Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Toxicol Sci ; 49(4): 193-208, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38556355

RESUMO

Vascular endothelial cells serve as barriers between blood components and subendothelial tissue and regulate the blood coagulation-fibrinolytic system. Ionizing radiation is a common physical stimulant that induces a bystander effect whereby irradiated cells influence neighboring cells through signalings, including purinergic receptor signaling, activated by adenosine 5'-triphosphate (ATP), adenosine 5'-diphosphate (ADP), and adenosine as secondary soluble factors. Human vascular endothelial EA.hy926 cells were cultured and irradiated with γ-rays or treated with ATP, ADP, or adenosine under non-toxic conditions. RNA-seq, gene ontology, and hierarchical clustering analyses were performed. The transcriptome analysis of differentially expressed genes in vascular endothelial cells after γ-ray irradiations suggests that the change of gene expression by γ-irradiation is mediated by ATP and ADP. In addition, the expression and activity of the proteins related to blood coagulation and fibrinolysis systems appear to be secondarily regulated by ATP and ADP in vascular endothelial cells after exposure to γ-irradiation. Although it is unclear whether the changes of the gene expression related to blood coagulation and fibrinolysis systems by γ-irradiation affected the increased hemorrhagic tendency through the exposure to γ-irradiation or the negative feedback to the activated blood coagulation system, the present data indicate that toxicity associated with γ-irradiation involves the dysfunction of vascular endothelial cells related to the blood coagulation-fibrinolytic system, which is mediated by the signalings, including purinergic receptor signaling, activated by ATP and ADP.


Assuntos
Adenosina , Células Endoteliais , Humanos , Adenosina/metabolismo , Células Endoteliais/metabolismo , Trifosfato de Adenosina/metabolismo , Receptores Purinérgicos , Perfilação da Expressão Gênica , Difosfato de Adenosina/farmacologia , Células Cultivadas
2.
J Toxicol Sci ; 48(7): 429-439, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37394656

RESUMO

Granule cell-selective toxicity of methylmercury in the cerebellum is one of the main unresolved issues in the pathogenesis of Minamata disease. Rats were orally administered methylmercury chloride (10 mg/kg/day) for 5 consecutive days, and their brains were harvested on days 1, 7, 14, 21, or 28 after the last administration for histological examination of the cerebellum. It was found that methylmercury caused a marked degenerative change to the granule cell layers but not to the Purkinje cell layers. The generative change of the granule cell layer was due to cell death, including apoptosis, which occurred at day 21 and beyond after the methylmercury administration. Meanwhile, cytotoxic T-lymphocytes and macrophages had infiltrated the granule cell layer. Additionally, granule cells are shown to be a cell type susceptible to TNF-α. Taken together, these results suggest that methylmercury causes small-scale damage to granule cells, triggering the infiltration of cytotoxic T-lymphocytes and macrophages into the granule cell layer, which secrete tumor necrosis factor-α (TNF-α) to induce apoptosis in granule cells. This chain is established based on the susceptibility of granule cells to methylmercury, the ability of cytotoxic T lymphocytes and macrophages to synthesize and secrete TNF-α, and the sensitivity of granule cells to TNF-α and methylmercury. We propose to call the pathology of methylmercury-induced cerebellar damage the "inflammation hypothesis."


Assuntos
Compostos de Metilmercúrio , Ratos , Animais , Compostos de Metilmercúrio/toxicidade , Compostos de Metilmercúrio/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Cerebelo/metabolismo , Neurônios , Apoptose
3.
Biol Pharm Bull ; 45(4): 517-521, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35370277

RESUMO

Malignant meningioma has a poor prognosis and there are currently no effective therapies. Avenaciolide is water-insoluble natural organic product produced by Aspergillus avenaceus G. Smith that can inhibit mitochondrial function. In the present study, we investigated the anti-cancer effects of avenaciolide in an isolated human malignant meningioma cell line, HKBMM. In addition, to assess the specificity of avenaciolide, its effects on normal human neonatal dermal fibroblast HDFn cells were also examined. Avenaciolide showed effective anti-cancer activity, and its cytotoxicity in HKBMM cells was greater than that in HDFn cells. The anti-cancer effects of avenaciolide were mediated by reactive oxygen species (ROS)-induced apoptosis, which may have been caused by mitochondrial disfunction. These results suggest that avenaciolide has potential as a therapeutic drug for malignant meningioma.


Assuntos
Neoplasias Meníngeas , Meningioma , Apoptose , Humanos , Recém-Nascido , Lactonas , Meningioma/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo
4.
Mol Brain ; 14(1): 90, 2021 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-34118975

RESUMO

Homer is a postsynaptic scaffold protein, which has long and short isoforms. The long form of Homer consists of an N-terminal target-binding domain and a C-terminal multimerization domain, linking multiple proteins within a complex. The short form of Homer only has the N-terminal domain and likely acts as a dominant negative regulator. Homer2a, one of the long form isoforms of the Homer family, expresses with a transient peak in the early postnatal stage of mouse cerebellar granule cells (CGCs); however, the functions of Homer2a in CGCs are not fully understood yet. In this study, we investigated the physiological roles of Homer2a in CGCs using recombinant adenovirus vectors. Overexpression of the Homer2a N-terminal domain construct, which was made structurally reminiscent with Homer1a, altered NMDAR1 localization, decreased NMDA currents, and promoted the survival of CGCs. These results suggest that the Homer2a N-terminal domain acts as a dominant negative protein to attenuate NMDAR-mediated excitotoxicity. Moreover, we identified a novel short form N-terminal domain-containing Homer2, named Homer2e, which was induced by apoptotic stimulation such as ischemic brain injury. Our study suggests that the long and short forms of Homer2 are involved in apoptosis of CGCs.


Assuntos
Apoptose , Cerebelo/citologia , Proteínas de Arcabouço Homer/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Isquemia Encefálica/patologia , Proteínas de Arcabouço Homer/química , Proteínas de Arcabouço Homer/genética , Camundongos Endogâmicos ICR , Modelos Biológicos , N-Metilaspartato/metabolismo , Domínios Proteicos , Isoformas de Proteínas/metabolismo
5.
Sci Rep ; 11(1): 8656, 2021 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-33883618

RESUMO

Calcium-dependent activator protein for secretion 1 (CAPS1) is a key molecule in vesicular exocytosis, probably in the priming step. However, CAPS1's role in synaptic plasticity and brain function is elusive. Herein, we showed that synaptic plasticity and learning behavior were impaired in forebrain and/or hippocampus-specific Caps1 conditional knockout (cKO) mice by means of molecular, physiological, and behavioral analyses. Neonatal Caps1 cKO mice showed a decrease in the number of docked vesicles in the hippocampal CA3 region, with no detectable changes in the distribution of other major exocytosis-related molecules. Additionally, long-term potentiation (LTP) was partially and severely impaired in the CA1 and CA3 regions, respectively. CA1 LTP was reinforced by repeated high-frequency stimuli, whereas CA3 LTP was completely abolished. Accordingly, hippocampus-associated learning was severely impaired in adeno-associated virus (AAV) infection-mediated postnatal Caps1 cKO mice. Collectively, our findings suggest that CAPS1 is a key protein involved in the cellular mechanisms underlying hippocampal synaptic release and plasticity, which is crucial for hippocampus-associated learning.


Assuntos
Proteínas de Ligação ao Cálcio/fisiologia , Hipocampo/fisiologia , Aprendizagem/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Plasticidade Neuronal/fisiologia , Animais , Western Blotting , Proteínas de Ligação ao Cálcio/metabolismo , Condicionamento Clássico , Aprendizagem por Discriminação , Feminino , Hipocampo/metabolismo , Hipocampo/ultraestrutura , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Eletrônica , Proteínas do Tecido Nervoso/metabolismo , Frações Subcelulares/metabolismo
6.
Pharmaceuticals (Basel) ; 14(3)2021 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-33800109

RESUMO

5-Aminolevulinic acid (5-ALA) is an amino acid derivative and a precursor of protoporphyrin IX (PpIX). The photophysical feature of PpIX is clinically used in photodynamic diagnosis (PDD) and photodynamic therapy (PDT). These clinical applications are potentially based on in vitro cell culture experiments. Thus, conducting a systematic review and meta-analysis of in vitro 5-ALA PDT experiments is meaningful and may provide opportunities to consider future perspectives in this field. We conducted a systematic literature search in PubMed to summarize the in vitro 5-ALA PDT experiments and calculated the effectiveness of 5-ALA PDT for several cancer cell types. In total, 412 articles were identified, and 77 were extracted based on our inclusion criteria. The calculated effectiveness of 5-ALA PDT was statistically analyzed, which revealed a tendency of cancer-classification-dependent sensitivity to 5-ALA PDT, and stomach cancer was significantly more sensitive to 5-ALA PDT compared with cancers of different origins. Based on our analysis, we suggest a standardized in vitro experimental protocol for 5-ALA PDT.

7.
Mol Brain ; 14(1): 52, 2021 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-33712038

RESUMO

The HapMap Project is a major international research effort to construct a resource to facilitate the discovery of relationships between human genetic variations and health and disease. The Ser19Stop single nucleotide polymorphism (SNP) of human phytanoyl-CoA hydroxylase-interacting protein-like (PHYHIPL) gene was detected in HapMap project and registered in the dbSNP. PHYHIPL gene expression is altered in global ischemia and glioblastoma multiforme. However, the function of PHYHIPL is unknown. We generated PHYHIPL Ser19Stop knock-in mice and found that PHYHIPL impacts the morphology of cerebellar Purkinje cells (PCs), the innervation of climbing fibers to PCs, the inhibitory inputs to PCs from molecular layer interneurons, and motor learning ability. Thus, the Ser19Stop SNP of the PHYHIPL gene may be associated with cerebellum-related diseases.


Assuntos
Cerebelo/citologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Polimorfismo de Nucleotídeo Único , Células de Purkinje/ultraestrutura , Sequência de Aminoácidos , Animais , Sistemas CRISPR-Cas , Forma Celular , Códon de Terminação , Feminino , Técnicas de Introdução de Genes , Projeto HapMap , Humanos , Interneurônios/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Aprendizagem , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Atividade Motora , Fibras Nervosas/fisiologia , Células de Purkinje/metabolismo , Teste de Desempenho do Rota-Rod , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
8.
Pharmaceuticals (Basel) ; 13(10)2020 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-33081106

RESUMO

A photosensitizer is a molecular drug for photodynamic diagnosis and photodynamic therapy (PDT) against cancer. Many studies have developed photosensitizers, but improvements in their cost, efficacy, and side effects are needed for better PDT of patients. In the present study, we developed a novel photosensitizer ß-mannose-conjugated chlorin e6 (ß-M-Ce6) and investigated its PDT effects in human glioblastoma U251 cells. U251 cells were incubated with ß-M-Ce6, followed by laser irradiation. Cell viability was determined using the Cell Counting Kit-8 assay. The PDT effects of ß-M-Ce6 were compared with those of talaporfin sodium (TS) and our previously reported photosensitizer ß-glucose-conjugated chlorin e6 (ß-G-Ce6). Cellular uptake of each photosensitizer and subcellular distribution were analyzed by fluorescence microscopy. ß-M-Ce6 showed 1000× more potent PDT effects than those of TS, and these were similar to those of ß-G-Ce6. ß-M-Ce6 accumulation in U251 cells was much faster than TS accumulation and distributed to several organelles such as the Golgi apparatus, mitochondria, and lysosomes. This rapid cellular uptake was inhibited by low temperature, which suggested that ß-M-Ce6 uptake uses biological machinery. ß-M-Ce6 showed potent PDT anti-cancer effects compared with clinically approved TS, which is a possible candidate as a next generation photosensitizer in cancer therapy.

9.
Photodiagnosis Photodyn Ther ; 32: 102009, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32949789

RESUMO

BACKGROUND: We previously demonstrated that heme oxygenase-1 (HO-1) induction may contribute to a protective response against photodynamic therapy (PDT) using talaporfin sodium (TS) in rat malignant meningioma KMY-J cells. In the present study, we examined the mechanism of HO-1 induction by PDT with TS (TS-PDT) in KMY-J cells. METHODS: KMY-J cells were incubated with 25 µM TS for 2 h and then exposed to 664 nm diode laser irradiation at 1 J/cm2. The gene and protein expression levels of HO-1 and hypoxia-inducible factor-1α (HIF-1α) were determined by real-time RT-PCR and western blot analysis, respectively. Cell viability was measured using the cell counting kit-8 assay. RESULTS: mRNA and protein levels of HO-1 in KMY-J cells were increased significantly at 3, 6, and 9 h after laser irradiation and the increased mRNA level of HO-1 was decreased by antioxidant N-acetyl cysteine treatment. The protein level of HIF-1α, which mediates transcriptional activation of the HO-1 gene, was increased significantly at 1 h after laser irradiation. Additionally, induction of mRNA expression of HO-1 by TS-PDT was diminished by HIF-1α inhibitor echinomycin. We also demonstrated that echinomycin significantly augmented the cytotoxic effect of TS-PDT. CONCLUSIONS: Our findings indicate that TS-PDT may induce HO-1 expression via reactive oxygen species production and then HIF-1 pathway activation in KMY-J cells, and the HO-1 induction may cause attenuation of the therapeutic effect of TS-PDT.


Assuntos
Neoplasias Meníngeas , Meningioma , Fotoquimioterapia , Animais , Heme Oxigenase-1 , Meningioma/tratamento farmacológico , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Porfirinas , Ratos
10.
Photodiagnosis Photodyn Ther ; 31: 101850, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32497773

RESUMO

BACKGROUND: Talaporfin sodium (TS) is an authorized photosensitizer for photodynamic therapy (PDT) against some tumors in Japan; however, the drawbacks of the drug include its high cost and side effects. Thus, reducing the dose of TS in each round of TS-PDT against tumors is important for reducing treatment costs and improving patients' quality of life. Dichloroacetate (DCA) is approved for treating lactic acidosis and hereditary mitochondrial diseases, and it is known to enhance reactive oxygen species production and induce apoptosis in cancer cells. Therefore, DCA has the potential to enhance the effects of TS-PDT and permit the use of lower TS doses without reducing the anti-cancer effect. METHODS: U251 human astrocytoma cells were simultaneously incubated with TS and DCA using different concentrations, administration schedules, and treatment durations, followed by laser irradiation. Cell viability was determined using the CCK-8 assay. RESULTS: The combinational use of DCA and TS resulted in synergistically enhanced TS-PDT effects in U251 cells. The duration of DCA treatment before TS-PDT slightly enhanced the efficacy of TS-PDT. The intensity of laser irradiation was not associated with the synergistic effect of DCA on TS-PDT. In addition, the relationship between the elapsed time after TS/DCA combination treatment and PDT ineffectiveness was identical to that of TS monotherapy. CONCLUSIONS: DCA synergistically enhanced the anti-cancer effect of TS-PDT, illustrating its potential for drug repositioning in cancer therapy in combination with PDT.


Assuntos
Astrocitoma , Fotoquimioterapia , Astrocitoma/tratamento farmacológico , Linhagem Celular Tumoral , Humanos , Japão , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Porfirinas , Qualidade de Vida
11.
J Neurosci ; 39(32): 6339-6353, 2019 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-31201232

RESUMO

ADP-ribosylation factors (ARFs) are a family of small monomeric GTPases comprising six members categorized into three classes: class I (ARF1, 2, and 3), class II (ARF4 and 5), and class III (ARF6). In contrast to class I and III ARFs, which are the key regulators in vesicular membrane trafficking, the cellular function of class II ARFs remains unclear. In the present study, we generated class II ARF-deficient mice and found that ARF4+/-/ARF5-/- mice exhibited essential tremor (ET)-like behaviors. In vivo electrophysiological recordings revealed that ARF4+/-/ARF5-/- mice of both sexes exhibited abnormal brain activity when moving, raising the possibility of abnormal cerebellar excitability. Slice patch-clamp experiments demonstrated the reduced excitability of the cerebellar Purkinje cells (PCs) in ARF4+/-/ARF5-/- mice. Immunohistochemical and electrophysiological analyses revealed a severe and selective decrease of pore-forming voltage-dependent Na+ channel subunit Nav1.6, important for maintaining repetitive action potential firing, in the axon initial segment (AIS) of PCs. Importantly, this decrease in Nav1.6 protein localized in the AIS and the consequent tremors in ARF4+/-/ARF5-/- mice could be alleviated by the PC-specific expression of ARF5 using adeno-associated virus vectors. Together, our data demonstrate that the decreased expression of the class II ARF proteins in ARF4+/-/ARF5-/- mice, leading to a haploinsufficiency of ARF4 in the absence of ARF5, impairs the localization of Nav1.6 to the AIS and hence reduces the membrane excitability in PCs, resulting in the ET-like movement disorder. We suggest that class II ARFs function in localizing specific proteins, such as Nav1.6, to the AIS.SIGNIFICANCE STATEMENT We found that decreasing the expression of class II ARF proteins, through the generation of ARF4+/-/ARF5-/- mice, impairs Nav1.6 distribution to the axon initial segment (AIS) of cerebellar Purkinje cells (PCs), thereby resulting in the impairment of action potential firing of PCs. The ARF4+/-/ARF5-/- mutant mice exhibited movement-associated essential tremor (ET)-like behavior with pharmacological profiles similar to those in ET patients. The exogenous expression of ARF5 reduced the tremor phenotype and restored the localization of Nav1.6 immunoreactivity to the AIS in ARF4+/-/ARF5-/- mice. Thus, our results suggest that class II ARFs are involved in the localization of Nav1.6 to the AISs in cerebellar PCs and that the reduction of class II ARF activity leads to ET-like movement disorder.


Assuntos
Fatores de Ribosilação do ADP/fisiologia , Axônios/metabolismo , Transtornos dos Movimentos/etiologia , Canal de Sódio Disparado por Voltagem NAV1.6/fisiologia , Células de Purkinje/metabolismo , Tremor/etiologia , Fatores de Ribosilação do ADP/deficiência , Fatores de Ribosilação do ADP/genética , Potenciais de Ação , Animais , Dependovirus/genética , Eletroencefalografia , Eletromiografia , Vetores Genéticos/genética , Vetores Genéticos/uso terapêutico , Genótipo , Movimentos da Cabeça , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transtornos dos Movimentos/metabolismo , Transtornos dos Movimentos/fisiopatologia , Canal de Sódio Disparado por Voltagem NAV1.6/deficiência , Técnicas de Patch-Clamp , Transporte Proteico , Células de Purkinje/fisiologia , Teste de Desempenho do Rota-Rod , Método Simples-Cego , Tremor/metabolismo , Tremor/fisiopatologia
12.
J Toxicol Sci ; 44(3): 191-199, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30842371

RESUMO

Exposure to organic mercury, especially methylmercury (MeHg), causes Minamata disease, a severe chronic neurological disorder. Minamata disease predominantly affects the central nervous system, and therefore, studies on the mechanisms of MeHg neurotoxicity have focused primarily on the brain. Although the peripheral nervous system is also affected by the organometallic compound and shows signs of neural degeneration, the mechanisms of peripheral MeHg neurotoxicity remain unclear. In the present study, we performed quantitative immunohistochemical analyses of the dorsal root ganglion (DRG) and associated sensory and motor fibers to clarify the mechanisms of MeHg-induced peripheral neurotoxicity in Wistar rats. Methylmercury chloride (6.7 mg/kg/day) was orally administrated for 5 days, followed by 2 days without administration, and this cycle was repeated once again. Seven and 14 days after the beginning of MeHg exposure, rats were anesthetized, and their DRGs and sensory and motor nerve fibers were removed and processed for immunohistochemical analyses. The frozen sections were immunostained for neuronal, Schwann cell, microglial and macrophage markers. DRG sensory neuron somata and axons showed significant degeneration on day 14. At the same time, an accumulation of microglia and the infiltration of macrophages were observed in the DRGs and sensory nerve fibers. In addition, MeHg caused significant Schwann cell proliferation in the sensory nerve fibers. In comparison, there was no noticeable change in the motor fibers. Our findings suggest that in the peripheral nervous system, MeHg toxicity is associated with neurodegenerative changes to DRG sensory neurons and the induction of a neuroprotective and/or enhancement of neurodegenerative host response.


Assuntos
Gânglios Espinais/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Compostos de Metilmercúrio/toxicidade , Microglia/efeitos dos fármacos , Degeneração Neural/induzido quimicamente , Células de Schwann/efeitos dos fármacos , Animais , Proliferação de Células , Masculino , Ratos Wistar
13.
J Toxicol Sci ; 43(5): 353-358, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29743446

RESUMO

Photodynamic therapy (PDT) using talaporfin sodium (TS) is tumor cell-selective less invasive therapy for the treatment of malignant glioma. We previously demonstrated that PDT using TS (TS-PDT) treatment exhibits anti-tumor activity against not only glioblastoma cells but also malignant meningioma cells. In general, various stress response proteins have been reported to affect the sensitivity determination for anticancer agents against tumor cells. However, the relationship between the therapeutic effect of TS-PDT and stress response systems in tumor cells is not adequately investigated. In this study, we investigated the gene expression of stress response proteins, including Sod1, Cat1, Gstp1, Gpx1, Nqo1, and Hmox1, in rat malignant meningioma KMY-J cells after treatment of TS-PDT. TS-PDT treatment significantly decreased the cell viability when compared with the no laser irradiation group. In morphological observation, TS at 25.6 µM treatment exhibited a significant cytotoxic effect after 12 hr of laser irradiation to KMY-J cells. After 3 and 6 hr of TS-PDT treatment, mRNA expression of heme oxygenase-1 (HO-1, encoded by Hmox1) was significantly increased by TS-PDT treatment. We also demonstrated that zinc protoporphyrin IX (ZnPPIX), a HO-1 inhibitor, significantly augmented the cytotoxic effect of TS-PDT treatment. These data suggest that HO-1 induction may contribute to a protective response against TS-PDT treatment in the malignant meningioma cells and may attenuate the therapeutic effect for TS-PDT treatment.


Assuntos
Antineoplásicos/administração & dosagem , Expressão Gênica/efeitos dos fármacos , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Meningioma/tratamento farmacológico , Meningioma/genética , Fotoquimioterapia , Fármacos Fotossensibilizantes/administração & dosagem , Porfirinas/administração & dosagem , Animais , Antineoplásicos/farmacologia , Sobrevivência Celular , Sinergismo Farmacológico , Heme Oxigenase-1/antagonistas & inibidores , Heme Oxigenase-1/fisiologia , Meningioma/patologia , Fármacos Fotossensibilizantes/farmacologia , Porfirinas/farmacologia , Protoporfirinas/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Fatores de Tempo , Células Tumorais Cultivadas
14.
J Toxicol Sci ; 42(1): 111-119, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28070104

RESUMO

Photodynamic therapy (PDT) is a Food and Drug Administration authorized method for cancer treatment, which uses photosensitizer and laser photo-irradiation to generate reactive oxygen species to induce cell death in tumors. Photosensitizers have been progressively developed, from first to third generation, with improvements in cell specificity, reduced side effects and toxicity, increased sensitivity for irradiation and reduced persistence of photosensitizer in healthy cells. These improvements have been achieved by basic comparative experiments between current and novel photosensitizers using cell lines; however, photosensitizers should be carefully evaluated because they may have cell type specificity. In the present study, we compared a third-generation photosensitizer, ß-mannose-conjugated chlorin (ß-M-chlorin), with the second generation, talaporfin sodium (NPe6), using seven different rat and human cell lines and a neuronal/glial primary culture prepared from rat embryos. NPe6 was more effective than ß-M-chlorin in human-derived cell lines, and ß-M-chlorin was more effective than NPe6 in rat primary cultures and rat-derived cell lines, except for the rat pheochromocytoma cell line, PC12. These differences of phototoxicity in different cell types are not because of differences in photosensitivity between the photosensitizers, but rather are associated with different distribution and accumulation rates in the different cell types. These data suggest that evaluation of photosensitizers for PDT should be carried out using as large a variety of cell types as possible because each photosensitizer may have cell type specificity.


Assuntos
Antineoplásicos/farmacologia , Luz , Manose/farmacologia , Fotoquimioterapia , Fármacos Fotossensibilizantes/farmacologia , Porfirinas/farmacologia , Animais , Linhagem Celular , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Células Cultivadas , Humanos , Manose/química , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/efeitos da radiação , Células PC12 , Porfirinas/química , Ratos , Ratos Wistar
15.
Neurosci Lett ; 617: 232-5, 2016 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-26917099

RESUMO

The Ca(2+)-dependent activator protein for secretion 1 (CAPS1) protein plays a regulatory role in the dense-core vesicle exocytosis pathway. To clarify the functions of this protein in the brain, we searched for novel interaction partners of CAPS1 by mass spectrometry. We identified a specific interaction of CAPS1 with septin family proteins. We also demonstrated that the C-terminal region of the CAPS1 protein binds to part of the deduced GTP-binding domain of septin proteins. It is possible that a tertiary complex of septin, CAPS, and syntaxin contributes to dense-core vesicle trafficking and exocytosis in neurons.


Assuntos
Encéfalo/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Septinas/metabolismo , Animais , Células COS , Linhagem Celular Tumoral , Chlorocebus aethiops , Camundongos , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas
16.
Neurochem Res ; 36(7): 1241-52, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21243430

RESUMO

The cerebellar cortical circuit of mammals develops via a series of magnificent cellular events in the postnatal stage of development to accomplish the formation of functional circuit architectures. The contribution of genetic factors is thought to be crucial to cerebellar development. Therefore, it is essential to analyze the underlying transcriptome during development to understand the genetic blueprint of the cerebellar cortical circuit. In this review, we introduce the profiling of large numbers of spatiotemporal gene expression data obtained by developmental time-series microarray analyses and in situ hybridization cellular mRNA mapping, and the creation of a neuroinformatics database called the Cerebellar Development Transcriptome Database. Using this database, we have identified thousands of genes that are classified into various functional categories and are expressed coincidently with related cellular developmental stages. We have also suggested the molecular mechanisms of cerebellar development by functional characterization of several identified genes (Cupidin, p130Cas, very-KIND, CAPS2) responsible for distinct cellular events of developing cerebellar granule cells. Taken together, the gene expression profiling during the cerebellar development demonstrates that the development of cerebellar cortical circuit is attributed to the complex but orchestrated transcriptome.


Assuntos
Cerebelo/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Animais , Proteínas Reguladoras de Apoptose/fisiologia , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/fisiologia , Proteínas de Transporte/genética , Clonagem Molecular , Proteína Substrato Associada a Crk/genética , Proteína Substrato Associada a Crk/fisiologia , Bases de Dados Genéticas , Exonucleases , Perfilação da Expressão Gênica , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/fisiologia , Proteínas de Arcabouço Homer , Glicoproteínas de Membrana/fisiologia , Camundongos , Proteínas da Mielina/fisiologia , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/fisiologia , Neurônios/fisiologia , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas Tirosina Quinases/fisiologia , Células de Purkinje/fisiologia , Sinapses/genética , Fatores de Transcrição/genética
17.
J Biol Chem ; 285(49): 38710-9, 2010 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-20921225

RESUMO

Ca(2+)-dependent activator protein for secretion (CAPS) regulates exocytosis of catecholamine- or neuropeptide-containing dense-core vesicles (DCVs) at secretion sites, such as nerve terminals. However, large amounts of CAPS protein are localized in the cell soma, and the role of somal CAPS protein remains unclear. The present study shows that somal CAPS1 plays an important role in DCV trafficking in the trans-Golgi network. The anti-CAPS1 antibody appeared to pull down membrane fractions, including many Golgi-associated proteins, such as ADP-ribosylation factor (ARF) small GTPases. Biochemical analyses of the protein-protein interaction showed that CAPS1 interacted specifically with the class II ARF4/ARF5, but not with other classes of ARFs, via the pleckstrin homology domain in a GDP-bound ARF form-specific manner. The pleckstrin homology domain of CAPS1 showed high affinity for the Golgi membrane, thereby recruiting ARF4/ARF5 to the Golgi complex. Knockdown of either CAPS1 or ARF4/ARF5 expression caused accumulation of chromogranin, a DCV marker protein, in the Golgi, thereby reducing its DCV secretion. In addition, the overexpression of CAPS1 binding-deficient ARF5 mutants induced aberrant chromogranin accumulation in the Golgi and consequently reduced its DCV secretion. These findings implicate a functional role for CAPS1 protein in the soma, a major subcellular localization site of CAPS1 in many cell types, in regulating DCV trafficking in the trans-Golgi network; this activity occurs via protein-protein interaction with ARF4/ARF5 in a GDP-dependent manner.


Assuntos
Fatores de Ribosilação do ADP/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Complexo de Golgi/metabolismo , Vesículas Secretórias/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Fatores de Ribosilação do ADP/genética , Animais , Transporte Biológico/fisiologia , Proteínas de Ligação ao Cálcio/genética , Técnicas de Silenciamento de Genes , Complexo de Golgi/genética , Guanosina Difosfato/genética , Guanosina Difosfato/metabolismo , Camundongos , Células PC12 , Estrutura Terciária de Proteína , Ratos , Vesículas Secretórias/genética , Proteínas de Transporte Vesicular/genética
18.
Neurosci Lett ; 406(1-2): 38-42, 2006 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-16904263

RESUMO

For the analysis of the cellular mechanism underlying long-term synaptic plasticity, a model system that allows long-lasting pursuit is required. Previously we reported that, in hippocampal neurons under dissociated cell culture conditions, repeated (but not a single) transient activation of protein kinase A (PKA) led to an increase in the number of synapses that lasted >3 weeks, and hence we proposed that this phenomenon should serve as an appropriate model system. Here we report that repeated pulsatile application of brain-derived neurotrophic factor (BDNF) leads to persistent synapse formation equivalent to that after the repeated transient activation of PKA. A BDNF-scavenging substance applied concomitantly with PKA activation abolished the synapse formation. The release of BDNF upon PKA activation was confirmed by phosphorylation of TrkB. These results indicate that the release of BDNF is involved in the putative signaling cascade connecting PKA activation and synapse formation.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Hipocampo/metabolismo , Vias Neurais/metabolismo , Plasticidade Neuronal/fisiologia , Sinapses/metabolismo , Animais , Biomarcadores/metabolismo , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Células Cultivadas , AMP Cíclico/análogos & derivados , AMP Cíclico/metabolismo , AMP Cíclico/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/efeitos dos fármacos , Proteína 4 Homóloga a Disks-Large , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/fisiologia , Hipocampo/citologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Vias Neurais/citologia , Vias Neurais/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Terminações Pré-Sinápticas/efeitos dos fármacos , Terminações Pré-Sinápticas/metabolismo , Terminações Pré-Sinápticas/ultraestrutura , Ratos , Ratos Wistar , Receptor trkB/metabolismo , Sinapses/efeitos dos fármacos , Sinapses/ultraestrutura , Sinaptofisina/metabolismo , Tionucleotídeos/farmacologia
19.
Neurosci Res ; 47(2): 191-200, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-14512143

RESUMO

Synaptic plasticity, the cellular basis of brain memory, is established through at least two phases: short-term and long-term plasticity. It is assumed that the short-term plasticity instantaneously provoked in pre-existing synapses, as represented by a long-term potentiation (LTP) in the mammalian hippocampus, is converted to the long-term plasticity that develops slowly accompanying the formation of new synapses. However, this conversion has scarcely been analyzed primarily because of the lack of the model system. Recently, we found that a repeated activation of protein kinase A (PKA), but not a single activation of PKA, led to a slowly-developing long-lasting enhancement of synaptic strength coupled with synaptogenesis in cultured rat hippocampus and proposed that this phenomenon would serve as the required model system. In the present study, we investigated the geographical aspect of this phenomenon using a high-speed voltage-sensitive dye (VSD) imaging methodology. Before doing this, we had to overcome the difficulties in applying this methodology to the quantitative analysis on the cultured hippocampal slices. Those difficulties are multiple types of signal decay and a large variance in the number of cells among specimens. After resolving these problems we found that the enhancement of synaptic efficacy in the CA1 stratum radiatum occurred predominantly in the proximal dendritic layer.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Dendritos/enzimologia , Transmissão Sináptica/fisiologia , Animais , Estimulação Elétrica/métodos , Ativação Enzimática/fisiologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Hipocampo/enzimologia , Técnicas In Vitro , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA