forced swim test). According to Golgi staining, chronic AC treatment significantly reduced the total dendritic length, ramification, and complexity as well as spine density and maturation in hippocampal neurons in a sub-region-specific manner. Additionally, the AC combination significantly reduced adult neurogenesis, the extent of the vascular network, and the levels of hippocampal angiogenesis-related factors. However, chronic AC treatment did not increase the levels of inflammation-related signals (microglial or astrocytic distribution, or the levels of pro-inflammatory cytokines or M1/M2 macrophage markers). Thus, chronic AC treatment changed the neuronal architecture of the adult hippocampus, possibly by reducing neurogenesis and the extent of the vasculature, independently of neuroinflammation. Such detrimental changes in micromorphometric parameters may explain the hippocampal dysfunction observed after cancer chemotherapy.

10.
J Med Food ; 21(9): 866-875, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30067118

RESUMO

Nonalcoholic fatty liver disease is a serious liver disorder associated with oxidative stress. Black radish (Raphanus sativus L. var. niger) extract (BRE) can lower the risk of this disease. The hepatoprotective effect of BRE containing 3-(E)-(methylthio)methylene-2-pyrrolidinethione was evaluated in human hepatocyte carcinoma (HepG2) cells and in rat livers with carbon tetrachloride (CCl4)-induced hepatic injury. BRE was administered at 125, 250, 500, and 1000 µg/mL to the oleic acid-induced HepG2 cells. Male Sprague-Dawley rats were randomly divided into seven groups: the control group, BRE group, CCl4 group, and BRE + CCl4 group. BRE was administered orally at 125, 250, 500, and 1000 mg/kg/day once daily for 7 consecutive days, followed by a single oral treatment of 1.5 mL/kg CCl4. Inhibition of lipid accumulation, serum markers of liver injury, histological evaluations, levels of oxidative stress related enzymatic and nonenzymatic antioxidants in HepG2 cells and liver tissue were investigated. The protein expression of main liver P450 isoenzymes such as cytochrome p450(CYP)2E1, the expression of nuclear factor erythroid 2-related factor-2(Nrf-2) and heme oxygenase-1(HO-1) were also studied. BRE has an inhibitory effect on lipid accumulation and caused acute hepatotoxicity manifested by increased levels of lipid peroxidation, serum alanine aminotransferase, and aspartate aminotransferase with corresponding histopathological changes and high levels of oxidative stress. BRE treatment significantly increased the level of CYP2E1, Nrf-2, and HO-1 in a dose-dependent manner. Besides, 3-(E)-(methylthio)methylene-2-pyrrolidinethione significantly increased radical-scavenging effects and the expression of Nrf-2 in oleic acid-treated HepG2 cells. These results suggest that BRE treatment reduces lipid accumulation in oleic acid-induced steatosis of HepG2 cells, and has a hepatoprotective effect against CCl4-induced liver injury in rats, possibly through Nrf-2/HO-1-mediated antioxidant effects.


Assuntos
Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/administração & dosagem , Substâncias Protetoras/administração & dosagem , Raphanus/química , Alanina Transaminase/genética , Alanina Transaminase/metabolismo , Animais , Aspartato Aminotransferases/genética , Aspartato Aminotransferases/metabolismo , Tetracloreto de Carbono/efeitos adversos , Citocromo P-450 CYP2E1/genética , Citocromo P-450 CYP2E1/metabolismo , Células Hep G2 , Humanos , Fígado/efeitos dos fármacos , Fígado/enzimologia , Fígado/metabolismo , Masculino , Fator 2 Relacionado a NF-E2 , Hepatopatia Gordurosa não Alcoólica/enzimologia , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Ratos , Ratos Sprague-Dawley
11.
Anat Cell Biol ; 51(4): 292-298, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30637164

RESUMO

Experimental autoimmune encephalomyelitis (EAE) is a T-cell-mediated autoimmune central nervous system disease characterized by inflammation with oxidative stress. The aim of this study was to evaluate an anti-inflammatory effect of Ishige okamurae on EAE-induced paralysis in rats. An ethanolic extract of I. okamurae significantly delayed the first onset and reduced the duration and severity of hind-limb paralysis. The neuropathological and immunohistochemical findings in the spinal cord were in agreement with these clinical results. T-cell proliferation assay revealed that the ethyl-acetate fraction of I. okamurae suppressed the proliferation of myelin basic protein reactive T cells from EAE affected rats. Flow cytometric analysis showed TCRαß+ T cells was significantly reduced in the spleen of EAE rats with I. okamurae treatment with concurrent decrease of inflammatory mediators including tumor necrosis factor-α and cyclooxygenase-2. Collectively, it is postulated that I. okamurae ameliorates EAE paralysis with suppression of T-cell proliferation as well as decrease of pro-inflammatory mediators as far as rat EAE is concerned.

12.
J Chem Neuroanat ; 88: 13-21, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29113945

RESUMO

After injury, peripheral axons usually re-extend toward their target, and neuronal functions recover. Previous studies have reported that expression of various molecules are transiently altered in motor neurons after nerve injury, but the time course of these changes and their relationship with functional recovery have not been clearly demonstrated. We used the mouse facial nerve transection and suturing model, and examined the changes in expression of five molecules, choline acetyl transferase (ChAT), galanin, calcitonin gene-related protein (CGRP), gephyrin, and potassium chloride co-transporter 2 (KCC2) in the facial motor neurons after surgery until recovery. Number of ChAT-positive neurons was markedly decreased at days 3 and 7, and recovered to the normal level by day 60, when facial motor functions recovered. Localization of two neuropeptides, CGRP and galanin, was increased in the perikarya and axons during regeneration, and returned to the normal levels by days 60 and 28, respectively. Expression of two postsynaptic elements of γ-amino butyric acid synapses, gephyrin and KCC2, was decreased at days 3 and 7, and recovered by day 60. These results suggest that ChAT, CGRP, and KCC2 may be objective indicators of regeneration, and altering their expression may be related to the functional recovery and axonal re-extension.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina/biossíntese , Colina O-Acetiltransferase/biossíntese , Nervo Facial/fisiologia , Neurônios Motores/fisiologia , Regeneração Nervosa/fisiologia , Simportadores/biossíntese , Animais , Biomarcadores/análise , Proteínas de Transporte/biossíntese , Traumatismos do Nervo Facial/metabolismo , Galanina/biossíntese , Masculino , Proteínas de Membrana/biossíntese , Camundongos , Camundongos Endogâmicos C57BL , Cotransportadores de K e Cl-
13.
Acta Histochem ; 119(8): 778-785, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29029805

RESUMO

Glycans in the epithelium play an important role in cell-to-cell communication and adhesion. No detailed evaluation of glycoconjugates in the vomeronasal organs (VNO) of the roe deer has been published previously. The aim of this study was to characterize glycan epitopes in the vomeronasal sensory epithelium (VSE) and non-sensory epithelium (VNSE) using lectin histochemistry. Glycan epitopes identified by lectin histochemistry were grouped as follows: N-acetylglucosamine (s-WGA, WGA, BSL-II, DSL, LEL, STL), mannose (Con A, LCA, PSA), galactose (RCA120, BSL-I, Jacalin, PNA, ECL), N-acetylgalactosamine (VVA, DBA, SBA, and SJA), fucose (UEA-I) and complex type N-glycan (PHA-E and PHA-L) groups. The free border of the VSE was positive for all 21 lectins, and 18 of the lectins (excluding DBA, SJA, and PHA-L) showed weak and/or moderate staining in the receptor cells. The supporting cells were weakly positive for 19 lectins (excluding PNA and SJA). Moreover, 17 lectins (excluding BSL-II, Jacalin, PNA, and SJA) were expressed in the basal cells. In the VNSE of roe deer, the free border showed staining for all 21 lectins examined. The ciliated cells were positive for 16 lectins (excluding BSL-II, DSL, PNA, VVA, and SJA). Furthermore, 15 lectins (excluding DSL, LEL, ECL, UEA-I, PHA-E, and PHA-L) were expressed in goblet cells. Twenty lectins (excluding SJA) were expressed in the acini of the vomeronasal glands. Collectively, both VSE and VNSE were rich in N-acetylglucosamine, mannose, galactose, N-acetylgalactosamine, fucose, and complex-type N-glycans, although the different cell types of the VSE and VNSE expressed different glycoconjugates of varying intensities, suggesting that these carbohydrate residues may be involved in odor perception as well as cell-to-cell communication in the VNO.


Assuntos
Cervos , Histocitoquímica , Lectinas/classificação , Polissacarídeos/química , Órgão Vomeronasal/química , Animais , Lectinas/química
14.
Anat Cell Biol ; 50(1): 48-59, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28417055

RESUMO

Glycogen synthase kinase (GSK)-3ß has been known as a pro-inflammatory molecule in neuroinflammation. The involvement of GSK-3ß remains unsolved in acute monophasic rat experimental autoimmune encephalomyelitis (EAE). The aim of this study was to evaluate a potential role of GSK-3ß in central nervous system (CNS) autoimmunity through its inhibition by lithium. Lithium treatment significantly delayed the onset of EAE paralysis and ameliorated its severity. Lithium treatment reduced the serum level of pro-inflammatory tumor necrosis factor a but not that of interleukin 10. Western blot analysis showed that the phosphorylation of GSK-3ß (p-GSK-3ß) and its upstream factor Akt was significantly increased in the lithium-treated group. Immunohistochemical examination revealed that lithium treatment also suppressed the activation of ionized calcium binding protein-1-positive microglial cells and vascular cell adhesion molecule-1 expression in the spinal cords of lithium-treated EAE rats. These results demonstrate that lithium ameliorates clinical symptom of acute monophasic rat EAE, and GSK-3 is a target for the suppression of acute neuroinflammation as far as rat model of human CNS disease is involved.

15.
Chem Biol Interact ; 254: 102-8, 2016 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-27241356

RESUMO

We evaluated the hepatoprotective activity of allyl isothiocyanate (AITC) against carbon tetrachloride (CCl4)-induced liver injury in rats. Sprague Dawley rats were orally administered AITC at doses of 5 (AITC 5) and 50 (AITC 50) mg/kg body weight once daily for 3 days, with or without intraperitoneal injection of CCl4. Serum chemistry was assessed for changes in alanine aminotransferase (ALT) and aspartate aminotransferase (AST). The enzyme activities of superoxide dismutase (SOD), catalase (CAT), and malondialdehyde (MDA) were examined in liver tissues, while pro-inflammatory cytokines including tumor necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1ß) mRNA expression were analyzed using real-time polymerase chain reaction. And heme oxygenase-1 (HO-1) and ionized calcium binding protein-1 (Iba-1) immunoreactivities were evaluated by Western blot analysis and immunohistochemistry, respectively. In serum chemistry, the oral administration of AITC itself did not affect the serum levels of ALT or AST, furthermore pretreatment with AITC 5 and AITC 50 significantly reduced the ALT and AST activity levels that were elevated in CCl4-intoxicated rats. In addition, AITC significantly suppressed the reduction of SOD and CAT, and the elevation of MDA, TNF-α mRNA expression, on the other hands, induced the expression of HO-1 compared with those of the vehicle-treated CCl4 group. The histopathological evaluation and Iba-1 immunoreactivity also supported the hepatoprotective effects of AITC against CCl4-induced liver injury. These results suggest that AITC ameliorates oxidative liver injury, possibly through reducing lipid peroxidation, enhancing antioxidant enzymes, and suppressing Kupffer cells and macrophages.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Isotiocianatos/uso terapêutico , Substâncias Protetoras/uso terapêutico , Administração Oral , Alanina Transaminase/sangue , Animais , Aspartato Aminotransferases/sangue , Proteínas de Ligação ao Cálcio/metabolismo , Tetracloreto de Carbono/toxicidade , Catalase/análise , Doença Hepática Induzida por Substâncias e Drogas/patologia , Regulação para Baixo/efeitos dos fármacos , Feminino , Heme Oxigenase-1/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Isotiocianatos/farmacologia , Fígado/metabolismo , Fígado/patologia , Masculino , Malondialdeído/análise , Proteínas dos Microfilamentos/metabolismo , Substâncias Protetoras/farmacologia , Ratos , Ratos Sprague-Dawley , Superóxido Dismutase/análise , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Regulação para Cima/efeitos dos fármacos
16.
Tissue Cell ; 48(4): 361-9, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27233915

RESUMO

The morphological characteristics and glycoconjugate composition of the vomeronasal organ (VNO) of the horse was investigated using histological, immunohistochemical, and lectin histochemical methods. The VNO is bilaterally located at the base of the nasal septum, has a tubular structure surrounded by cartilage, and consists of sensory and non-sensory epithelia. Immunohistochemical examination showed that the vomeronasal sensory epithelium (VSE) consisted of receptor cells positive for both olfactory marker protein (OMP) and protein gene product 9.5 (PGP 9.5), supporting cells, and basal cells. VNO receptor cells were positive for G protein Gαi2 (vomeronasal receptor type 1 marker), but not Gαo (vomeronasal receptor type 2 marker). Lectin histochemical studies using 21 biotinylated lectins showed that the free border of the VSE was positive for 20 lectins. The receptor and supporting cells reacted with 16 lectins while the basal cells reacted with 15 lectins, with varying intensities. In the vomeronasal non-sensory epithelium, the free border was positive for 19 lectins. The cilated cells were positive for 17 lectins and the basal cells were positive for 15 lectins. The vomeronasal glands, positioned in the lamina propria, were stained with both periodic acid Schiff (PAS) and alcian blue (pH 2.5). Eighteen lectins stained the acinar cells of the vomeronasal glands with various binding patterns. These findings suggest that horse VNO receptor cells express vomeronasal receptor type 1, and the VNO glands have mucous to seromucous characteristics. Moreover, each lectin differentially binds each cell type in both the VNO sensory and non-sensory epithelia.


Assuntos
Lectinas/biossíntese , Proteína de Marcador Olfatório/metabolismo , Mucosa Olfatória/citologia , Órgão Vomeronasal/metabolismo , Animais , Células Epiteliais/metabolismo , Cavalos , Lectinas/isolamento & purificação , Lectinas/metabolismo , Proteína de Marcador Olfatório/isolamento & purificação , Ubiquitina Tiolesterase/biossíntese , Órgão Vomeronasal/anatomia & histologia , Órgão Vomeronasal/citologia
17.
Parasite ; 23: 21, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27169676

RESUMO

The localization of carbohydrate terminals in Kudoa septempunctata ST3-infected muscle of olive flounder (Paralichthys olivaceus) was investigated using lectin histochemistry to determine the types of carbohydrate sugar residues expressed in Kudoa spores. Twenty-one lectins were examined, i.e., N-acetylglucosamine (s-WGA, WGA, DSL-II, DSL, LEL, STL), mannose (Con A, LCA, PSA), galactose/N-acetylgalactosamine (RCA12, BSL-I, VVA, DBA, SBA, SJA, Jacalin, PNA, ECL), complex type N-glycans (PHA-E and PHA-L), and fucose (UEA-I). Spores encased by a plasmodial membrane were labeled for the majority of these lectins, with the exception of LCA, PSA, PNA, and PHA-L. Four lectins (RCA 120, BSL-I, DBA, and SJA) belonging to the galactose/N-acetylgalactosamine group, only labeled spores, but not the plasmodial membrane. This is the first confirmation that various sugar residues are present in spores and plasmodial membranes of K. septempunctata ST3.


Assuntos
Carboidratos/análise , Células Epiteliais/química , Doenças dos Peixes/parasitologia , Linguado/parasitologia , Técnicas Imunoenzimáticas , Lectinas , Músculo Esquelético/parasitologia , Myxozoa/química , Doenças Parasitárias em Animais/parasitologia , Animais , Biotinilação , DNA Mitocondrial/análise , Doenças dos Peixes/diagnóstico , Doenças dos Peixes/metabolismo , Doenças dos Peixes/patologia , Linguado/metabolismo , Parasitologia de Alimentos , Genótipo , Interações Hospedeiro-Parasita , Hipertrofia , Músculo Esquelético/química , Músculo Esquelético/patologia , Myxozoa/classificação , Myxozoa/genética , Doenças Parasitárias em Animais/diagnóstico , Doenças Parasitárias em Animais/metabolismo , Doenças Parasitárias em Animais/patologia , Alinhamento de Sequência , Especificidade por Substrato
18.
Acta Histochem ; 117(1): 56-61, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25432322

RESUMO

We previously reported that disabled-2 (Dab-2), a cytosolic adaptor protein, was expressed in inflammatory and glial cells in the central nervous system (CNS) in experimental autoimmune encephalomyelitis and cerebral cryoinjury. Here, to determine the pattern of Dab-2 expression in a clip compression-induced rat spinal cord injury (SCI) model, the protein level and localization of Dab-2 in the spinal cord were investigated in rats with SCI using Western blotting and immunohistochemistry. Western blotting revealed that the expression of both the 75- and 100-kDa isoforms of Dab-2 peaked significantly in the spinal cord after clip compression injury 7 days post-injury compared to sham controls, and declined slightly thereafter. Immunohistochemistry revealed weak Dab-2 immunostaining in some neurons, glial cells, and ependymal cells in the spinal cords of the control animals, compared to staining in the macrophages and reactive astrocytes in lesions of the SCI animals. Overall, these findings suggest that both isoforms of Dab-2 are transiently upregulated in response to SCI and that the increased expression of Dab-2 is associated with the early activation of macrophages and astrogliosis in the course of CNS inflammation.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/biossíntese , Fraturas por Compressão/metabolismo , Regulação da Expressão Gênica , Traumatismos da Medula Espinal/metabolismo , Animais , Astrócitos/metabolismo , Astrócitos/patologia , Fraturas por Compressão/patologia , Inflamação/metabolismo , Inflamação/patologia , Ativação de Macrófagos , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Isoformas de Proteínas/biossíntese , Ratos , Ratos Sprague-Dawley , Traumatismos da Medula Espinal/patologia
19.
Acta Histochem ; 116(8): 1490-500, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25265880

RESUMO

Trimethyltin (TMT), a potent neurotoxic chemical, causes dysfunction and neuroinflammation in the brain, particularly in the hippocampus. The present study assessed TMT-induced glial cell activation and inflammatory cytokine alterations in the mouse hippocampus, BV-2 microglia, and primary cultured astrocytes. In the mouse hippocampus, TMT treatment significantly increased the expression of glial cell markers, including the microglial marker ionized calcium-binding adapter molecule 1 and the astroglial marker glial fibrillary acidic protein. The expression of M1 and M2 microglial markers (inducible nitric oxide synthase [iNOS] and CD206, respectively) and pro-inflammatory cytokines (interleukin [IL]-1ß, IL-6 and tumor necrosis factor [TNF]-α) were significantly increased in the mouse hippocampus following TMT treatment. In BV-2 microglia, iNOS, IL-1ß, TNF-α, and IL-6 expression increased significantly, whereas arginase-1 and CD206 expression decreased significantly after TMT treatment in a time- and concentration-dependent manner. In primary cultured astrocytes, iNOS, arginase-1, IL-1ß, TNF-α, and IL-6 expression increased significantly, whereas IL-10 expression decreased significantly after TMT treatment in a time- and concentration-dependent manner. These results indicate that significant up-regulation of pro-inflammatory signals in TMT-induced neurotoxicity may be associated with pathological processing of TMT-induced neurodegeneration.


Assuntos
Astrócitos/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Microglia/efeitos dos fármacos , Compostos de Trimetilestanho/farmacologia , Animais , Astrócitos/citologia , Astrócitos/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Citocinas/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas dos Microfilamentos/metabolismo , Microglia/citologia , Microglia/metabolismo
20.
Acta Histochem ; 116(6): 1104-12, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24998029

RESUMO

The hepatoprotective activities of Lycium chinense Miller (LC) fruit extract and its component betaine were investigated under carbon tetrachloride (CCl4)-induced hepatotoxicity in rats. The treatment of LC fruit extract significantly suppressed the increase of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in the sera of CCl4 injured rats, and restored the decreased levels of anti-oxidant enzymes such as total antioxidant capacity (TAC), superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) and suppressed the expression of inflammatory mediators including inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-1 and -2. To visualize the potential activity of betaine, a component of LC fruit, betaine was substituted for LC extract in CCl4 injured rats. The biochemical profile in CCl4 injured rats co-treated with betaine matched those of LC fruit treated CCl4 injured rats. The ameliorative effects of LC extract, as well as betaine, were also confirmed by histopathological examination. Collectively, the present findings imply that LC fruit, via its component betaine, mitigate CCl4-induced hepatic injury by increasing antioxidative activity and decreasing inflammatory mediators including iNOS and COX-1/COX-2.


Assuntos
Antioxidantes/farmacologia , Betaína/farmacologia , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Frutas/química , Lycium/química , Extratos Vegetais/farmacologia , Alanina Transaminase/sangue , Animais , Aspartato Aminotransferases/sangue , Tetracloreto de Carbono , Doença Hepática Induzida por Substâncias e Drogas/enzimologia , Doença Hepática Induzida por Substâncias e Drogas/imunologia , Ciclo-Oxigenase 1/metabolismo , Ciclo-Oxigenase 2/metabolismo , Feminino , Peroxidação de Lipídeos , Fígado/efeitos dos fármacos , Fígado/enzimologia , Fígado/patologia , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Proteínas de Membrana/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA