Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
2.
Clin Case Rep ; 10(11): e6577, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36397849

RESUMO

Acquired cystic lung disease in premature infants is a serious respiratory complication, and pulmonary interstitial emphysema (PIE) has been widely reported. We report a rare case of giant pulmonary bulla in an infant treated with bullectomy where chest computed tomography was useful in directing treatment.

3.
Medicine (Baltimore) ; 101(11)2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35356922

RESUMO

RATIONALE: The gastrointestinal (GI) tract is a common target organ of graft-vs-host disease (GVHD) in hematopoietic stem cell transplantation (HSCT) patients, and GI tract GVHD is often resistant to standard treatments such as corticosteroids. Moreover, longterm use of systemic corticosteroids sometimes induces adverse events such as infection. Beclomethasone dipropionate (BDP) is a potent, topically active corticosteroid, which is metabolized to an active derivative in the intestinal mucosa. Oral BDP therapy is reportedly effective against GI tract GVHD in adult HSCT patients, but its efficacy and safety in pediatric patients remain undefined. Here, we report three pediatric and young adult cases who were treated with oral BDP. PATIENT CONCERNS: Three (6-, 7-, and 18-year-old) patients developed stage 2 to 4 lower GI tract GVHD, which was resistant to standard immunosuppressive therapies. DIAGNOSIS: Lower GI tract GVHD in these patients was histopathologically proven by endoscopic biopsy. INTERVENTIONS: Oral administration of enteric-coated capsules of BDP (3-8 mg/day) was started for the treatment of lower GI tract GVHD. OUTCOMES: With the introduction of oral BDP therapy, their GI tract symptoms promptly resolved (abdominal pain, within 3-7 days; diarrhea, within 2-3 weeks). Subsequently, systemic immunosuppressive agents such as corticosteroids and mycophenolate mofetil were successfully tapered off. During oral BDP therapy, although cytomegalovirus antigenemia and Acinetobacter Iwoffii sepsis developed in 2 cases, both were curable with conventional treatments. In a young adult case, concomitant BK virus-associated hemorrhagic cystitis resolved after oral BDP was introduced and systemic immunosuppressive agents were reduced. Transient growth restriction was observed in a pediatric case who was treated with oral BDP for approximately 300days. LESSONS: Our experiences suggest that oral BDP therapy is an effective approach for GI tract GVHD that is resistant to standard immunosuppressive therapies. Of clinical importance, our case suggests the possibility that oral BDP therapy may improve the immunosuppressive condition in GI tract GVHD patients by contributing to the reduction of systemic immunosuppressive medications as a result of prompt improvement of GI tract GVHD symptoms.


Assuntos
Gastroenteropatias , Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Beclometasona/efeitos adversos , Beclometasona/uso terapêutico , Criança , Gastroenteropatias/induzido quimicamente , Gastroenteropatias/etiologia , Doença Enxerto-Hospedeiro/tratamento farmacológico , Doença Enxerto-Hospedeiro/etiologia , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Humanos , Adulto Jovem
4.
Blood Adv ; 6(1): 212-224, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34535013

RESUMO

Asparaginase therapy is a key component of chemotherapy for patients with T-cell acute lymphoblastic leukemia (T-ALL). Asparaginase depletes serum asparagine by deamination into aspartic acid. Normal hematopoietic cells can survive due to asparagine synthetase (ASNS) activity, whereas leukemia cells are supposed to undergo apoptosis due to silencing of the ASNS gene. Because the ASNS gene has a typical CpG island in its promoter, its methylation status in T-ALL cells may be associated with asparaginase sensitivity. Thus, we investigated the significance of ASNS methylation status in asparaginase sensitivity of T-ALL cell lines and prognosis of childhood T-ALL. Sequencing of bisulfite polymerase chain reaction products using next-generation sequencing technology in 22 T-ALL cell lines revealed a stepwise allele-specific methylation of the ASNS gene, in association with an aberrant methylation of a 7q21 imprinted gene cluster. T-ALL cell lines with ASNS hypermethylation status showed significantly higher in vitro l-asparaginase sensitivity in association with insufficient asparaginase-induced upregulation of ASNS gene expression and lower basal ASNS protein expression. A comprehensive analysis of diagnostic samples from pediatric patients with T-ALL in Japanese cohorts (N = 77) revealed that methylation of the ASNS gene was associated with an aberrant methylation of the 7q21 imprinted gene cluster. In pediatric T-ALL patients in Japanese cohorts (n = 75), ASNS hypomethylation status was significantly associated with poor therapeutic outcome, and all cases with poor prognostic SPI1 fusion exclusively exhibited ASNS hypomethylation status. These observations show that ASNS hypomethylation status is associated with asparaginase resistance and is a poor prognostic biomarker in childhood T-ALL.


Assuntos
Asparaginase , Aspartato-Amônia Ligase , Carbono-Nitrogênio Ligases com Glutamina como Doadora de N-Amida , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Alelos , Asparaginase/uso terapêutico , Asparagina/genética , Asparagina/metabolismo , Aspartato-Amônia Ligase/genética , Aspartato-Amônia Ligase/metabolismo , Carbono-Nitrogênio Ligases com Glutamina como Doadora de N-Amida/genética , Carbono-Nitrogênio Ligases com Glutamina como Doadora de N-Amida/metabolismo , Linhagem Celular Tumoral , Criança , Metilação de DNA , Humanos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Prognóstico
5.
J Cell Mol Med ; 25(22): 10521-10533, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34636169

RESUMO

In chemotherapy for childhood acute lymphoblastic leukaemia (ALL), maintenance therapy consisting of oral daily mercaptopurine and weekly methotrexate is important. NUDT15 variant genotype is reportedly highly associated with severe myelosuppression during maintenance therapy, particularly in Asian and Hispanic populations. It has also been demonstrated that acquired somatic mutations of the NT5C2 and PRPS1 genes, which are involved in thiopurine metabolism, are detectable in a portion of relapsed childhood ALL. To directly confirm the significance of the NUDT15 variant genotype and NT5C2 and PRPS1 mutations in thiopurine sensitivity of leukaemia cells in the intrinsic genes, we investigated 84 B-cell precursor-ALL (BCP-ALL) cell lines. Three and 14 cell lines had homozygous and heterozygous variant diplotypes of the NUDT15 gene, respectively, while 4 and 2 cell lines that were exclusively established from the samples at relapse had the NT5C2 and PRPS1 mutations, respectively. Both NUDT15 variant genotype and NT5C2 and PRPS1 mutations were significantly associated with DNA-incorporated thioguanine levels after exposure to thioguanine at therapeutic concentration. Considering the continuous exposure during the maintenance therapy, we evaluated in vitro mercaptopurine sensitivity after 7-day exposure. Mercaptopurine concentrations lethal to 50% of the leukaemia cells were comparable to therapeutic serum concentration of mercaptopurine. Both NUDT15 variant genotype and NT5C2 and PRPS1 mutations were significantly associated with mercaptopurine sensitivity in 83 BCP-ALL and 23 T-ALL cell lines. The present study provides direct evidence to support the general principle showing that both inherited genotype and somatically acquired mutation are crucially implicated in the drug sensitivity of leukaemia cells.


Assuntos
5'-Nucleotidase/genética , Resistencia a Medicamentos Antineoplásicos/genética , Mercaptopurina/farmacologia , Mutação , Polimorfismo Genético , Pirofosfatases/genética , Ribose-Fosfato Pirofosfoquinase/genética , Alelos , Antimetabólitos Antineoplásicos/farmacologia , Apoptose/genética , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Relação Dose-Resposta a Droga , Genótipo , Humanos
6.
J Cell Mol Med ; 24(22): 12920-12932, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33002292

RESUMO

Identification of genetic variants associated with glucocorticoids (GC) sensitivity of leukaemia cells may provide insight into potential drug targets and tailored therapy. In the present study, within 72 leukaemic cell lines derived from Japanese patients with B-cell precursor acute lymphoblastic leukaemia (ALL), we conducted genome-wide genotyping of single nucleotide polymorphisms (SNP) and attempted to identify genetic variants associated with GC sensitivity and NR3C1 (GC receptor) gene expression. IC50 measures for prednisolone (Pred) and dexamethasone (Dex) were available using an alamarBlue cell viability assay. IC50 values of Pred showed the strongest association with rs904419 (P = 4.34 × 10-8 ), located between the FRMD4B and MITF genes. The median IC50 values of prednisolone for cell lines with rs904419 AA (n = 13), AG (n = 31) and GG (n = 28) genotypes were 0.089, 0.139 and 297 µmol/L, respectively. For dexamethasone sensitivity, suggestive association was observed for SNP rs2306888 (P = 1.43 × 10-6 ), a synonymous SNP of the TGFBR3 gene. For NR3C1 gene expression, suggestive association was observed for SNP rs11982167 (P = 6.44 × 10-8 ), located in the PLEKHA8 gene. These genetic variants may affect GC sensitivity of ALL cells and may give rise to opportunities in personalized medicine for effective and safe chemotherapy in ALL patients.


Assuntos
Regulação Leucêmica da Expressão Gênica , Variação Genética , Glucocorticoides/farmacologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Linhagem Celular Tumoral , Dexametasona/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Perfilação da Expressão Gênica , Genótipo , Humanos , Concentração Inibidora 50 , Japão , Farmacogenética , Polimorfismo de Nucleotídeo Único , Prednisolona/farmacologia , Receptores de Glucocorticoides/genética
7.
Blood ; 136(20): 2319-2333, 2020 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-32573712

RESUMO

Karyotype is an important prognostic factor in childhood B-cell precursor acute lymphoblastic leukemia (BCP-ALL), but the underlying pharmacogenomics remain unknown. Asparaginase is an integral component in current chemotherapy for childhood BCP-ALL. Asparaginase therapy depletes serum asparagine. Normal hematopoietic cells can produce asparagine by asparagine synthetase (ASNS) activity, but ALL cells are unable to synthesize adequate amounts of asparagine. The ASNS gene has a typical CpG island in its promoter. Thus, methylation of the ASNS CpG island could be one of the epigenetic mechanisms for ASNS gene silencing in BCP-ALL. To gain deep insights into the pharmacogenomics of asparaginase therapy, we investigated the association of ASNS methylation status with asparaginase sensitivity. The ASNS CpG island is largely unmethylated in normal hematopoietic cells, but it is allele-specifically methylated in BCP-ALL cells. The ASNS gene is located at 7q21, an evolutionally conserved imprinted gene cluster. ASNS methylation in childhood BCP-ALL is associated with an aberrant methylation of the imprinted gene cluster at 7q21. Aberrant methylation of mouse Asns and a syntenic imprinted gene cluster is also confirmed in leukemic spleen samples from ETV6-RUNX1 knockin mice. In 3 childhood BCP-ALL cohorts, ASNS is highly methylated in BCP-ALL patients with favorable karyotypes but is mostly unmethylated in BCP-ALL patients with poor prognostic karyotypes. Higher ASNS methylation is associated with higher L-asparaginase sensitivity in BCP-ALL through lower ASNS gene and protein expression levels. These observations demonstrate that silencing of the ASNS gene as a result of aberrant imprinting is a pharmacogenetic mechanism for the leukemia-specific activity of asparaginase therapy in BCP-ALL.


Assuntos
Asparaginase/uso terapêutico , Aspartato-Amônia Ligase/genética , Variantes Farmacogenômicos/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Animais , Criança , Aberrações Cromossômicas , Metilação de DNA/genética , Impressão Genômica/genética , Humanos , Camundongos
8.
Cancer Cell Int ; 20(1): 434, 2020 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-33499894

RESUMO

BACKGROUND: The genetic variants of the ARID5B gene have recently been reported to be associated with disease susceptibility and treatment outcome in childhood acute lymphoblastic leukemia (ALL). However, few studies have explored the association of ARID5B with sensitivities to chemotherapeutic agents. METHODS: We genotyped susceptibility-linked rs7923074 and rs10821936 as well as relapse-linked rs4948488, rs2893881, and rs6479778 of ARDI5B by direct sequencing of polymerase chain reaction (PCR) products in 72 B-cell precursor-ALL (BCP-ALL) cell lines established from Japanese patients. We also quantified their ARID5B expression levels by real-time reverse transcription PCR, and determined their 50% inhibitory concentration (IC50) values by alamarBlue assays in nine representative chemotherapeutic agents used for ALL treatment. RESULTS: No significant associations were observed in genotypes of the susceptibility-linked single nucleotide polymorphisms (SNPs) and the relapsed-linked SNPs with ARID5B gene expression levels. Of note, IC50 values of vincristine (VCR) (median IC50: 39.6 ng/ml) in 12 cell lines with homozygous genotype of risk allele (C) in the relapse-linked rs4948488 were significantly higher (p = 0.031 in Mann-Whitney U test) than those (1.04 ng/ml) in 60 cell lines with heterozygous or homozygous genotypes of the non-risk allele (T). Furthermore, the IC50 values of mafosfamide [Maf; active metabolite of cyclophosphamide (CY)] and cytarabine (AraC) tended to be associated with the genotype of rs4948488. Similar associations were observed in genotypes of the relapse-linked rs2893881 and rs6479778, but not in those of the susceptibility-linked rs7923074 and rs10821936. In addition, the IC50 values of methotrexate (MTX) were significantly higher (p = 0.023) in 36 cell lines with lower ARID5B gene expression (median IC50: 37.1 ng/ml) than those in the other 36 cell lines with higher expression (16.9 ng/ml). CONCLUSION: These observations in 72 BCP-ALL cell lines suggested that the risk allele of the relapse-linked SNPs of ARID5B may be involved in a higher relapse rate because of resistance to chemotherapeutic agents such as VCR, CY, and AraC. In addition, lower ARID5B gene expression may be associated with MTX resistance.

9.
Cancer Med ; 8(11): 5274-5288, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31305009

RESUMO

t(17;19)(q21-q22;p13), responsible for TCF3-HLF fusion, is a rare translocation in childhood B-cell precursor acute lymphoblastic leukemia(BCP-ALL). t(1;19)(q23;p13), producing TCF3-PBX1 fusion, is a common translocation in childhood BCP-ALL. Prognosis of t(17;19)-ALL is extremely poor, while that of t(1;19)-ALL has recently improved dramatically in intensified chemotherapy. In this study, TCF3-HLF mRNA was detectable at a high level during induction therapy in a newly diagnosed t(17;19)-ALL case, while TCF3-PBX1 mRNA was undetectable at the end of induction therapy in most newly diagnosed t(1;19)-ALL cases. Using 4 t(17;19)-ALL and 16 t(1;19)-ALL cell lines, drug response profiling was analyzed. t(17;19)-ALL cell lines were found to be significantly more resistant to vincristine (VCR), daunorubicin (DNR), and prednisolone (Pred) than t(1;19)-ALL cell lines. Sensitivities to three (Pred, VCR, and l-asparaginase [l-Asp]), four (Pred, VCR, l-Asp, and DNR) and five (Pred, VCR, l-Asp, DNR, and cyclophosphamide) agents, widely used in induction therapy, were significantly poorer for t(17;19)-ALL cell lines than for t(1;19)-ALL cell lines. Consistent with poor responses to VCR and DNR, gene and protein expression levels of P-glycoprotein (P-gp) were higher in t(17;19)-ALL cell lines than in t(1;19)-ALL cell lines. Inhibitors for P-gp sensitized P-gp-positive t(17;19)-ALL cell lines to VCR and DNR. Knockout of P-gp by CRISPRCas9 overcame resistance to VCR and DNR in the P-gp-positive t(17;19)-ALL cell line. A combination of cyclosporine A with DNR prolonged survival of NSG mice inoculated with P-gp-positive t(17;19)-ALL cell line. These findings indicate involvement of P-gp in resistance to VCR and DNR in Pgp positive t(17;19)-ALL cell lines. In all four t(17;19)-ALL cell lines, RAS pathway mutation was detected. Furthermore, among 16 t(1;19)-ALL cell lines, multiagent resistance was usually observed in the cell lines with RAS pathway mutation in comparison to those without it, suggesting at least a partial involvement of RAS pathway mutation in multiagent resistance of t(17;19)-ALL.


Assuntos
Cromossomos Humanos Par 17 , Cromossomos Humanos Par 19 , Resistencia a Medicamentos Antineoplásicos/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Translocação Genética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Alelos , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Feminino , Frequência do Gene , Genótipo , Humanos , Imunofenotipagem , Camundongos , Neoplasia Residual/diagnóstico , Neoplasia Residual/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico
11.
Sci Rep ; 8(1): 9966, 2018 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-29967475

RESUMO

In many cancers, somatic mutations confer tumorigenesis and drug-resistance. The recently established clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system is a potentially elegant approach to functionally evaluate mutations in cancers. To reproduce mutations by homologous recombination (HR), the HR pathway must be functional, but DNA damage repair is frequently impaired in cancers. Imatinib is a tyrosine kinase inhibitor for BCR-ABL1 in Philadelphia chromosome-positive (Ph+) leukemia, and development of resistance due to kinase domain mutation is an important issue. We attempted to introduce the T315I gatekeeper mutation into three Ph+ myeloid leukemia cell lines with a seemingly functional HR pathway due to resistance to the inhibitor for poly (ADP) ribose polymerase1. Imatinib-resistant sublines were efficiently developed by the CRISPR/Cas9 system after short-term selection with imatinib; resulting sublines acquired the T315I mutation after HR. Thus, the usefulness of CRISPR/Cas9 system for functional analysis of somatic mutations in cancers was demonstrated.


Assuntos
Sistemas CRISPR-Cas , Proteínas de Fusão bcr-abl/genética , Recombinação Homóloga , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Mutação , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Mesilato de Imatinib/farmacologia , Células K562 , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Ftalazinas/farmacologia , Piperazinas/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacologia , Bases de Schiff/farmacologia
12.
Cancer Med ; 7(4): 1297-1316, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29473342

RESUMO

Cytosine arabinoside (Ara-C) is one of the key drugs for the treatment of acute myeloid leukemia. It is also used for consolidation therapy of acute lymphoblastic leukemia (ALL). Ara-C is a deoxyadenosine analog and is phosphorylated to form cytosine arabinoside triphosphate (Ara-CTP) as an active form. In the first step of the metabolic pathway, Ara-C is phosphorylated to Ara-CMP by deoxycytidine kinase (DCK). However, the current cumulative evidence in the association of the Ara-C sensitivity in ALL appears inconclusive. We analyzed various cell lines for the possible involvement of DCK in the sensitivities of B-cell precursor ALL (BCP-ALL) to Ara-C. Higher DCK expression was associated with higher Ara-C sensitivity. DCK knockout by genome editing with a CRISPR-Cas9 system in an Ara-C-sensitive-ALL cell line induced marked resistance to Ara-C, but not to vincristine and daunorubicin, indicating the involvement of DCK expression in the Ara-C sensitivity of BCP-ALL. DCK gene silencing due to the hypermethylation of a CpG island and reduced DCK activity due to a nonsynonymous variant allele were not associated with Ara-C sensitivity. Clofarabine is a second-generation deoxyadenosine analog rationally synthesized to improve stability and reduce toxicity. The IC50 of clofarabine in 79 BCP-ALL cell lines was approximately 20 times lower than that of Ara-C. In contrast to Ara-C, although the knockout of DCK induced marked resistance to clofarabine, sensitivity to clofarabine was only marginally associated with DCK gene expression level, suggesting a possible efficacy of clofarabine for BCP-ALL that shows relative Ara-C resistance due to low DCK expression.


Assuntos
Antimetabólitos Antineoplásicos/farmacologia , Clofarabina/farmacologia , Desoxicitidina Quinase/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Sequência de Aminoácidos , Apoptose/efeitos dos fármacos , Apoptose/genética , Sequência de Bases , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Metilação de DNA , Relação Dose-Resposta a Droga , Éxons , Regulação Neoplásica da Expressão Gênica , Técnicas de Inativação de Genes , Humanos , Mutação , Polimorfismo Genético , Leucemia-Linfoma Linfoblástico de Células Precursoras B/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patologia , Regiões Promotoras Genéticas
13.
Hematol Oncol ; 36(1): 245-251, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28850694

RESUMO

Glucocorticoid (GC) shows antileukaemic activity via binding to the GC receptor (GR). The human GR gene has 4 splicing variants besides the functional isoform GRα, but their significance in GC sensitivity of acute lymphoblastic leukaemia (ALL) has been inconsistent. Additionally, several studies evaluated the relevance of GR gene single nucleotide polymorphisms (SNPs) in the GC sensitivity of ALL, but the current cumulative evidence appears inconclusive. Addressing limitations in previous studies, we used a large series of B-cell precursor ALL (BCP-ALL) cell lines established from Japanese patients to comprehensively examine all 5 splicing variants of the GR gene and candidate SNPs, and their association with GC-sensitivity. We performed real-time reverse transcription polymerase chain reaction (RT-PCR) analyses with 10 sets of primers that differentially quantify the 5 isoforms in different combinations, and the strongest correlations with GC sensitivity were observed for the real-time RT-PCR of exons 7 and 8 (prednisolone sensitivity; r = -0.534, R2  = 0.29, P = 1.4 × 10-6 ) and exons 8 and 9a (r = -0.583, R2  = 0.34, P = 7.6 × 10-8 ), both specific for GRα and GRγ isoforms. In contrast, the real-time RT-PCR of junction of exons 3g and 4 and exon 4, specific for GRγ isoform alone, did not show significant correlation with GC sensitivity (prednisolone sensitivity; r = -0.403, R2  = 0.16, P = 4.6 × 10-4 ). These observations are consistent with the notion that GRα plays a central role in the GC-mediated proapoptotic activity in BCP-ALL. In addition, a promoter region SNP genotype (rs72555796) showed a significant association with GC sensitivity (prednisolone sensitivity; P = .010) and tended to show an association with GR gene expression (RT-PCR of exons 7 and 8; P = .170). These findings indicate that isoform profiles and SNP genotypes of the GR gene may be useful indicators of GC sensitivity in BCP-ALL.


Assuntos
Polimorfismo de Nucleotídeo Único/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Receptores de Glucocorticoides/genética , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras B/tratamento farmacológico
14.
PLoS One ; 12(12): e0188680, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29236701

RESUMO

Prognosis of childhood acute lymphoblastic leukemia (ALL) has been dramatically improved. However, prognosis of the cases refractory to primary therapy is still poor. Recent phase 2 study on the efficacy of combination chemotherapy with bortezomib (BTZ), a proteasome inhibitor, for refractory childhood ALL demonstrated favorable clinical outcomes. However, septic death was observed in over 10% of patients, indicating the necessity of biomarkers that could predict BTZ sensitivity. We investigated in vitro BTZ sensitivity in a large panel of ALL cell lines that acted as a model system for refractory ALL, and found that Philadelphia chromosome-positive (Ph+) ALL, IKZF1 deletion, and biallelic loss of CDKN2A were associated with favorable response. Even in Ph-negative ALL cell lines, IKZF1 deletion and bilallelic loss of CDKN2A were independently associated with higher BTZ sensitivity. BTZ showed only marginal cross-resistance to four representative chemotherapeutic agents (vincristine, dexamethasone, l-asparaginase, and daunorubicin) in B-cell precursor-ALL cell lines. To improve the efficacy and safety of proteasome inhibitor combination chemotherapy, we also analyzed the anti-leukemic activity of carfilzomib (CFZ), a second-generation proteasome inhibitor, as a substitute for BTZ. CFZ showed significantly higher activity than BTZ in the majority of ALL cell lines except for the P-glycoprotein-positive t(17;19) ALL cell lines, and IKZF1 deletion was also associated with a favorable response to CFZ treatment. P-glycoprotein inhibitors effectively restored the sensitivity to CFZ, but not BTZ, in P-glycoprotein-positive t(17;19) ALL cell lines. P-glycoprotein overexpressing ALL cell line showed a CFZ-specific resistance, while knockout of P-glycoprotein by genome editing with a CRISPR/Cas9 system sensitized P-glycoprotein-positive t(17;19) ALL cell line to CFZ. These observations suggested that IKZF1 deletion could be a useful biomarker to predict good sensitivity to CFZ and BTZ, and that CFZ combination chemotherapy may be a new therapeutic option with higher anti-leukemic activity for refractory ALL that contain P-glycoprotein-negative leukemia cells.


Assuntos
Antineoplásicos/farmacologia , Linfócitos B/efeitos dos fármacos , Bortezomib/uso terapêutico , Oligopeptídeos/uso terapêutico , Linfócitos B/metabolismo , Linhagem Celular Tumoral , Humanos
15.
Leuk Res ; 60: 24-30, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28641145

RESUMO

A deletion polymorphism in the BIM gene was identified as an intrinsic mechanism for resistance to tyrosine kinase inhibitor in chronic myeloid leukemia patients in East Asia. BIM is also involved in the responses to glucocorticoid and chemotherapy in acute lymphoblastic leukemia (ALL), suggesting a possible association between deletion polymorphism of BIM and the chemosensitivity of ALL. Thus, we analyzed 72 B-cell precursor (BCP)-ALL cell lines established from Japanese patients. Indeed, higher BIM gene expression was associated with good in vitro sensitivities to glucocorticoid and chemotherapeutic agents used in induction therapy. We also analyzed the methylation status of the BIM gene promoter by next generation sequencing of genome bisulfite PCR products, since genetic polymorphism could be insignificant when epigenetically inactivated. Hypermethylation of the BIM gene promoter was associated with lower BIM gene expression and poorer sensitivity to vincristine. Of note, however, the prevalence of a deletion polymorphism was not associated with the BIM gene expression level or drug sensitivities in BCP-ALL cell lines, in which the BIM gene was unmethylated. These observations suggest that an association of a deletion polymorphism of BIM and the response to induction therapy in BCP-ALL may be clinically minimal.


Assuntos
Proteína 11 Semelhante a Bcl-2/genética , Resistencia a Medicamentos Antineoplásicos/genética , Deleção de Genes , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Antineoplásicos/farmacologia , Povo Asiático , Proteína 11 Semelhante a Bcl-2/fisiologia , Linhagem Celular Tumoral , Metilação de DNA , Glucocorticoides/farmacologia , Humanos , Polimorfismo Genético , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patologia , Regiões Promotoras Genéticas , Vincristina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA