Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Endocrinol Metab ; 326(3): E308-E325, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38265288

RESUMO

Hyperglucagonemia is a hallmark of type 2 diabetes (T2DM), yet the role of elevated plasma glucagon (P-GCG) to promote excessive postabsorptive glucose production and contribute to hyperglycemia in patients with this disease remains debatable. We investigated the acute action of P-GCG to safeguard/support postabsorptive endogenous glucose production (EGP) and euglycemia in healthy Zucker control lean (ZCL) rats. Using male Zucker diabetic fatty (ZDF) rats that exhibit the typical metabolic disorders of human T2DM, such as excessive EGP, hyperglycemia, hyperinsulinemia, and hyperglucagonemia, we examined the ability of hyperglucagonemia to promote greater rates of postabsorptive EGP and hyperglycemia. Euglycemic or hyperglycemic basal insulin (INS-BC) and glucagon (GCG-BC) clamps were performed in the absence or during an acute setting of glucagon deficiency (GCG-DF, ∼10% of basal), either alone or in combination with insulin deficiency (INS-DF, ∼10% of basal). Glucose appearance, disappearance, and cycling rates were measured using [2-3H] and [3-3H]-glucose. In ZCL rats, GCG-DF reduced the levels of hepatic cyclic AMP, EGP, and plasma glucose (PG) by 50%, 32%, and 50%, respectively. EGP fell in the presence GCG-DF and INS-BC, but under GCG-DF and INS-DF, EGP and PG increased two- and threefold, respectively. GCG-DF revealed the hyperglucagonemia present in ZDF rats lacked the ability to regulate hepatic intracellular cyclic AMP levels and glucose flux, since EGP and PG levels fell by only 10%. We conclude that the liver in T2DM suffers from resistance to all three major regulatory factors, glucagon, insulin, and glucose, thus leading to a loss of metabolic flexibility.NEW & NOTEWORTHY In postabsorptive state, basal plasma insulin (P-INS) and plasma glucose (PG) act dominantly to increase hepatic glucose cycling and reduce endogenous glucose production (EGP) and PG in healthy rats, which is only counteracted by the acute action of basal plasma glucagon (P-GCG) to support EGP and euglycemia. Hyperglucagonemia, a hallmark of type 2 diabetes (T2DM) present in Zucker diabetic fatty (ZDF) rats, is not the primary mediator of hyperglycemia and high EGP as commonly thought; instead, the liver is resistant to glucagon as well as insulin and glucose.


Assuntos
Diabetes Mellitus Tipo 2 , Hiperglicemia , Animais , Masculino , Ratos , Glicemia/metabolismo , AMP Cíclico , Diabetes Mellitus Tipo 2/metabolismo , Glucagon/metabolismo , Glucose/metabolismo , Hiperglicemia/metabolismo , Insulina/metabolismo , Ratos Zucker
2.
J Biol Chem ; 294(9): 3081-3090, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30563841

RESUMO

Hepatocyte lipotoxicity is characterized by aberrant mitochondrial metabolism, which predisposes cells to oxidative stress and apoptosis. Previously, we reported that translocation of calcium from the endoplasmic reticulum to mitochondria of palmitate-treated hepatocytes activates anaplerotic flux from glutamine to α-ketoglutarate (αKG), which subsequently enters the citric acid cycle (CAC) for oxidation. We hypothesized that increased glutamine anaplerosis fuels elevations in CAC flux and oxidative stress following palmitate treatment. To test this hypothesis, primary rat hepatocytes or immortalized H4IIEC3 rat hepatoma cells were treated with lipotoxic levels of palmitate while modulating anaplerotic pathways leading to αKG. We found that culture media supplemented with glutamine, glutamate, or dimethyl-αKG increased palmitate lipotoxicity compared with media that lacked these anaplerotic substrates. Knockdown of glutamate-oxaloacetate transaminase activity significantly reduced the lipotoxic effects of palmitate, whereas knockdown of glutamate dehydrogenase (Glud1) had no effect on palmitate lipotoxicity. 13C flux analysis of H4IIEC3 cells co-treated with palmitate and the pan-transaminase inhibitor aminooxyacetic acid confirmed that reductions in lipotoxic markers were associated with decreases in anaplerosis, CAC flux, and oxygen consumption. Taken together, these results demonstrate that lipotoxic palmitate treatments enhance anaplerosis in cultured rat hepatocytes, causing a shift to aberrant transaminase metabolism that fuels CAC dysregulation and oxidative stress.


Assuntos
Aspartato Aminotransferases/metabolismo , Ciclo do Ácido Cítrico/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Palmitatos/toxicidade , Animais , Morte Celular/efeitos dos fármacos , Linhagem Celular , Espaço Extracelular/efeitos dos fármacos , Espaço Extracelular/metabolismo , Glutamina/metabolismo , Hepatócitos/citologia , Ácidos Cetoglutáricos/metabolismo , Masculino , Estresse Oxidativo/efeitos dos fármacos , Oxigênio/metabolismo , Ratos , Ratos Sprague-Dawley
3.
J Appl Physiol (1985) ; 122(4): 767-774, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28104753

RESUMO

Obstructive sleep apnea is associated with type 2 diabetes. We have previously developed a mouse model of intermittent hypoxia (IH) mimicking oxyhemoglobin desaturations in patients with sleep apnea and have shown that IH increases fasting glucose, hepatic glucose output, and plasma catecholamines. We hypothesize that adrenal medulla modulates glucose responses to IH and that such responses can be prevented by adrenal medullectomy. We performed adrenal medullectomy or sham surgery in lean C57BL/6J mice, which were exposed to IH or intermittent air (control) for 4 wk followed by the frequently sampled intravenous glucose tolerance test (FSIVGTT) in unanesthetized unrestrained animals. IH was administered during the 12-h light phase (9 AM to 9 PM) by decreasing inspired oxygen from 21 to 6.5% 60 cycles/h. Insulin sensitivity (SI), insulin independent glucose disposal [glucose effectiveness (SG)], and the insulin response to glucose (AIRG) were determined using the minimal model method. In contrast to our previous data obtained in restrained mice, IH did not affect fasting blood glucose and plasma insulin levels in sham-operated mice. IH significantly decreased SG but did not affect SI and AIRG Adrenal medullectomy decreased fasting blood glucose and plasma insulin levels and increased glycogen synthesis in the liver in hypoxic mice but did not have a significant effect on the FSIVGTT metrics. We conclude that, in the absence of restraints, IH has no effect on glucose metabolism in lean mice with exception of decreased SG, whereas adrenal medullectomy decreases fasting glucose and insulin levels in the IH environment.NEW & NOTEWORTHY To our knowledge, this is the first study examining the role of adrenal catecholamines in glucose metabolism during intermittent hypoxia (IH) in unanesthetized unrestrained C57BL/6J mice. We report that IH did not affect fasting glucose and insulin levels nor insulin sensitivity and insulin secretion during, whereas glucose effectiveness was decreased. Adrenal medullectomy decreased fasting blood glucose and insulin levels in mice exposed to IH but had no effect on glucose metabolism, insulin secretion, and insulin sensitivity.


Assuntos
Medula Suprarrenal/metabolismo , Glicemia/metabolismo , Glucose/metabolismo , Hipóxia/metabolismo , Animais , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/fisiopatologia , Modelos Animais de Doenças , Jejum/fisiologia , Teste de Tolerância a Glucose/métodos , Glicogênio/metabolismo , Hipóxia/sangue , Hipóxia/fisiopatologia , Insulina/sangue , Resistência à Insulina/fisiologia , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Oxigênio/metabolismo , Oxiemoglobinas/metabolismo , Apneia Obstrutiva do Sono/sangue , Apneia Obstrutiva do Sono/metabolismo , Apneia Obstrutiva do Sono/fisiopatologia
4.
Am J Physiol Endocrinol Metab ; 308(10): E860-7, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25783892

RESUMO

Dogs consuming a hypercaloric high-fat and -fructose diet (52 and 17% of total energy, respectively) or a diet high in either fructose or fat for 4 wk exhibited blunted net hepatic glucose uptake (NHGU) and glycogen deposition in response to hyperinsulinemia, hyperglycemia, and portal glucose delivery. The effect of a hypercaloric diet containing neither fructose nor excessive fat has not been examined. Dogs with an initial weight of ≈25 kg consumed a chow and meat diet (31% protein, 44% carbohydrate, and 26% fat) in weight-maintaining (CTR; n = 6) or excessive (Hkcal; n = 7) amounts for 4 wk (cumulative weight gain 0.0 ± 0.3 and 1.5 ± 0.5 kg, respectively, P < 0.05). They then underwent clamp studies with infusions of somatostatin and intraportal insulin (4× basal) and glucagon (basal). The hepatic glucose load was doubled with peripheral (Pe) glucose infusion for 90 min (P1) and intraportal glucose at 4 mg·kg(-1)·min(-1) plus Pe glucose for the final 90 min (P2). NHGU was blunted (P < 0.05) in Hkcal during both periods (mg·kg(-1)·min(-1); P1: 1.7 ± 0.2 vs. 0.3 ± 0.4; P2: 3.6 ± 0.3 vs. 2.3 ± 0.4, CTR vs. Hkcal, respectively). Terminal hepatic glucokinase catalytic activity was reduced nearly 50% in Hkcal vs. CTR (P < 0.05), although glucokinase protein did not differ between groups. In Hkcal vs. CTR, liver glycogen was reduced 27% (P < 0.05), with a 91% increase in glycogen phosphorylase activity (P < 0.05) but no significant difference in glycogen synthase activity. Thus, Hkcal impaired NHGU and glycogen synthesis compared with CTR, indicating that excessive energy intake, even if the diet is balanced and nutritious, negatively impacts hepatic glucose metabolism.


Assuntos
Glucose/farmacocinética , Hiperfagia/metabolismo , Fígado/metabolismo , Animais , Glicemia/metabolismo , Peptídeo C/sangue , Doença Crônica , Cães , Ingestão de Alimentos , Técnica Clamp de Glucose , Insulina/metabolismo , Masculino , Aumento de Peso
5.
J Lipid Res ; 55(7): 1478-88, 2014 07.
Artigo em Inglês | MEDLINE | ID: mdl-24859739

RESUMO

High levels of saturated FAs (SFAs) are acutely toxic to a variety of cell types, including hepatocytes, and have been associated with diseases such as type 2 diabetes and nonalcoholic fatty liver disease. SFA accumulation has been previously shown to degrade endoplasmic reticulum (ER) function leading to other manifestations of the lipoapoptotic cascade. We hypothesized that dysfunctional phospholipid (PL) metabolism is an initiating factor in this ER stress response. Treatment of either primary hepatocytes or H4IIEC3 cells with the SFA palmitate resulted in dramatic dilation of the ER membrane, coinciding with other markers of organelle dysfunction. This was accompanied by increased de novo glycerolipid synthesis, significant elevation of dipalmitoyl phosphatidic acid, diacylglycerol, and total PL content in H4IIEC3 cells. Supplementation with oleate (OA) reversed these markers of palmitate (PA)-induced lipotoxicity. OA/PA cotreatment modulated the distribution of PA between lipid classes, increasing the flux toward triacylglycerols while reducing its incorporation into PLs. Similar trends were demonstrated in both primary hepatocytes and the H4IIEC3 hepatoma cell line. Overall, these findings suggest that modifying the FA composition of structural PLs can protect hepatocytes from PA-induced ER stress and associated lipotoxicity.


Assuntos
Estresse do Retículo Endoplasmático/efeitos dos fármacos , Hepatócitos/metabolismo , Fígado/metabolismo , Ácido Palmítico/toxicidade , Fosfolipídeos/farmacologia , Animais , Linhagem Celular Tumoral , Hepatócitos/patologia , Fígado/patologia , Ratos , Ratos Sprague-Dawley
6.
Cancer Prev Res (Phila) ; 7(7): 748-57, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24819876

RESUMO

We identified acyl-coenzyme A-binding protein (ACBP) as part of a proteomic signature predicting the risk of having lung cancer. Because ACBP is known to regulate ß-oxidation, which in turn controls cellular proliferation, we hypothesized that ACBP contributes to regulation of cellular proliferation and survival of non-small cell lung cancer (NSCLC) by modulating ß-oxidation. We used matrix-assisted laser desorption/ionization-imaging mass spectrometry (MALDI-IMS) and immunohistochemistry (IHC) to confirm the tissue localization of ABCP in pre-invasive and invasive NSCLCs. We correlated ACBP gene expression levels in NSCLCs with clinical outcomes. In loss-of-function studies, we tested the effect of the downregulation of ACBP on cellular proliferation and apoptosis in normal bronchial and NSCLC cell lines. Using tritiated-palmitate ((3)H-palmitate), we measured ß-oxidation levels and tested the effect of etomoxir, a ß-oxidation inhibitor, on proliferation and apoptosis. MALDI-IMS and IHC analysis confirmed that ACBP is overexpressed in pre-invasive and invasive lung cancers. High ACBP gene expression levels in NSCLCs correlated with worse survival (HR = 1.73). We observed a 40% decrease in ß-oxidation and concordant decreases in proliferation and increases in apoptosis in ACBP-depleted NSCLC cells as compared with bronchial airway epithelial cells. Inhibition of ß-oxidation by etomoxir in ACBP-overexpressing cells produced dose-dependent decrease in proliferation and increase in apoptosis (P = 0.01 and P < 0.001, respectively). These data suggest a role for ACBP in controlling lung cancer progression by regulating ß-oxidation.


Assuntos
Acetilcoenzima A/metabolismo , Apoptose , Carcinoma Pulmonar de Células não Pequenas/patologia , Proliferação de Células , Inibidor da Ligação a Diazepam/metabolismo , Ácido Palmítico/química , Adenocarcinoma/metabolismo , Adenocarcinoma/mortalidade , Adenocarcinoma/patologia , Trifosfato de Adenosina/metabolismo , Western Blotting , Brônquios/metabolismo , Brônquios/patologia , Carcinoma in Situ/metabolismo , Carcinoma in Situ/mortalidade , Carcinoma in Situ/patologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/mortalidade , Carcinoma de Células Escamosas/patologia , Células Cultivadas , Humanos , Técnicas Imunoenzimáticas , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/patologia , Potencial da Membrana Mitocondrial , Oxirredução , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
7.
Metabolism ; 63(2): 283-95, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24286856

RESUMO

OBJECTIVE: Hepatic lipotoxicity is characterized by reactive oxygen species (ROS) accumulation, mitochondrial dysfunction, and excessive apoptosis, but the precise sequence of biochemical events leading to oxidative damage and cell death remains unclear. The goal of this study was to delineate the role of mitochondrial metabolism in mediating hepatocyte lipotoxicity. MATERIALS/METHODS: We treated H4IIEC3 rat hepatoma cells with free fatty acids in combination with antioxidants and mitochondrial inhibitors designed to block key events in the progression toward apoptosis. We then applied (13)C metabolic flux analysis (MFA) to quantify mitochondrial pathway alterations associated with these treatments. RESULTS: Treatment with palmitate alone led to a doubling in oxygen uptake rate and in most mitochondrial fluxes. Supplementing culture media with the antioxidant N-acetyl-cysteine (NAC) reduced ROS accumulation and caspase activation and partially restored cell viability. However, (13)C MFA revealed that treatment with NAC did not normalize palmitate-induced metabolic alterations, indicating that neither elevated ROS nor downstream apoptotic events contributed to mitochondrial activation. To directly limit mitochondrial metabolism, the complex I inhibitor phenformin was added to cells treated with palmitate. Phenformin addition eliminated abnormal ROS accumulation, prevented the appearance of apoptotic markers, and normalized mitochondrial carbon flow. Further studies revealed that glutamine provided the primary fuel for elevated mitochondrial metabolism in the presence of palmitate, rather than fatty acid beta-oxidation, and that glutamine consumption could be reduced through co-treatment with phenformin but not NAC. CONCLUSION: Our results indicate that ROS accumulation in palmitate-treated H4IIEC3 cells occurs downstream of altered mitochondrial oxidative metabolism, which is independent of beta-oxidation and precedes apoptosis initiation.


Assuntos
Acetilcisteína/farmacologia , Antioxidantes/farmacologia , Apoptose , Carcinoma Hepatocelular/metabolismo , Hepatócitos/metabolismo , Neoplasias Hepáticas/metabolismo , Mitocôndrias Hepáticas/metabolismo , Estresse Oxidativo , Palmitatos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Animais , Apoptose/efeitos dos fármacos , Isótopos de Carbono , Caspases Efetoras/efeitos dos fármacos , Caspases Efetoras/metabolismo , Linhagem Celular Tumoral , Ativação Enzimática/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Análise do Fluxo Metabólico/métodos , Estresse Oxidativo/efeitos dos fármacos , Palmitatos/metabolismo , Ratos
8.
Clin Cancer Res ; 19(3): 560-70, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23213057

RESUMO

PURPOSE: We have previously identified solute-linked carrier family A1 member 5 (SLC1A5) as an overexpressed protein in a shotgun proteomic analysis of stage I non-small cell lung cancer (NSCLC) when compared with matched controls. We hypothesized that overexpression of SLC1A5 occurs to meet the metabolic demand for lung cancer cell growth and survival. EXPERIMENTAL DESIGN: To test our hypothesis, we first analyzed the protein expression of SLC1A5 in archival lung cancer tissues by immunohistochemistry and immunoblotting (N = 98) and in cell lines (N = 36). To examine SLC1A5 involvement in amino acid transportation, we conducted kinetic analysis of l-glutamine (Gln) uptake in lung cancer cell lines in the presence and absence of a pharmacologic inhibitor of SLC1A5, gamma-l-Glutamyl-p-Nitroanilide (GPNA). Finally, we examined the effect of Gln deprivation and uptake inhibition on cell growth, cell-cycle progression, and growth signaling pathways of five lung cancer cell lines. RESULTS: Our results show that (i) SLC1A5 protein is expressed in 95% of squamous cell carcinomas (SCC), 74% of adenocarcinomas (ADC), and 50% of neuroendocrine tumors; (ii) SLC1A5 is located at the cytoplasmic membrane and is significantly associated with SCC histology and male gender; (iii) 68% of Gln is transported in a Na(+)-dependent manner, 50% of which is attributed to SLC1A5 activity; and (iv) pharmacologic and genetic targeting of SLC1A5 decreased cell growth and viability in lung cancer cells, an effect mediated in part by mTOR signaling. CONCLUSIONS: These results suggest that SLC1A5 plays a key role in Gln transport controlling lung cancer cells' metabolism, growth, and survival.


Assuntos
Sistema ASC de Transporte de Aminoácidos/metabolismo , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Glutamina/metabolismo , Neoplasias Pulmonares/metabolismo , Adulto , Idoso , Sistema ASC de Transporte de Aminoácidos/genética , Transporte Biológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Proliferação de Células , Sobrevivência Celular/genética , Feminino , Pontos de Checagem da Fase G1 do Ciclo Celular , Expressão Gênica , Humanos , Neoplasias Pulmonares/genética , Masculino , Pessoa de Meia-Idade , Antígenos de Histocompatibilidade Menor , Interferência de RNA , Espécies Reativas de Oxigênio/metabolismo , Fatores Sexuais , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
9.
Methods Mol Biol ; 933: 229-53, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22893411

RESUMO

A tracer technique referred to as "pancreatic-blood glucose clamp" allows assessment in response to a change in blood glucose, insulin, and/or glucagon of whole body glucose disposal, endogenous glucose production, specific tissue/organ glucose uptake and storage, and insulin secretion. This technique is currently considered the optimal method for measurement of insulin sensitivity and glucose effectiveness. We describe here, for use in conscious-unrestrained mice and rats, the pancreatic-blood glucose clamp technique and its associated methods; which include catheterization of blood vessels; a clamp of plasma insulin, glucagon, and glucose; analyses of metabolites and tracers; and calculations.


Assuntos
Glicemia/análise , Técnica Clamp de Glucose/métodos , Glucose/metabolismo , Insulina/sangue , Animais , Glicemia/metabolismo , Cateterismo/instrumentação , Cateterismo/métodos , Cateteres de Demora , Desenho de Equipamento , Glucagon/sangue , Glicogênio/metabolismo , Homeostase , Insulina/metabolismo , Resistência à Insulina , Camundongos , Pâncreas/metabolismo , Ratos , Procedimentos Cirúrgicos Vasculares/instrumentação , Procedimentos Cirúrgicos Vasculares/métodos
10.
Diabetes ; 58(1): 78-86, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18952838

RESUMO

OBJECTIVE: We examined in 20-week-old Zucker diabetic fatty (ZDF) rats whether restoration of hepatic glucokinase (GK) expression would alter hepatic glucose flux and improve hyperglycemia. RESEARCH DESIGN AND METHODS: ZDF rats were treated at various doses with an adenovirus that directs the expression of rat liver GK (AdvCMV-GKL) dose dependently, and various metabolic parameters were compared with those of nondiabetic lean littermates (ZCL rats) before and during a hyperglycemic clamp. Viral infection per se did not affect hepatic GK activity, since expression of a catalytically inactive form of GK did not alter endogenous hepatic GK activity. RESULTS: ZDF rats compared with ZCL rats have lower hepatic GK activity (11.6 +/- 1.9 vs. 32.5 +/- 3.2 mU/mg protein), marked hyperglycemia (23.9 +/- 1.2 vs. 7.4 +/- 0.3 mmol/l), higher endogenous glucose production (80 +/- 3 vs. 38 +/- 3 micromol x kg(-1) x min(-1)), increased glucose-6-phosphatase flux (150 +/- 11 vs. 58 +/- 8 micromol x kg(-1) x min(-1)), and during a hyperglycemic clamp, a failure to suppress endogenous glucose production (80 +/- 7 vs. -7 +/- 4 micromol x kg(-1) x min(-1)) and promote glucose incorporation into glycogen (15 +/- 5 vs. 43 +/- 3 micromol/g liver). Treatment of ZDF rats with different doses of AdvCMV-GKL, which restored hepatic GK activity to one to two times that of ZCL rats, normalized plasma glucose levels and endogenous glucose production. During a hyperglycemic clamp, glucose production was suppressed and glucose incorporation into glycogen was normal. CONCLUSIONS: Alteration of hepatic GK activity in ZDF rats has profound effects on plasma glucose and hepatic glucose flux.


Assuntos
Glicemia/metabolismo , Diabetes Mellitus Experimental/metabolismo , Glucoquinase/metabolismo , Glucose/metabolismo , Fígado/enzimologia , Adenoviridae/genética , Envelhecimento , Animais , Western Blotting , Peso Corporal , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/genética , Glucagon/sangue , Glucoquinase/genética , Hiperglicemia/sangue , Hiperglicemia/genética , Hiperglicemia/metabolismo , Insulina/sangue , Fígado/metabolismo , Masculino , Ratos , Ratos Zucker
11.
J Biol Chem ; 282(20): 14807-15, 2007 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-17389595

RESUMO

Fatty liver is commonly associated with insulin resistance and type 2 diabetes, but it is unclear whether triacylglycerol accumulation or an excess flux of lipid intermediates in the pathway of triacyglycerol synthesis are sufficient to cause insulin resistance in the absence of genetic or diet-induced obesity. To determine whether increased glycerolipid flux can, by itself, cause hepatic insulin resistance, we used an adenoviral construct to overexpress glycerol-sn-3-phosphate acyltransferase-1 (Ad-GPAT1), the committed step in de novo triacylglycerol synthesis. After 5-7 days, food intake, body weight, and fat pad weight did not differ between Ad-GPAT1 and Ad-enhanced green fluorescent protein control rats, but the chow-fed Ad-GPAT1 rats developed fatty liver, hyperlipidemia, and insulin resistance. Liver was the predominant site of insulin resistance; Ad-GPAT1 rats had 2.5-fold higher hepatic glucose output than controls during a hyperinsulinemic-euglycemic clamp. Hepatic diacylglycerol and lysophosphatidate were elevated in Ad-GPAT1 rats, suggesting a role for these lipid metabolites in the development of hepatic insulin resistance, and hepatic protein kinase Cepsilon was activated, providing a potential mechanism for insulin resistance. Ad-GPAT1-treated rats had 50% lower hepatic NF-kappaB activity and no difference in expression of tumor necrosis factor-alpha and interleukin-beta, consistent with hepatic insulin resistance in the absence of increased hepatic inflammation. Glycogen synthesis and uptake of 2-deoxyglucose were reduced in skeletal muscle, suggesting mild peripheral insulin resistance associated with a higher content of skeletal muscle triacylglycerol. These results indicate that increased flux through the pathway of hepatic de novo triacylglycerol synthesis can cause hepatic and systemic insulin resistance in the absence of obesity or a lipogenic diet.


Assuntos
Glicerol-3-Fosfato O-Aciltransferase/biossíntese , Resistência à Insulina , Metabolismo dos Lipídeos , Fígado/enzimologia , Adenoviridae , Animais , Desoxiglucose/metabolismo , Fígado Gorduroso/enzimologia , Fígado Gorduroso/genética , Fígado Gorduroso/patologia , Expressão Gênica , Glicerol-3-Fosfato O-Aciltransferase/genética , Glicogênio/metabolismo , Hiperlipidemias/enzimologia , Hiperlipidemias/genética , Hiperlipidemias/patologia , Resistência à Insulina/genética , Interleucina-1beta/biossíntese , Metabolismo dos Lipídeos/genética , Fígado/patologia , Masculino , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , NF-kappa B/biossíntese , Proteína Quinase C-épsilon/metabolismo , Ratos , Ratos Wistar , Transdução Genética , Triglicerídeos/biossíntese , Fator de Necrose Tumoral alfa/biossíntese
12.
Diabetes ; 55(11): 2974-85, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17065333

RESUMO

To investigate molecular mechanisms controlling islet vascularization and revascularization after transplantation, we examined pancreatic expression of three families of angiogenic factors and their receptors in differentiating endocrine cells and adult islets. Using intravital lectin labeling, we demonstrated that development of islet microvasculature and establishment of islet blood flow occur concomitantly with islet morphogenesis. Our genetic data indicate that vascular endothelial growth factor (VEGF)-A is a major regulator of islet vascularization and revascularization of transplanted islets. In spite of normal pancreatic insulin content and beta-cell mass, mice with beta-cell-reduced VEGF-A expression had impaired glucose-stimulated insulin secretion. By vascular or diffusion delivery of beta-cell secretagogues to islets, we showed that reduced insulin output is not a result of beta-cell dysfunction but rather caused by vascular alterations in islets. Taken together, our data indicate that the microvasculature plays an integral role in islet function. Factors modulating VEGF-A expression may influence islet vascularity and, consequently, the amount of insulin delivered into the systemic circulation.


Assuntos
Ilhotas Pancreáticas/irrigação sanguínea , Neovascularização Fisiológica , Pâncreas/irrigação sanguínea , Fator A de Crescimento do Endotélio Vascular/fisiologia , Animais , Velocidade do Fluxo Sanguíneo , Insulina/sangue , Insulina/metabolismo , Secreção de Insulina , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/ultraestrutura , Camundongos , Camundongos Knockout , Microscopia Eletrônica , Pâncreas/crescimento & desenvolvimento , Pâncreas/fisiologia , Fator A de Crescimento do Endotélio Vascular/deficiência , Fator A de Crescimento do Endotélio Vascular/genética
13.
Science ; 312(5780): 1656-9, 2006 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-16778057

RESUMO

Coordinated control of energy metabolism and glucose homeostasis requires communication between organs and tissues. We identified a neuronal pathway that participates in the cross talk between the liver and adipose tissue. By studying a mouse model, we showed that adenovirus-mediated expression of peroxisome proliferator-activated receptor (PPAR)-g2 in the liver induces acute hepatic steatosis while markedly decreasing peripheral adiposity. These changes were accompanied by increased energy expenditure and improved systemic insulin sensitivity. Hepatic vagotomy and selective afferent blockage of the hepatic vagus revealed that the effects on peripheral tissues involve the afferent vagal nerve. Furthermore, an antidiabetic thiazolidinedione, a PPARg agonist, enhanced this pathway. This neuronal pathway from the liver may function to protect against metabolic perturbation induced by excessive energy storage.


Assuntos
Tecido Adiposo/metabolismo , Metabolismo Energético , Insulina/fisiologia , Fígado/inervação , Fígado/metabolismo , Nervo Vago/fisiologia , Tecido Adiposo/inervação , Vias Aferentes/fisiologia , Animais , Glicemia/análise , Gorduras na Dieta/administração & dosagem , Vias Eferentes/fisiologia , Fígado Gorduroso/patologia , Glucose/metabolismo , Teste de Tolerância a Glucose , Hipoglicemiantes/farmacologia , Insulina/sangue , Resistência à Insulina , Lipólise , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/metabolismo , Consumo de Oxigênio , PPAR gama/genética , PPAR gama/metabolismo , Ratos , Ratos Sprague-Dawley , Sistema Nervoso Simpático/fisiologia , Vagotomia , Aumento de Peso
14.
Transplantation ; 79(7): 768-76, 2005 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-15818318

RESUMO

BACKGROUND: Pancreatic islet transplantation is an emerging therapy for type 1 diabetes, but it is difficult to assess islets after transplantation and thus to design interventions to improve islet survival. METHODS: To image and quantify islets, the authors transplanted luciferase-expressing murine or human islets (by adenovirus-mediated gene transfer) into the liver or beneath the renal capsule of immunodeficient mice and quantified the in vivo bioluminescence imaging (BLI) of mice using a cooled charge-coupled device camera and digital photon-counting image analysis. To account for variables that are independent of islet mass such as transplant site, animal positioning, and wound healing, the BLI of transplanted islets was calibrated against measurement of luminescence of an implanted bead emitting a constant light intensity. RESULTS: BLI of mice bearing islet transplants was seen in the expected anatomic location, was stable for more than 8 weeks after transplantation, and correlated with the number of islets transplanted into the liver or kidney. BLI of the luminescent bead and of transplanted islets in the kidney was approximately four times greater than when transplanted in the liver, indicating that photon emission is dependent on optical absorption of generated light and thus light source location. CONCLUSION: In vivo BLI allows for quantitative, serial measurements of pancreatic islet mass after transplantation and should be useful in assessing interventions to sustain or increase islet survival of transplanted islets.


Assuntos
Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas/citologia , Animais , Sobrevivência de Enxerto , Humanos , Imageamento Tridimensional , Ilhotas Pancreáticas/crescimento & desenvolvimento , Ilhotas Pancreáticas/patologia , Medições Luminescentes , Camundongos
15.
J Biol Chem ; 279(33): 34191-200, 2004 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-15166231

RESUMO

Activation of phosphoenolpyruvate carboxykinase (PEPCK) gene transcription in response to all-trans-retinoic acid (RA) or a glucocorticoid such as dexamethasone (Dex) requires a distinct arrangement of DNA-response elements and their cognate transcription activators on the gene promoter. Two of the accessory factor-binding elements involved in the Dex response (gAF1 and gAF3) coincide with the DNA-response elements involved in the RA response. We demonstrate here that the combination of Dex/RA has a synergistic effect on endogenous PEPCK gene expression in rat hepatocytes and H4IIE hepatoma cells. Reporter gene studies show that the gAF3 element and one of the two glucocorticoid receptor-binding elements (GR1) are most important for this effect. Chromatin immunoprecipitation assays revealed that when H4IIE cells were treated with Dex/RA, ligand-activated retinoic acid receptors (retinoic acid receptor/retinoid X receptor) and glucocorticoid receptors are recruited to this gene promoter, as are the transcription coregulators p300, CREB-binding protein, p/CIP, and SRC-1. Notably, the recruitment of p300 and RNA polymerase II to the PEPCK promoter is increased by the combined Dex/RA treatment compared with Dex or RA treatment alone. The functional importance of p300 in the Dex/RA response is illustrated by the observation that selective reduction of this coactivator, but not that of CREB-binding protein, abolishes the synergistic effect in H4IIE cells.


Assuntos
Dexametasona/administração & dosagem , Sinergismo Farmacológico , Regulação Enzimológica da Expressão Gênica , Fígado/enzimologia , Proteínas Nucleares/metabolismo , Fosfoenolpiruvato Carboxiquinase (ATP)/biossíntese , Transativadores/metabolismo , Tretinoína/administração & dosagem , Animais , Antineoplásicos Hormonais/administração & dosagem , Western Blotting , Carcinoma Hepatocelular/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Cromatina/metabolismo , Proteína p300 Associada a E1A , Genes Reporter , Glucocorticoides/administração & dosagem , Glucocorticoides/metabolismo , Hepatócitos/metabolismo , Humanos , Ligantes , Neoplasias Hepáticas/metabolismo , Luciferases/metabolismo , Mutação , Plasmídeos/metabolismo , Testes de Precipitina , Regiões Promotoras Genéticas , Estrutura Terciária de Proteína , RNA Polimerase II/metabolismo , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transfecção , Tretinoína/metabolismo
16.
Nat Med ; 10(3): 268-74, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-14770177

RESUMO

Lipid infusion or ingestion of a high-fat diet results in insulin resistance, but the mechanism underlying this phenomenon remains unclear. Here we show that, in rats fed a high-fat diet, whole-animal, muscle and liver insulin resistance is ameliorated following hepatic overexpression of malonyl-coenzyme A (CoA) decarboxylase (MCD), an enzyme that affects lipid partitioning. MCD overexpression decreased circulating free fatty acid (FFA) and liver triglyceride content. In skeletal muscle, levels of triglyceride and long-chain acyl-CoA (LC-CoA)-two candidate mediators of insulin resistance-were either increased or unchanged. Metabolic profiling of 36 acylcarnitine species by tandem mass spectrometry revealed a unique decrease in the concentration of one lipid-derived metabolite, beta-OH-butyrate, in muscle of MCD-overexpressing animals. The best explanation for our findings is that hepatic expression of MCD lowered circulating FFA levels, which led to lowering of muscle beta-OH-butyrate levels and improvement of insulin sensitivity.


Assuntos
Carboxiliases/metabolismo , Carnitina/análogos & derivados , Resistência à Insulina/fisiologia , Metabolismo dos Lipídeos , Fígado/metabolismo , Músculo Esquelético/metabolismo , Acil Coenzima A/metabolismo , Adenoviridae/genética , Adenoviridae/metabolismo , Animais , Carboxiliases/genética , Carnitina/química , Carnitina/metabolismo , Células Cultivadas , Gorduras na Dieta , Hepatócitos/citologia , Hepatócitos/metabolismo , Insulina/metabolismo , Fígado/citologia , Masculino , Ratos , Ratos Wistar , Triglicerídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA