Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biol Pharm Bull ; 46(8): 1049-1056, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37532556

RESUMO

Bortezomib, an anticancer drug for multiple myeloma and mantle cell lymphoma, causes severe adverse events and leads to peripheral neuropathy. The associated neuropathy limits the use of bortezomib and could lead to discontinuation of the treatment; therefore, effective intervention is crucial. In the present study, we statistically searched for a drug that could alleviate bortezomib-induced peripheral neuropathy using adverse event self-reports. We observed that specific inhibitors of the mechanistic target of rapamycin (mTOR) lowered the incidence of bortezomib-induced peripheral neuropathy. These findings were experimentally validated in mice, which exhibited long-lasting mechanical hypersensitivity after repeated bortezomib treatment. This effect was inhibited for hours after a systemic injection with rapamycin or everolimus in a dose-dependent manner. Bortezomib-induced allodynia was accompanied by the activation of spinal astrocytes, and intrathecal injection of mTOR inhibitors or an inhibitor of ribosomal protein S6 kinase 1, a downstream target of mTOR, exhibited considerable analgesic effects in a dose-dependent manner. These results suggest that mTOR inhibitors, which are readily available to patients prescribed bortezomib, are one of the most effective therapeutics for bortezomib-induced peripheral neuropathy.


Assuntos
Antineoplásicos , Bortezomib , Doenças do Sistema Nervoso Periférico , Animais , Camundongos , Antineoplásicos/efeitos adversos , Bortezomib/efeitos adversos , Inibidores de MTOR , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/tratamento farmacológico , Doenças do Sistema Nervoso Periférico/metabolismo , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/metabolismo
2.
Sci Adv ; 9(29): eadh0102, 2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37478173

RESUMO

Vascular cognitive impairment (VCI) refers to cognitive alterations caused by vascular disease, which is associated with various types of dementia. Because chronic cerebral hypoperfusion (CCH) induces VCI, we used bilateral common carotid artery stenosis (BCAS) mice as a CCH-induced VCI model. Transient receptor potential ankyrin 1 (TRPA1), the most redox-sensitive TRP channel, is functionally expressed in the brain. Here, we investigated the pathophysiological role of TRPA1 in CCH-induced VCI. During early-stage CCH, cognitive impairment and white matter injury were induced by BCAS in TRPA1-knockout but not wild-type mice. TRPA1 stimulation with cinnamaldehyde ameliorated BCAS-induced outcomes. RNA sequencing analysis revealed that BCAS increased leukemia inhibitory factor (LIF) in astrocytes. Moreover, hydrogen peroxide-treated TRPA1-stimulated primary astrocyte cultures expressed LIF, and culture medium derived from these cells promoted oligodendrocyte precursor cell myelination. Overall, TRPA1 in astrocytes prevents CCH-induced VCI through LIF production. Therefore, TRPA1 stimulation may be a promising therapeutic approach for VCI.


Assuntos
Isquemia Encefálica , Disfunção Cognitiva , Canais de Potencial de Receptor Transitório , Substância Branca , Camundongos , Animais , Astrócitos , Canal de Cátion TRPA1/genética , Fator Inibidor de Leucemia/farmacologia , Disfunção Cognitiva/complicações , Isquemia Encefálica/complicações , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
3.
Int J Mol Sci ; 24(4)2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36834875

RESUMO

Abnormalities in the peripheral immune system are involved in the pathophysiology of fibromyalgia, although their contribution to the painful symptoms remains unknown. Our previous study reported the ability of splenocytes to develop pain-like behavior and an association between the central nervous system (CNS) and splenocytes. Since the spleen is directly innervated by sympathetic nerves, this study aimed to examine whether adrenergic receptors are necessary for pain development or maintenance using an acid saline-induced generalized pain (AcGP) model (an experimental model of fibromyalgia) and whether the activation of these receptors is also essential for pain reproduction by the adoptive transfer of AcGP splenocytes. The administration of selective ß2-blockers, including one with only peripheral action, prevented the development but did not reverse the maintenance of pain-like behavior in acid saline-treated C57BL/6J mice. Neither a selective α1-blocker nor an anticholinergic drug affects the development of pain-like behavior. Furthermore, ß2-blockade in donor AcGP mice eliminated pain reproduction in recipient mice injected with AcGP splenocytes. These results suggest that peripheral ß2-adrenergic receptors play an important role in the efferent pathway from the CNS to splenocytes in pain development.


Assuntos
Fibromialgia , Receptores Adrenérgicos beta 2 , Camundongos , Animais , Receptores Adrenérgicos beta 2/metabolismo , Fibromialgia/metabolismo , Baço/metabolismo , Camundongos Endogâmicos C57BL , Receptores Adrenérgicos/metabolismo , Dor/metabolismo , Sistema Nervoso Central/metabolismo , Sistema Nervoso Simpático/metabolismo , Receptores Adrenérgicos beta/metabolismo , Antagonistas Adrenérgicos beta/farmacologia
4.
Biol Pharm Bull ; 46(1): 102-110, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36596518

RESUMO

Peripheral neuropathy is one of the major adverse effects that limit the clinical application of bortezomib (BTZ). However, the underlying mechanisms of BTZ-induced peripheral neuropathy (BIPN) remain elusive. To examine cell types potentially involved in the development of BIPN, we used four purified cultures of cells of the peripheral nervous system: Schwann cells (SCs), satellite glial cells (SGCs), macrophages, and dorsal root ganglion (DRG) neurons. Administration of a low BTZ concentration (5 nM; similar to concentrations in clinical use) caused dedifferentiation of cultured SCs, returning mature SCs to an immature state. In cultured SGCs, BTZ increased glial fibrillary acidic protein (GFAP) levels without inducing the release of inflammatory cytokines or chemokines. In macrophages, BTZ caused little inflammatory response. Finally, in DRG neurons, BTZ strongly suppressed the expression levels of sensor and transducer ion channels without affecting cell morphology. Taken together, low concentrations of BTZ can cause SC dedifferentiation (i.e., demyelination), increased GFAP level in SGC, and decreased expression levels of sensor and transducer ion channels in DRG neurons (i.e., numbness feeling). Thus, we have reported, for the first time, specific effects of BTZ on peripheral nervous system cells, thereby contributing to a better understanding of the initiating mechanism of BIPN.


Assuntos
Gânglios Espinais , Doenças do Sistema Nervoso Periférico , Humanos , Bortezomib/efeitos adversos , Gânglios Espinais/metabolismo , Neurônios , Neuroglia/metabolismo , Células de Schwann/metabolismo , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Macrófagos/metabolismo , Canais Iônicos
5.
Glia ; 70(9): 1666-1680, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35506586

RESUMO

Astrocytes are glial cells that serve homeostatic functions in the central nervous system (CNS). Recent research, however, suggests that under pathological conditions, astrocytes are stimulated by various factors and actively participate in CNS inflammation. In the present study, we found that astrocytes upregulate various inflammatory factors including prostaglandin E2 (PGE2 ) by co-stimulation with tumor necrosis factor-alpha (TNFα) and interleukin-1alpha (IL1α). These TNFα/IL1α-stimulated astrocytes also showed increased Ca2+ release from the endoplasmic reticulum (ER) and increased expression of Orai2, a member of the store-operated calcium channel (SOCC) family. To reveal the role of Orai2, we used astrocytes in which Orai2 was knocked-down (KD) or knocked-out (KO). The expression of the prostaglandin E synthase Ptges and the production of PGE2 were higher in Orai2-KD astrocytes than in WT astrocytes when stimulated with TNFα and IL1α. Orai2-KO astrocytes also showed increased expression of Ptges and increased PGE2 production. The expression of Ptgs2, another PGE2 synthetic enzyme, was also upregulated in Orai2-KO astrocytes. Moreover, Orai2-KO astrocytes showed increased store-operated calcium entry (SOCE) and increased Orai1 expression. These results suggest that Orai2 is upregulated in TNFα/IL1α-stimulated astrocytes and reduces PGE2 production to some extent, modulating CNS inflammation. Our findings may aid in understanding how astrocytes are associated with inflammatory responses, and the identification of new targets that modulate astrocytic reactivity.


Assuntos
Astrócitos , Interleucina-1alfa , Proteína ORAI2 , Prostaglandinas E , Fator de Necrose Tumoral alfa , Animais , Astrócitos/metabolismo , Cálcio/metabolismo , Sinalização do Cálcio , Inflamação , Interleucina-1alfa/metabolismo , Interleucina-1alfa/farmacologia , Camundongos , Proteína ORAI2/metabolismo , Prostaglandinas E/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/farmacologia
6.
Front Neurosci ; 16: 1082375, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36760795

RESUMO

Repeated administration of dopamine D2 receptor (D2R) antagonists, which is the treatment for psychosis, often causes tardive dyskinesia (TD). Despite notable clinical demand, effective treatment for TD has not been established yet. The neural mechanism involving the hyperinhibition of indirect pathway medium spiny neurons (iMSNs) in the striatum is considered one of the main causes of TD. In this study, we focused on adenosine A2A receptors (A2ARs) expressed in iMSNs and investigated whether pharmacological activation of A2ARs improves dyskinetic symptoms in a TD mouse model. A 21-day treatment with haloperidol increased the number of vacuous chewing movements (VCMs) and decreased the number of c-Fos+/ppENK+ iMSNs in the dorsal striatum. Haloperidol-induced VCMs were reduced by acute intraperitoneal administration of an A2AR agonist, CGS 21680A. Consistently, haloperidol-induced VCMs and decrease in the number of c-Fos+/ppENK+ iMSNs were also mitigated by intrastriatal injection of CGS 21680A. The effects of intrastriatal CGS 21680A were not observed when it was concomitantly administered with a ß-arrestin inhibitor, barbadin. Finally, intrastriatal injection of an arrestin-biased D2R agonist, UNC9994, also inhibited haloperidol-induced VCMs. These results suggest that A2AR agonists mitigate TD symptoms by activating striatal iMSNs via ß-arrestin signaling.

7.
Biol Pharm Bull ; 44(2): 181-187, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33518671

RESUMO

Oligodendrocyte precursor cells (OPCs) are glial cells that differentiate into oligodendrocytes and myelinate axons. The number of OPCs is reportedly increased in brain lesions in some demyelinating diseases and during ischemia; however, these cells also secrete cytokines and elicit both protective and deleterious effects in response to brain injury. The mechanism regulating the behaviors of OPCs in physiological and pathological conditions must be elucidated to control these cells and to treat demyelinating diseases. Here, we focused on transient receptor potential melastatin 3 (TRPM3), a Ca2+-permeable channel that is activated by the neurosteroid pregnenolone sulfate (PS) and body temperature. Trpm3+/Pdgfra+ OPCs were detected in the cerebral cortex (CTX) and corpus callosum (CC) of P4 and adult rats by in situ hybridization. Trpm3 expression was detected in primary cultured rat OPCs and was increased by treatment with tumor necrosis factor α (TNFα). Application of PS (30-100 µM) increased the Ca2+ concentration in OPCs and this effect was inhibited by co-treatment with the TRP channel blocker Gd3+ (100 µM) or the TRPM3 inhibitor isosakuranetin (10 µM). Stimulation of TRPM3 with PS (50 µM) did not affect the differentiation or migration of OPCs. The number of Trpm3+ OPCs was markedly increased in demyelinated lesions in an endothelin-1 (ET-1)-induced ischemic rat model. In conclusion, TRPM3 is functionally expressed in OPCs in vivo and in vitro and is upregulated in inflammatory conditions such as ischemic insults and TNFα treatment, implying that TRPM3 is involved in the regulation of specific behaviors of OPCs in pathological conditions.


Assuntos
Córtex Cerebral/patologia , Doenças Desmielinizantes/patologia , Células Precursoras de Oligodendrócitos/patologia , Acidente Vascular Cerebral Lacunar/patologia , Canais de Cátion TRPM/metabolismo , Animais , Células Cultivadas , Córtex Cerebral/irrigação sanguínea , Córtex Cerebral/citologia , Corpo Caloso/irrigação sanguínea , Corpo Caloso/citologia , Corpo Caloso/patologia , Doenças Desmielinizantes/etiologia , Modelos Animais de Doenças , Humanos , Células Precursoras de Oligodendrócitos/efeitos dos fármacos , Pregnenolona/farmacologia , Cultura Primária de Células , Ratos , Receptor alfa de Fator de Crescimento Derivado de Plaquetas , Acidente Vascular Cerebral Lacunar/complicações , Canais de Cátion TRPM/agonistas , Regulação para Cima
8.
Biochem Biophys Res Commun ; 529(3): 590-595, 2020 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-32736678

RESUMO

Intracerebral hemorrhage (ICH) is one of the most severe subtypes of stroke with high morbidity and mortality. Although a lot of drug discovery studies have been conducted, the drugs with satisfactory therapeutic effects for motor paralysis after ICH have yet to reach clinical application. Transient receptor potential vanilloid 4 (TRPV4), a Ca2+-permeable cation channel and activated by hypoosmolarity and warm temperature, is expressed in various cell types. The present study investigated whether TRPV4 would participate in the brain damage in a mouse model of ICH. ICH was induced by intrastriatal treatment of collagenase. Administration of GSK1016790A, a selective TRPV4 agonist, attenuated neurological and motor deficits. The inhibitory effects of the TRPV4 agonist in collagenase-injected WT mice were completely disappeared in TRPV4-KO mice. The TRPV4 agonist did not alter brain injury volume and brain edema at 1 and 3 days after ICH induction. The TRPV4 agonist did not show any differences with respect to the increased number of Iba1-positive microglia/macrophages, GFAP-positive astrocytes, and Gr1-positive neutrophils at 1 and 3 days after ICH induction. Quantitative RT-PCR experiments revealed that the TRPV4 agonist significantly upregulated the expression level of c-fos, a marker of neuronal activity, while the agonist gave no effects on the expression level of cytokines/chemokines at 1 day after ICH induction, These results suggest that stimulation of TRPV4 would ameliorate ICH-induced brain injury, presumably by increased neuronal activity and TRPV4 provides a novel therapeutic target for the treatment for ICH.


Assuntos
Hemorragia Cerebral/complicações , Leucina/análogos & derivados , Transtornos Motores/prevenção & controle , Doenças do Sistema Nervoso/prevenção & controle , Sulfonamidas/farmacologia , Canais de Cátion TRPV/agonistas , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Hemorragia Cerebral/induzido quimicamente , Colagenases , Modelos Animais de Doenças , Expressão Gênica/efeitos dos fármacos , Leucina/farmacologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transtornos Motores/etiologia , Doenças do Sistema Nervoso/etiologia , Proteínas Proto-Oncogênicas c-fos/genética , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo
9.
Int J Mol Sci ; 21(6)2020 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-32245184

RESUMO

BACKGROUND: Reward processing is fundamental for animals to survive and reproduce. Many studies have shown the importance of dorsal raphe nucleus (DRN) serotonin (5-HT) neurons in this process, but the strongly correlative link between the activity of DRN 5-HT neurons and rewarding/aversive potency is under debate. Our primary objective was to reveal this link using two different strategies to transduce DRN 5-HT neurons. METHODS: For transduction of 5-HT neurons in wildtype mice, adeno-associated virus (AAV) bearing the mouse tryptophan hydroxylase 2 (TPH2) gene promoter was used. For transduction in Tph2-tTA transgenic mice, AAVs bearing the tTA-dependent TetO enhancer were used. To manipulate the activity of 5-HT neurons, optogenetic actuators (CheRiff, eArchT) were expressed by AAVs. For measurement of rewarding/aversive potency, we performed a nose-poke self-stimulation test and conditioned place preference (CPP) test. RESULTS: We found that stimulation of DRN 5-HT neurons and their projections to the ventral tegmental area (VTA) increased the number of nose-pokes in self-stimulation test and CPP scores in both targeting methods. Concomitantly, CPP scores were decreased by inhibition of DRN 5-HT neurons and their projections to VTA. CONCLUSION: Our findings indicate that the activity of DRN 5-HT neurons projecting to the VTA is a key modulator of balance between reward and aversion.


Assuntos
Núcleo Dorsal da Rafe/fisiologia , Neurônios/fisiologia , Serotonina/metabolismo , Triptofano Hidroxilase/metabolismo , Área Tegmentar Ventral/fisiologia , Animais , Prosencéfalo Basal/metabolismo , Prosencéfalo Basal/fisiologia , Escala de Avaliação Comportamental , Núcleo Central da Amígdala/metabolismo , Núcleo Central da Amígdala/fisiologia , Dependovirus/genética , Núcleo Dorsal da Rafe/metabolismo , Elementos Facilitadores Genéticos , Vetores Genéticos , Região Hipotalâmica Lateral/metabolismo , Região Hipotalâmica Lateral/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/metabolismo , Núcleo Accumbens/metabolismo , Núcleo Accumbens/fisiologia , Optogenética , Regiões Promotoras Genéticas , Recompensa , Serotonina/fisiologia , Triptofano Hidroxilase/genética , Área Tegmentar Ventral/metabolismo
10.
Biochem Biophys Res Commun ; 514(4): 1040-1044, 2019 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-31097227

RESUMO

Microglia are immune cells in the central nervous system (CNS) and essential for homeostasis that are important for both neuroprotection and neurotoxicity, and are activated in a variety of CNS diseases. Microglia aggravate cognitive impairment induced by chronic cerebral hypoperfusion, but their precise roles under these conditions remain unknown. Here, we used PLX3397, a colony-stimulating factor 1 receptor inhibitor, to deplete microglia in mice with chronic cerebral hypoperfusion induced by bilateral common carotid artery stenosis (BCAS). Cognitive impairment induced 28 days after BCAS was significantly improved in mice fed a diet containing PLX3397. In PLX3397-fed mice, microglia were depleted and white matter injury induced by BCAS was suppressed. In addition, the expression of proinflammatory cytokines, interleukin 6 and tumor necrosis factor alpha, was suppressed in PLX3397-fed mice. Taken together, these findings suggest that microglia play destructive roles in the development of cognitive impairment and white matter injury induced by chronic cerebral hypoperfusion. Thus, microglia represent a potential therapeutic target for chronic cerebral hypoperfusion-related diseases.


Assuntos
Transtornos Cerebrovasculares/metabolismo , Disfunção Cognitiva/metabolismo , Modelos Animais de Doenças , Microglia/metabolismo , Substância Branca/metabolismo , Animais , Transtornos Cerebrovasculares/patologia , Doença Crônica , Disfunção Cognitiva/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Substância Branca/lesões , Substância Branca/patologia
11.
eNeuro ; 6(1)2019.
Artigo em Inglês | MEDLINE | ID: mdl-30834304

RESUMO

Obsessive-compulsive disorder (OCD) is a neuropsychiatric disorder characterized by the repeated rise of concerns (obsessions) and repetitive unwanted behavior (compulsions). Although selective serotonin reuptake inhibitors (SSRIs) is the first-choice drug, response rates to SSRI treatment vary between symptom dimensions. In this study, to find a therapeutic target for SSRI-resilient OCD symptoms, we evaluated treatment responses of quinpirole (QNP) sensitization-induced OCD-related behaviors in mice. SSRI administration rescued the cognitive inflexibility, as well as hyperactivity in the lateral orbitofrontal cortex (lOFC), while no improvement was observed for the repetitive behavior. D2 receptor signaling in the central striatum (CS) was involved in SSRI-resistant repetitive behavior. An adenosine A2A antagonist, istradefylline, which rescued abnormal excitatory synaptic function in the CS indirect pathway medium spiny neurons (MSNs) of sensitized mice, alleviated both of the QNP-induced abnormal behaviors with only short-term administration. These results provide a new insight into therapeutic strategies for SSRI-resistant OCD symptoms and indicate the potential of A2A antagonists as a rapid-acting anti-OCD drug.


Assuntos
Antagonistas do Receptor A2 de Adenosina/farmacologia , Transtorno Obsessivo-Compulsivo/tratamento farmacológico , Transtornos Psicóticos/tratamento farmacológico , Purinas/farmacologia , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Cognição/efeitos dos fármacos , Modelos Animais de Doenças , Resistência a Medicamentos , Masculino , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Transtorno Obsessivo-Compulsivo/metabolismo , Transtornos Psicóticos/metabolismo , Quimpirol , Receptores de Dopamina D2/metabolismo , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Comportamento Estereotipado/efeitos dos fármacos , Comportamento Estereotipado/fisiologia , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia , Técnicas de Cultura de Tecidos
12.
J Neurosci ; 38(39): 8484-8495, 2018 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-30201769

RESUMO

Multiple sclerosis (MS) is a chronic inflammatory disorder of the CNS characterized by demyelination and axonal injury. Current therapies that mainly target lymphocytes do not fully meet clinical need due to the risk of severe side effects and lack of efficacy against progressive MS. Evidence suggests that MS is associated with CNS inflammation, although the underlying molecular mechanism is poorly understood. Transient receptor potential melastatin 2 (TRPM2), a Ca2+-permeable nonselective cation channel, is expressed at high levels in the brain and by immune cells, including monocyte lineage cells. Here, we show that TRPM2 plays a pathological role in experimental autoimmune encephalomyelitis (EAE), an animal model of MS. Knockout (KO) or pharmacological inhibition of TRPM2 inhibited progression of EAE and TRPM2-KO mice showed lower activation of Iba1-immunopositive monocyte lineage cells and neutrophil infiltration of the CNS than WT mice. Moreover, CXCL2 production in TRPM2-KO mice was significantly reduced at day 14, although the severity of EAE was the same as that in WT mice at that time point. In addition, we used BM chimeric mice to show that TRPM2 expressed by CNS-infiltrating macrophages contributes to progression of EAE. Because CXCL2 induces migration of neutrophils, these results indicate that reduced expression of CXCL2 in the CNS suppresses neutrophil infiltration and slows progression of EAE in TRPM2-KO mice. Together, the results suggest that TRPM2 plays an important role in progression of EAE pathology and shed light on its putative role as a therapeutic target for MS.SIGNIFICANCE STATEMENT Current therapies for multiple sclerosis (MS), which mainly target lymphocytes, carry the risk of severe side effects and lack efficacy against the progressive form of the disease. Here, we found that the transient receptor potential melastatin 2 (TRPM2) channel, which is abundantly expressed in CNS-infiltrating macrophages, plays a crucial role in development of experimental autoimmune encephalomyelitis (EAE), an animal model of MS. EAE progression was suppressed by Knockout (KO) or pharmacological inhibition of TRPM2; this was attributed to a reduction in CXCL2 chemokine production by CNS-infiltrating macrophages in TRPM2-KO mice, resulting in suppression of neutrophil infiltration into the CNS. These results reveal an important role of TRPM2 in the pathogenesis of EAE and shed light on its potential as a therapeutic target.


Assuntos
Quimiocina CXCL2/imunologia , Encefalomielite Autoimune Experimental/imunologia , Esclerose Múltipla/imunologia , Canais de Cátion TRPM/imunologia , Animais , Proteínas de Ligação ao Cálcio/imunologia , Proteínas de Ligação ao Cálcio/metabolismo , Quimiocina CXCL2/metabolismo , Encefalomielite Autoimune Experimental/metabolismo , Feminino , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas dos Microfilamentos/imunologia , Proteínas dos Microfilamentos/metabolismo , Monócitos/imunologia , Monócitos/metabolismo , Esclerose Múltipla/metabolismo , Infiltração de Neutrófilos , Canais de Cátion TRPM/genética , Canais de Cátion TRPM/metabolismo
13.
Brain Behav Immun ; 74: 121-132, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30171890

RESUMO

The present study was designed to investigate the correlation between the spatial and temporal aspects of immune responses and genetic heterogeneity in the progression of peripheral neuropathic pain. To address this issue, we first screened four inbred mouse strains (C57BL/6J, C3H/He, DBA/2, and A/J mice) to identify high- and low-responder strains to mechanical hypersensitivity induced by partial sciatic nerve ligation (pSNL). Among these strains, the C57BL/6J strain showed the highest vulnerability to pSNL-induced mechanical hypersensitivity, whereas the C3H/HeSlc strain was most resistant. C3H/HeSlc mice exhibited a significant increase in CD206-immunoreactivity (anti-inflammatory macrophages) in the dorsal root ganglia (DRG) at 3 and 7 days, and lower Iba1-immunoreactivity (microglia) in the spinal cord from 3 to 14 days after pSNL than C57BL/6J mice. These phenomena might be associated with a decrease in the production of inflammatory factors (interleukin-1ß, interleukin-6, and CX3CL1) in the DRG and the poor responsiveness of spinal microglia (i.e. microglial production of IL1ß, CCL2, and TNFα) against CX3CL1 in C3H/HeSlc mice. Behavioral experiments using bone marrow (BM) chimeric mice derived by crossing C3H/HeSlc and C57BL/6J strains showed that the strength of mechanical hypersensitivity 3 days following pSNL was inversely correlated with the increase in the ratio of anti-inflammatory/pro-inflammatory DRG macrophages, which was based on the BM-derived hematopoietic cells from donor mice. By contrast, the intensity of Iba1-immunoreactivity (microglia) in the spinal cord was dependent on the phenotypes of recipient mice, but not affected by the phenotypes of BM-derived donor hematopoietic cells. These findings suggest that the strain-specific aspects of DRG macrophages and spinal microglia might be related to the early and late phases of pSNL-induced mechanical hypersensitivity, respectively. This study presents a greater understanding of the differences in neuropathic pain among genetically heterogeneous inbred mouse strains, and provides further insights into the spatial and temporal roles of the immune system in the pathogenesis of neuropathic pain.


Assuntos
Camundongos Endogâmicos/imunologia , Neuralgia/etiologia , Neuralgia/imunologia , Animais , Modelos Animais de Doenças , Feminino , Gânglios Espinais/patologia , Hiperalgesia/etiologia , Imunidade Ativa/fisiologia , Macrófagos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Camundongos Transgênicos , Microglia/patologia , Neuralgia/metabolismo , Traumatismos dos Nervos Periféricos/complicações , Nervo Isquiático/patologia , Medula Espinal/patologia
14.
Mol Pain ; 14: 1744806918789812, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29968518

RESUMO

Background Diabetic peripheral neuropathy is a common long-term complication of diabetes. Accumulating evidence suggests that vascular impairment plays important roles in the pathogenesis of diabetic peripheral neuropathy, while the mechanism remains unclear. We recently reported that transient receptor potential ankyrin 1 (TRPA1) is sensitized by hypoxia, which can contribute to cold hypersensitivity. In this study, we investigated the involvement of TRPA1 and vascular impairment in painful diabetic peripheral neuropathy using streptozotocin-induced diabetic model mice. Results Streptozotocin-induced diabetic model mice showed mechanical and cold hypersensitivity with a peak at two weeks after the streptozotocin administration, which were likely to be paralleled with the decrease in the skin blood flow of the hindpaw. Streptozotocin-induced cold hypersensitivity was significantly inhibited by an antagonist HC-030031 (100 mg/kg) or deficiency for TRPA1, whereas mechanical hypersensitivity was unaltered. Consistent with these results, the nocifensive behaviors evoked by an intraplantar injection of the TRPA1 agonist allyl isothiocyanate (AITC) were enhanced two weeks after the streptozotocin administration. Both streptozotocin-induced cold hypersensitivity and the enhanced AITC-evoked nocifensive behaviors were significantly inhibited by a vasodilator, tadalafil (10 mg/kg), with recovery of the decreased skin blood flow. Similarly, in a mouse model of hindlimb ischemia induced by the ligation of the external iliac artery, AITC-evoked nocifensive behaviors were significantly enhanced three and seven days after the ischemic operation, whereas mechanical hypersensitivity was unaltered in TRPA1-knockout mice. However, no difference was observed between wild-type and TRPA1-knockout mice in the hyposensitivity for current or mechanical stimulation or the deceased density of intraepidermal nerve fibers eight weeks after the streptozotocin administration. Conclusion These results suggest that TRPA1 sensitization during diabetic vascular impairment causes cold, but not mechanical, hypersensitivity in the early painful phase of diabetic peripheral neuropathy. However, TRPA1 may play little or no role in the progression of diabetic peripheral neuropathy.


Assuntos
Síndromes Periódicas Associadas à Criopirina/etiologia , Neuropatias Diabéticas/fisiopatologia , Canal de Cátion TRPA1/metabolismo , Lesões do Sistema Vascular/etiologia , Acetanilidas/farmacologia , Animais , Antibióticos Antineoplásicos/toxicidade , Glicemia/efeitos dos fármacos , Glicemia/fisiologia , Peso Corporal/efeitos dos fármacos , Peso Corporal/fisiologia , Neuropatias Diabéticas/induzido quimicamente , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Membro Posterior/fisiopatologia , Isquemia/patologia , Isotiocianatos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Limiar da Dor/efeitos dos fármacos , Purinas/farmacologia , Pele/irrigação sanguínea , Estreptozocina/toxicidade , Canal de Cátion TRPA1/genética
15.
Front Physiol ; 8: 877, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29249972

RESUMO

Chronic inflammatory bladder disorders, such as interstitial cystitis/bladder pain syndrome, are associated with poor quality of life. The exact pathological processes remain unclear, but accumulating evidence suggests that reactive oxidative species (ROS) are involved in urinary bladder disorders. Transient receptor potential ankyrin 1 (TRPA1), the most sensitive TRP channel to ROS, was shown to be responsible for urinary bladder abnormalities and hyperalgesia in an acute cystitis model. However, the roles of TRPA1 in chronic inflammatory bladder are not fully understood. We previously established a novel mouse cystitis model induced by intravesical injection of hydrogen peroxide (H2O2), resulting in long-lasting frequent urination, bladder inflammation, pain-related behavior, and histopathological changes. In the present study, we investigated the pathophysiological role of TRPA1 in the H2O2-induced long-lasting cystitis mouse model. Under anesthesia, 1.5% H2O2 solution was introduced transurethrally into the bladder of female wild-type (WT) and TRPA1-knockout mice and maintained for 30 min. This increased the number of voids in WT mice at 1 and 7 days after injection, but reduced the number in TRPA1-knockout mice at 1 day but not 7 days after injection. Spontaneous locomotor activities (increase in freezing time and decrease in distance moved) were reduced at 3 h after injection in WT mice, whereas the spontaneous visceral pain-related behaviors were attenuated in TRPA1-knockout mice. Furthermore, upregulation of c-fos mRNA in the spinal cord at 1 day after injection was observed in WT but not TRPA1-knockout mice. However, there was no difference in histopathological changes in the urinary bladder, such as edematous thickening in the submucosa, between WT and TRPA1-knockout mice at 1 or 7 days after injection. Finally, Trpa1 mRNA levels in the L5-S1 dorsal root ganglion were not altered, but levels in the urinary bladder were drastically increased at 1 and 7 days after injection. Taken together, these results suggest that TRPA1 contributes to acute bladder hyperactivity such as frequent urination and bladder pain, but does not appear to play a major role in the pathological processes of long-lasting cystitis.

16.
Front Physiol ; 8: 878, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29163216

RESUMO

Oxaliplatin, a third-generation platinum-based chemotherapeutic agent, displays unique acute peripheral neuropathy triggered or enhanced by cold, and accumulating evidence suggests that transient receptor potential ankyrin 1 (TRPA1) is responsible. TRPA1 is activated by oxaliplatin via a glutathione-sensitive mechanism. However, oxaliplatin interrupts hydroxylation of a proline residue located in the N-terminal region of TRPA1 via inhibition of prolyl hydroxylase (PHD), which causes sensitization of TRPA1 to reactive oxygen species (ROS). Furthermore, PHD inhibition endows cold-insensitive human TRPA1 (hTRPA1) with ROS-dependent cold sensitivity. Since cysteine oxidation and proline hydroxylation regulate its activity, their association with oxaliplatin-induced TRPA1 activation and acquirement of cold sensitivity were investigated in the present study. A high concentration of oxaliplatin (1 mM) induced outward-rectifier whole-cell currents and increased the intracellular Ca2+ concentration in hTRPA1-expressing HEK293 cells, but did not increase the probability of hTRPA1 channel opening in the inside-out configuration. Oxaliplatin also induced the rapid generation of hydrogen peroxide, and the resultant Ca2+ influx was prevented in the presence of glutathione and in cysteine-mutated hTRPA1 (Cys641Ser)-expressing cells, whereas proline-mutated hTRPA1 (Pro394Ala)-expressing cells showed similar whole-cell currents and Ca2+ influx. By contrast, a lower concentration of oxaliplatin (100 µM) did not increase the intracellular Ca2+ concentration but did confer cold sensitivity on hTRPA1-expressing cells, and this was inhibited by PHD2 co-overexpression. Cold sensitivity was abolished by the mitochondria-targeting ROS scavenger mitoTEMPO and was minimal in cysteine-mutated hTRPA1 (Cys641Ser or Cys665Ser)-expressing cells. Thus, high oxaliplatin evokes ROS-mediated cysteine oxidation-dependent hTRPA1 activation independent of PHD activity, while a lower concentration induces cold-induced cysteine oxidation-dependent opening of hTRPA1 via PHD inhibition.

17.
Mol Pain ; 13: 1744806917743680, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29108466

RESUMO

Background: Acute postoperative pain is induced by most incisional surgeries and usually resolves with wound repair. However, many patients experience moderate to severe pain despite receiving currently available postoperative pain relief. Accumulating evidence suggests that inflammatory cells, neutrophils, and macrophages infiltrating the wound site contribute to the acute inflammation, pain, and subsequent wound repair. Colchicine is commonly used to relieve pain in gout by inhibiting the infiltration of granulocytes and other motile cells. In this study, we examined the effects of colchicine on acute postoperative pain and wound repair by correlating the infiltration of neutrophils and macrophages in a mouse model of postoperative pain induced by plantar incision. Furthermore, these effects of colchicine were compared with clodronate liposomes, which selectively deplete circulating macrophages. Results: Plantar incision induced mechanical hypersensitivity in the ipsilateral hind paw that peaked one day and lasted for three days after the surgery. Treatment with colchicine significantly attenuated the early infiltration of Gr1-positive cells (neutrophils) around the incision site and mechanical hypersensitivity, which was accompanied with inhibition of the subsequent infiltration of Iba1-positive cells (macrophages) and macrophage polarization toward the proinflammatory M1 phenotype. By contrast, an intravenous injection of clodronate liposomes significantly inhibited the infiltration of macrophages around the incision site but had little effect on the infiltration of neutrophils or mechanical hypersensitivity. Importantly, colchicine treatment significantly delayed wound closure after the incisional surgery, whereas clodronate liposome administration had no effect on wound closure. Conclusion: These results suggest that colchicine can alleviate acute postoperative pain and also enhance the risk of delayed wound repair, which are associated with the suppression of neutrophil and subsequent proinflammatory M1 macrophage infiltration around the incision site, while the involvement of macrophages may be limited.


Assuntos
Colchicina/farmacologia , Inflamação/tratamento farmacológico , Macrófagos/efeitos dos fármacos , Neutrófilos/efeitos dos fármacos , Dor Pós-Operatória/tratamento farmacológico , Dor Aguda/tratamento farmacológico , Animais , Modelos Animais de Doenças , Hiperalgesia/tratamento farmacológico , Masculino , Camundongos Endogâmicos C57BL , Cicatrização
18.
Sci Rep ; 7(1): 13609, 2017 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-29051549

RESUMO

Spontaneous activity of serotonergic neurons of the dorsal raphe nucleus (DRN) regulates mood and motivational state. Potentiation of serotonergic function is one of the therapeutic strategies for treatment of various psychiatric disorders, such as major depression, panic disorder and obsessive-compulsive disorder. However, the control mechanisms of the serotonergic firing activity are still unknown. In this study, we examined the control mechanisms for serotonergic spontaneous activity and effects of chronic antidepressant administration on these mechanisms by using modified ex vivo electrophysiological recording methods. Serotonergic neurons remained firing even in the absence of glutamatergic and GABAergic ionotropic inputs, while blockade of L-type voltage dependent Ca2+ channels (VDCCs) in serotonergic neurons decreased spontaneous firing activity. L-type VDCCs in serotonergic neurons received gamma-aminobutyric acid B (GABAB) receptor-mediated inhibition, which maintained serotonergic slow spontaneous firing activity. Chronic administration of an antidepressant, citalopram, disinhibited the serotonergic spontaneous firing activity by weakening the GABAB receptor-mediated inhibition of L-type VDCCs in serotonergic neurons. Our results provide a new mechanism underlying the spontaneous serotonergic activity and new insights into the mechanism of action of antidepressants.


Assuntos
Antidepressivos/farmacologia , Canais de Cálcio Tipo L/metabolismo , Receptores de GABA-B/metabolismo , Neurônios Serotoninérgicos/efeitos dos fármacos , Éster Metílico do Ácido 3-Piridinacarboxílico, 1,4-Di-Hidro-2,6-Dimetil-5-Nitro-4-(2-(Trifluormetil)fenil)/farmacologia , Potenciais de Ação/efeitos dos fármacos , Animais , Canais de Cálcio Tipo L/química , Citalopram/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Técnicas de Patch-Clamp , Receptores de GABA-B/química , Neurônios Serotoninérgicos/fisiologia
19.
Glia ; 65(6): 1005-1016, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28300348

RESUMO

A biologically active lipid, sphingosine-1-phosphate (S1P) is highly abundant in blood, and plays an important role in regulating the growth, survival, and migration of many cells. Binding of the endogenous ligand S1P results in activation of various signaling pathways via G protein-coupled receptors, some of which generates Ca2+ mobilization. In astrocytes, S1P is reported to evoke Ca2+ signaling, proliferation, and migration; however, the precise mechanisms underlying such responses in astrocytes remain to be elucidated. Transient receptor potential canonical (TRPC) channels are Ca2+ -permeable cation channels expressed in astrocytes and involved in Ca2+ influx after receptor stimulation. In this study, we investigated the involvement of TRPC channels in S1P-induced cellular responses. In Ca2+ imaging experiments, S1P at 1 µM elicited a transient increase in intracellular Ca2+ in astrocytes, followed by sustained elevation. The sustained Ca2+ response was markedly suppressed by S1P2 receptor antagonist JTE013, S1P3 receptor antagonist CAY10444, or non-selective TRPC channel inhibitor Pyr2. Additionally, S1P increased chemokine CXCL1 mRNA expression and release, which were suppressed by TRPC inhibitor, inhibition of Ca2+ mobilization, MAPK pathway inhibitors, or knockdown of the TRPC channel isoform TRPC6. Taken together, these results demonstrate that S1P induces Ca2+ signaling in astrocytes via Gq -coupled receptors S1P2 and S1P3 , followed by Ca2+ influx through TRPC6 that could activate MAPK signaling, which leads to increased secretion of the proinflammatory or neuroprotective chemokine CXCL1.


Assuntos
Astrócitos/metabolismo , Sinalização do Cálcio/fisiologia , Córtex Cerebral/metabolismo , Quimiocina CXCL1/metabolismo , Lisofosfolipídeos/metabolismo , Esfingosina/análogos & derivados , Canais de Cátion TRPC/metabolismo , Animais , Astrócitos/efeitos dos fármacos , Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Cátions Bivalentes/metabolismo , Movimento Celular/fisiologia , Células Cultivadas , Córtex Cerebral/efeitos dos fármacos , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/fisiologia , RNA Mensageiro/metabolismo , Ratos Wistar , Receptores de Lisoesfingolipídeo/antagonistas & inibidores , Receptores de Lisoesfingolipídeo/metabolismo , Esfingosina/metabolismo , Canais de Cátion TRPC/antagonistas & inibidores , Canais de Cátion TRPC/genética
20.
Physiol Rep ; 5(4)2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28242819

RESUMO

Novel longer lasting inflammatory bladder animal models are needed to better understand the pathophysiology of chronic cystitis. We previously developed a relatively long-lasting mouse cystitis model by intravesical injection of hydrogen peroxide (H2O2). To further evaluate its pathophysiology, in this study, we established and analyzed a rat cystitis model. Under anesthesia, 1.5% H2O2 solution was introduced transurethrally into the bladder of female rats, and kept for 30 min. The H2O2 injection significantly increased the number of micturition events up to day 14 and decreased urine volume per micturition, with the smallest volumes on day 3, compared with the vehicle-treated group. Cystometric analysis on day 7 revealed that intercontraction intervals were significantly shortened without affecting the baseline, threshold, or maximum pressures. Intravesical resiniferatoxin-evoked nociceptive behaviors, such as freezing, were significantly enhanced on days 7 and 14. Furthermore, histopathology revealed hemorrhage, edema, infiltration of neutrophils into the lamina propria, and urothelial denudation in the early phase (day 1). These damages were gradually repaired, while hyperplasia of the urothelium, vascularization, increases in fibroblast counts, and infiltration of mast cells and eosinophils were observed through the later phase (days 7 and 14). These results suggest that intravesical H2O2 injection induces relatively long-lasting cystitis with enhanced bladder activity and pain sensation in rats. This approach thus provides a novel rat long-lasting cystitis model that allows us to analyze detailed symptoms and pathophysiology of H2O2-induced cystitis model than the mouse model and may be used to investigate the pathophysiology and treatment of chronic bladder hypersensitive disorders, such as bladder pain syndrome/interstitial cystitis.


Assuntos
Cistite/induzido quimicamente , Modelos Animais de Doenças , Peróxido de Hidrogênio , Micção/fisiologia , Administração Intravesical , Animais , Comportamento Animal/fisiologia , Cistite/fisiopatologia , Feminino , Nociceptividade/fisiologia , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA