Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Kidney Int ; 95(6): 1494-1504, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31005274

RESUMO

Although genetic testing is increasingly used in clinical nephrology, a large number of patients with congenital abnormalities of the kidney and urinary tract (CAKUT) remain undiagnosed with current gene panels. Therefore, careful curation of novel genetic findings is key to improving diagnostic yields. We recently described a novel intellectual disability syndrome caused by de novo heterozygous loss-of-function mutations in the gene encoding the splicing factor SON. Here, we show that many of these patients, including two previously unreported, exhibit a wide array of kidney abnormalities. Detailed phenotyping of 14 patients with SON haploinsufficiency identified kidney anomalies in 8 patients, including horseshoe kidney, unilateral renal hypoplasia, and renal cysts. Recurrent urinary tract infections, electrolyte disturbances, and hypertension were also observed in some patients. SON knockdown in kidney cell lines leads to abnormal pre-mRNA splicing, resulting in decreased expression of several established CAKUT genes. Furthermore, these molecular events were observed in patient-derived cells with SON haploinsufficiency. Taken together, our data suggest that the wide spectrum of phenotypes in patients with a pathogenic SON mutation is a consequence of impaired pre-mRNA splicing of several CAKUT genes. We propose that genetic testing panels designed to diagnose children with a kidney phenotype should include the SON gene.


Assuntos
Proteínas de Ligação a DNA/genética , Testes Genéticos/métodos , Haploinsuficiência , Antígenos de Histocompatibilidade Menor/genética , Splicing de RNA/genética , Anormalidades Urogenitais/genética , Refluxo Vesicoureteral/genética , Adolescente , Adulto , Criança , Pré-Escolar , Proteínas de Ligação a DNA/metabolismo , Feminino , Células HEK293 , Humanos , Masculino , Antígenos de Histocompatibilidade Menor/metabolismo , Precursores de RNA/genética , Precursores de RNA/metabolismo , Canais de Cátion TRPP/genética , Anormalidades Urogenitais/diagnóstico , Refluxo Vesicoureteral/diagnóstico
2.
J Med Genet ; 56(12): 850-854, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-30478137

RESUMO

BACKGROUND: During mouse embryonic development the protein kinase domain containing, cytoplasmic (Pkdcc) gene, also known as Vlk, is expressed in several tissues including the ventral midbrain, with particularly strong expression in branchial arches and limb buds. Homozygous Pkdcc knockout mice have dysmorphic features and shortened long bones as the most obvious morphological abnormalities. The human PKDCC gene has currently not been associated with any disorders. OBJECTIVE: To use clinical diagnostic exome sequencing (DES) for providing genetic diagnoses to two apparently unrelated patients with similar skeletal abnormalities comprising rhizomelic shortening of limbs and dysmorphic features. METHODS: Patient-parents trio DES was carried out and the identified candidate variants were confirmed by Sanger sequencing. RESULTS: Each patient had a homozygous gene disrupting variant in PKDCC considered to explain the skeletal phenotypes shared by both. The first patient was homozygous for the nonsense variant p.(Tyr217*) (NM_1 38 370 c.651C>A) expected to result in nonsense-mediated decay of the mutant transcripts, whereas the second patient was homozygous for the splice donor variant c.639+1G>T predicted to abolish the donor splice site by three in silico splice prediction algorithms. CONCLUSIONS: Biallelic gene disrupting variants in PKDCC in humans, just like in mice, cause dysmorphic features and rhizomelic shortening of limbs.


Assuntos
Doenças do Desenvolvimento Ósseo/genética , Nanismo/genética , Deformidades Congênitas dos Membros/genética , Proteínas Tirosina Quinases/genética , Adolescente , Doenças do Desenvolvimento Ósseo/fisiopatologia , Região Branquial/metabolismo , Região Branquial/patologia , Pré-Escolar , Códon sem Sentido/genética , Nanismo/fisiopatologia , Exoma/genética , Homozigoto , Humanos , Botões de Extremidades/metabolismo , Deformidades Congênitas dos Membros/fisiopatologia , Masculino , Sítios de Splice de RNA/genética , Sequenciamento do Exoma
3.
Am J Med Genet A ; 176(12): 2858-2861, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30450763

RESUMO

Hennekam lymphangiectasia-lymphedema syndrome (HKLLS) is a genetically heterogeneous lymphatic dysplasia with characteristic of facial dysmorphism, neurocognitive impairments, and abnormalities of the pericardium, intestinal tract, and extremities. It is an autosomal recessive condition caused by biallelic mutations in CCBE1 (collagen- and calcium-binding epidermal growth factor domain-containing protein 1) (HKLLS1; OMIM 235510) or FAT4 (HKLLS2; OMIM 616006). CCBE1 acts via ADAMTS3 (a disintegrin and metalloprotease with thrombospondin motifs-3 protease) to enhance vascular endothelial growth factor C signaling. There is report of one family supporting mutations in ADAMTS3 as causative for the phenotype labeled as HKLLS3. Here, we report an additional case of HKLLS that appears to be associated with homozygous nonsense mutation of ADAMTS3.


Assuntos
Proteínas ADAMTS/genética , Anormalidades Craniofaciais/diagnóstico , Anormalidades Craniofaciais/genética , Estudos de Associação Genética , Predisposição Genética para Doença , Mutação com Perda de Função , Linfangiectasia Intestinal/diagnóstico , Linfangiectasia Intestinal/genética , Linfedema/diagnóstico , Linfedema/genética , Pró-Colágeno N-Endopeptidase/genética , Alelos , Biópsia , Estudos de Associação Genética/métodos , Genótipo , Humanos , Recém-Nascido , Masculino , Fenótipo , Sequenciamento do Exoma
4.
Am J Hum Genet ; 102(4): 557-573, 2018 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-29576218

RESUMO

Mitochondrial disorders causing neurodegeneration in childhood are genetically heterogeneous, and the underlying genetic etiology remains unknown in many affected individuals. We identified biallelic variants in PMPCB in individuals of four families including one family with two affected siblings with neurodegeneration and cerebellar atrophy. PMPCB encodes the catalytic subunit of the essential mitochondrial processing protease (MPP), which is required for maturation of the majority of mitochondrial precursor proteins. Mitochondria isolated from two fibroblast cell lines and induced pluripotent stem cells derived from one affected individual and differentiated neuroepithelial stem cells showed reduced PMPCB levels and accumulation of the processing intermediate of frataxin, a sensitive substrate for MPP dysfunction. Introduction of the identified PMPCB variants into the homologous S. cerevisiae Mas1 protein resulted in a severe growth and MPP processing defect leading to the accumulation of mitochondrial precursor proteins and early impairment of the biogenesis of iron-sulfur clusters, which are indispensable for a broad range of crucial cellular functions. Analysis of biopsy materials of an affected individual revealed changes and decreased activity in iron-sulfur cluster-containing respiratory chain complexes and dysfunction of mitochondrial and cytosolic Fe-S cluster-dependent enzymes. We conclude that biallelic mutations in PMPCB cause defects in MPP proteolytic activity leading to dysregulation of iron-sulfur cluster biogenesis and triggering a complex neurological phenotype of neurodegeneration in early childhood.


Assuntos
Domínio Catalítico/genética , Metaloendopeptidases/genética , Mutação/genética , Degeneração Neural/genética , Criança , Pré-Escolar , Derme/patologia , Transporte de Elétrons , Feminino , Fibroblastos/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Proteínas Ferro-Enxofre/genética , Imageamento por Ressonância Magnética , Masculino , Mitocôndrias/metabolismo , Linhagem , Proto-Oncogene Mas , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Peptidase de Processamento Mitocondrial
5.
BMC Med Genet ; 16: 102, 2015 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-26542245

RESUMO

BACKGROUND: In humans, Mammalian Target of Rapamycin (MTOR) encodes a 300 kDa serine/ threonine protein kinase that is ubiquitously expressed, particularly at high levels in brain. MTOR functions as an integrator of multiple cellular processes, and in so doing either directly or indirectly regulates the phosphorylation of at least 800 proteins. While somatic MTOR mutations have been recognized in tumors for many years, and more recently in hemimegalencephaly, germline MTOR mutations have rarely been described. CASE PRESENTATION: We report the successful application of family-trio Diagnostic Exome Sequencing (DES) to identify the underlying molecular etiology in two brothers with multiple neurological and developmental lesions, and for whom previous testing was non-diagnostic. The affected brothers, who were 6 and 23 years of age at the time of DES, presented symptoms including but not limited to mild Autism Spectrum Disorder (ASD), megalencephaly, gross motor skill delay, cryptorchidism and bilateral iris coloboma. Importantly, we determined that each affected brother harbored the MTOR missense alteration p.E1799K (c.5395G>A). This exact variant has been previously identified in multiple independent human somatic cancer samples and has been shown to result in increased MTOR activation. Further, recent independent reports describe two unrelated families in whom p.E1799K co-segregated with megalencephaly and intellectual disability (ID); in both cases, p.E1799K was shown to have originated due to germline mosaicism. In the case of the family reported herein, the absence of p.E1799K in genomic DNA extracted from the blood of either parent suggests that this alteration most likely arose due to gonadal mosaicism. Further, the p.E1799K variant exerts its effect by a gain-of-function (GOF), autosomal dominant mechanism. CONCLUSION: Herein, we describe the use of DES to uncover an activating MTOR missense alteration of gonadal mosaic origin that is likely to be the causative mutation in two brothers who present multiple neurological and developmental abnormalities. Our report brings the total number of families who harbor MTOR p.E1799K in association with megalencephaly and ID to three. In each case, evidence suggests that p.E1799K arose in the affected individuals due to gonadal mosaicism. Thus, MTOR p.E1799K can now be classified as a pathogenic GOF mutation that causes megalencephaly and cognitive impairment in humans.


Assuntos
Mutação em Linhagem Germinativa , Megalencefalia/genética , Mosaicismo , Serina-Treonina Quinases TOR/genética , Testículo/fisiologia , Transtorno Autístico/genética , Criança , Deficiências do Desenvolvimento/genética , Exoma , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Deficiência Intelectual/genética , Masculino , Análise de Sequência de DNA/métodos , Irmãos , Testículo/patologia , Adulto Jovem
6.
Hum Mol Genet ; 22(20): 4117-26, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-23740942

RESUMO

There are certain de novo germline mutations associated with genetic disorders whose mutation rates per generation are orders of magnitude higher than the genome average. Moreover, these mutations occur exclusively in the male germ line and older men have a higher probability of having an affected child than younger ones, known as the paternal age effect (PAE). The classic example of a genetic disorder exhibiting a PAE is achondroplasia, caused predominantly by a single-nucleotide substitution (c.1138G>A) in FGFR3. To elucidate what mechanisms might be driving the high frequency of this mutation in the male germline, we examined the spatial distribution of the c.1138G>A substitution in a testis from an 80-year-old unaffected man. Using a technology based on bead-emulsion amplification, we were able to measure mutation frequencies in 192 individual pieces of the dissected testis with a false-positive rate lower than 2.7 × 10(-6). We observed that most mutations are clustered in a few pieces with 95% of all mutations occurring in 27% of the total testis. Using computational simulations, we rejected the model proposing an elevated mutation rate per cell division at this nucleotide site. Instead, we determined that the observed mutation distribution fits a germline selection model, where mutant spermatogonial stem cells have a proliferative advantage over unmutated cells. Combined with data on several other PAE mutations, our results support the idea that the PAE, associated with a number of Mendelian disorders, may be explained primarily by a selective mechanism.


Assuntos
Acondroplasia/genética , Idade Paterna , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/genética , Seleção Genética , Idoso de 80 Anos ou mais , Envelhecimento , Simulação por Computador , Mutação em Linhagem Germinativa , Humanos , Masculino , Modelos Genéticos , Polimorfismo de Nucleotídeo Único , Espermatogônias/citologia , Espermatogônias/metabolismo , Testículo/metabolismo , Testículo/patologia
7.
Nucleic Acids Res ; 40(11): e87, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22416064

RESUMO

Isothermal nucleic acid amplification is becoming increasingly important for molecular diagnostics. Therefore, new computational tools are needed to facilitate assay design. In the isothermal EXPonential Amplification Reaction (EXPAR), template sequences with similar thermodynamic characteristics perform very differently. To understand what causes this variability, we characterized the performance of 384 template sequences, and used this data to develop two computational methods to predict EXPAR template performance based on sequence: a position weight matrix approach with support vector machine classifier, and RELIEF attribute evaluation with Naïve Bayes classification. The methods identified well and poorly performing EXPAR templates with 67-70% sensitivity and 77-80% specificity. We combined these methods into a computational tool that can accelerate new assay design by ruling out likely poor performers. Furthermore, our data suggest that variability in template performance is linked to specific sequence motifs. Cytidine, a pyrimidine base, is over-represented in certain positions of well-performing templates. Guanosine and adenosine, both purine bases, are over-represented in similar regions of poorly performing templates, frequently as GA or AG dimers. Since polymerases have a higher affinity for purine oligonucleotides, polymerase binding to GA-rich regions of a single-stranded DNA template may promote non-specific amplification in EXPAR and other nucleic acid amplification reactions.


Assuntos
Técnicas de Amplificação de Ácido Nucleico , Inteligência Artificial , Sequência de Bases , Teorema de Bayes , Biologia Computacional/métodos , DNA/biossíntese , DNA/química , Matrizes de Pontuação de Posição Específica , Software , Moldes Genéticos , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA