Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Hepatol Commun ; 8(5)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38619434

RESUMO

BACKGROUND: Recent reports have unveiled the potential utility of l-carnitine to alleviate metabolic dysfunction-associated steatohepatitis (MASH) by enhancing mitochondrial metabolic function. However, its efficacy at preventing the development of HCC has not been assessed fully. METHODS: l-carnitine (2 g/d) was administered to 11 patients with MASH for 10 weeks, and blood liver function tests were performed. Five patients received a serial liver biopsy, and liver histology and hepatic gene expression were evaluated using this tissue. An atherogenic plus high-fat diet MASH mouse model received long-term l-carnitine administration, and liver histology and liver tumor development were evaluated. RESULTS: Ten-week l-carnitine administration significantly improved serum alanine transaminase and aspartate transaminase levels along with a histological improvement in the NAFLD activity score, while steatosis and fibrosis were not improved. Gene expression profiling revealed a significant improvement in the inflammation and profibrotic gene signature as well as the recovery of lipid metabolism. Long-term l-carnitine administration to atherogenic plus high-fat diet MASH mice substantially improved liver histology (inflammation, steatosis, and fibrosis) and significantly reduced the incidence of liver tumors. l-carnitine directly reduced the expression of the MASH-associated and stress-induced transcriptional factor early growth response 1. Early growth response 1 activated the promoter activity of neural precursor cell expressed, developmentally downregulated protein 9 (NEDD9), an oncogenic protein. Thus, l-carnitine reduced the activation of the NEDD9, focal adhesion kinase 1, and AKT oncogenic signaling pathway. CONCLUSIONS: Short-term l-carnitine administration ameliorated MASH through its anti-inflammatory effects. Long-term l-carnitine administration potentially improved the steatosis and fibrosis of MASH and may eventually reduce the risk of HCC.


Assuntos
Carcinoma Hepatocelular , Fígado Gorduroso , Neoplasias Hepáticas , Humanos , Animais , Camundongos , Neoplasias Hepáticas/prevenção & controle , Carcinoma Hepatocelular/prevenção & controle , Fígado Gorduroso/tratamento farmacológico , Fígado Gorduroso/prevenção & controle , Carnitina/farmacologia , Carnitina/uso terapêutico , Fibrose , Inflamação , Proteínas Adaptadoras de Transdução de Sinal
2.
Hepatol Commun ; 8(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38180972

RESUMO

BACKGROUND: Recent clinical studies have suggested that the risk of developing HCC might be lower in patients with chronic hepatitis B receiving tenofovir disoproxil fumarate than in patients receiving entecavir, although there is no difference in biochemical and virological remission between the 2 drugs. METHODS: The effects of nucleoside analogs (NsAs; lamivudine and entecavir) or nucleotide analogs (NtAs; adefovir disoproxil, tenofovir disoproxil fumarate, and tenofovir alafenamide) on cell growth and the expression of growth signaling molecules in hepatoma cell lines and PXB cells were investigated in vitro. The tumor inhibitory effects of NsAs or NtAs were evaluated using a mouse xenograft model, and protein phosphorylation profiles were investigated. The binding of NsAs or NtAs to the insulin receptor (INSR) was investigated by thermal shift assays. RESULTS: NtAs, but not NsAs, showed direct growth inhibitory effects on hepatoma cell lines in vitro and a mouse model in vivo. A phosphoprotein array revealed that INSR signaling was impaired and the levels of phosphorylated (p)-INSRß and downstream molecules phosphorylated (p)-IRS1, p-AKT, p-Gab1, and p-SHP2 were substantially reduced by NtAs. In addition, p-epidermal growth factor receptor and p-AKT levels were substantially reduced by NtAs. Similar findings were also found in PXB cells and nontumor lesions of liver tissues from patients with chronic hepatitis B. Prodrug NtAs, but not their metabolites (adefovir, adefovir monophosphate, adefovir diphosphate, tenofovir, tenofovir monophosphate, and tenofovir diphosphate), had such effects. A thermal shift assay showed the binding of NtAs to INSRß. CONCLUSIONS: NtAs (adefovir disoproxil, tenofovir disoproxil fumarate, and tenofovir alafenamide), which are adenine derivative acyclic nucleotide analogs, potentially bind to the ATP-binding site of growth factor receptors and inhibit their autophosphorylation, which might reduce the risk of HCC in patients with chronic hepatitis B.


Assuntos
Carcinoma Hepatocelular , Hepatite B Crônica , Hepatite B , Neoplasias Hepáticas , Humanos , Vírus da Hepatite B , Carcinoma Hepatocelular/tratamento farmacológico , Hepatite B Crônica/complicações , Hepatite B Crônica/tratamento farmacológico , Proteínas Proto-Oncogênicas c-akt , Neoplasias Hepáticas/tratamento farmacológico , Hepatite B/complicações , Hepatite B/tratamento farmacológico , Hepatócitos , Tenofovir/farmacologia , Tenofovir/uso terapêutico , Peptídeos e Proteínas de Sinalização Intercelular , Nucleotídeos
3.
Proc Natl Acad Sci U S A ; 120(40): e2307318120, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37748074

RESUMO

Epithelial tissue is at the forefront of innate immunity, playing a crucial role in the recognition and elimination of pathogens. Met is a receptor tyrosine kinase that is necessary for epithelial cell survival, proliferation, and regeneration. Here, we showed that Met is essential for the induction of cytokine production by cytosolic nonself double-stranded RNA through retinoic acid-inducible gene-I-like receptors (RLRs) in epithelial cells. Surprisingly, the tyrosine kinase activity of Met was dispensable for promoting cytokine production. Rather, the intracellular carboxy terminus of Met interacted with mitochondrial antiviral-signaling protein (MAVS) in RLR-mediated signaling to directly promote MAVS signalosome formation. These studies revealed a kinase activity-independent function of Met in the promotion of antiviral innate immune responses, defining dual roles of Met in both regeneration and immune responses in the epithelium.


Assuntos
Células Epiteliais , Receptores Proteína Tirosina Quinases , Imunidade Inata , Antivirais , Citocinas
4.
Cell Mol Gastroenterol Hepatol ; 15(3): 533-558, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36270602

RESUMO

BACKGROUND & AIMS: Hepatitis B virus (HBV) infection is difficult to cure owing to the persistence of covalently closed circular viral DNA (cccDNA). We performed single-cell transcriptome analysis of newly established HBV-positive and HBV-negative hepatocellular carcinoma cell lines and found that dedicator of cytokinesis 11 (DOCK11) was crucially involved in HBV persistence. However, the roles of DOCK11 in the HBV lifecycle have not been clarified. METHODS: The cccDNA levels were measured by Southern blotting and real-time detection polymerase chain reaction in various hepatocytes including PXB cells by using an HBV-infected model. The retrograde trafficking route of HBV capsid was investigated by super-resolution microscopy, proximity ligation assay, and time-lapse analysis. The downstream molecules of DOCK11 and underlying mechanism were examined by liquid chromatography-tandem mass spectrometry, immunoblotting, and enzyme-linked immunosorbent assay. RESULTS: The cccDNA levels were strongly increased by DOCK11 overexpression and repressed by DOCK11 suppression. Interestingly, DOCK11 functionally associated with retrograde trafficking proteins in the trans-Golgi network (TGN), Arf-GAP with GTPase domain, ankyrin repeat, and pleckstrin homology domain-containing protein 2 (AGAP2), and ADP-ribosylation factor 1 (ARF1), together with HBV capsid, to open an alternative retrograde trafficking route for HBV from early endosomes (EEs) to the TGN and then to the endoplasmic reticulum (ER), thereby avoiding lysosomal degradation. Clinically, DOCK11 levels in liver biopsies from patients with chronic hepatitis B were significantly reduced by entecavir treatment, and this reduction correlated with HBV surface antigen levels. CONCLUSIONS: HBV uses a retrograde trafficking route via EEs-TGN-ER for infection that is facilitated by DOCK11 and serves to maintain cccDNA. Therefore, DOCK11 is a potential therapeutic target to prevent persistent HBV infection.


Assuntos
Hepatite B Crônica , Hepatite B , Humanos , Vírus da Hepatite B/genética , Rede trans-Golgi/metabolismo , Hepatite B/metabolismo , Lisossomos/metabolismo
5.
Nat Commun ; 13(1): 3176, 2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35676290

RESUMO

Retinoic acid-inducible gene (RIG)-I is an essential innate immune sensor that recognises pathogen RNAs and induces interferon (IFN) production. However, little is known about how host proteins regulate RIG-I activation. Here, we show that leukocyte cell-derived chemotaxin 2 (LECT2), a hepatokine and ligand of the MET receptor tyrosine kinase is an antiviral regulator that promotes the RIG-I-mediated innate immune response. Upon binding to MET, LECT2 induces the recruitment of the phosphatase PTP4A1 to MET and facilitates the dissociation and dephosphorylation of phosphorylated SHP2 from MET, thereby protecting RIG-I from SHP2/c-Cbl-mediated degradation. In vivo, LECT2 overexpression enhances RIG-I-dependent IFN production and inhibits lymphocytic choriomeningitis virus (LCMV) replication in the liver, whereas these changes are reversed in LECT2 knockout mice. Forced suppression of MET abolishes IFN production and antiviral activity in vitro and in vivo. Interestingly, hepatocyte growth factor (HGF), an original MET ligand, inhibits LECT2-mediated anti-viral signalling; conversely, LECT2-MET signalling competes with HGF-MET signalling. Our findings reveal previously unrecognized crosstalk between MET-mediated proliferation and innate immunity and suggest that targeting LECT2 may have therapeutic value in infectious diseases and cancer.


Assuntos
Fatores de Restrição Antivirais , Peptídeos e Proteínas de Sinalização Intercelular , Proteínas Proto-Oncogênicas c-met , Animais , Fatores de Restrição Antivirais/imunologia , Imunidade Inata , Peptídeos e Proteínas de Sinalização Intercelular/imunologia , Leucócitos/metabolismo , Ligantes , Camundongos , Proteínas Proto-Oncogênicas c-met/metabolismo
6.
J Biol Chem ; 298(7): 102097, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35660020

RESUMO

Hepatitis B virus (HBV) infection is a major global health problem with no established cure. Dedicator of cytokinesis 11 (DOCK11), known as a guanine nucleotide exchange factor (GEF) for Cdc42, is reported to be essential for the maintenance of HBV. However, potential therapeutic strategies targeting DOCK11 have not yet been explored. We have previously developed an in vitro virus method as a more efficient tool for the analysis of proteomics and evolutionary protein engineering. In this study, using the in vitro virus method, we screened and identified a novel antiasialoglycoprotein receptor (ASGR) antibody, ASGR3-10M, and a DOCK11-binding peptide, DCS8-42A, for potential use in HBV infection. We further constructed a fusion protein (10M-D42AN) consisting of ASGR3-10M, DCS8-42A, a fusogenic peptide, and a nuclear localization signal to deliver the peptide inside hepatocytes. We show using immunofluorescence staining that 10M-D42AN was endocytosed into early endosomes and released into the cytoplasm and nucleus. Since DCS8-42A shares homology with activated cdc42-associated kinase 1 (Ack1), which promotes EGFR endocytosis required for HBV infection, we also found that 10M-D42AN inhibited endocytosis of EGFR and Ack1. Furthermore, we show 10M-D42AN suppressed the function of DOCK11 in the host DNA repair system required for covalently closed circular DNA synthesis and suppressed HBV proliferation in mice. In conclusion, this study realizes a novel hepatocyte-specific drug delivery system using an anti-ASGR antibody, a fusogenic peptide, and DOCK11-binding peptide to provide a novel treatment for HBV.


Assuntos
Sistemas de Liberação de Medicamentos , Fatores de Troca do Nucleotídeo Guanina , Vírus da Hepatite B , Hepatite B , Anticorpos de Cadeia Única , Animais , DNA Circular/genética , Receptores ErbB/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Hepatite B/tratamento farmacológico , Vírus da Hepatite B/patogenicidade , Vírus da Hepatite B/fisiologia , Hepatócitos/metabolismo , Hepatócitos/virologia , Humanos , Camundongos , Peptídeos/metabolismo , Anticorpos de Cadeia Única/metabolismo , Replicação Viral/genética
7.
Endocr J ; 69(8): 907-918, 2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-35321982

RESUMO

Selenoprotein P is upregulated in type 2 diabetes, causing insulin and exercise resistance. We have previously reported that eicosapentaenoic acid (EPA) negatively regulates Selenop expression by suppressing Srebf1 in H4IIEC3 hepatocytes. However, EPA downregulated Srebf1 long before downregulating Selenop. Here, we report additional novel mechanisms for the Selenop gene regulation by EPA. EPA upregulated Foxo1 mRNA expression, which was canceled with the ERK1/2 inhibitor, but not with the PKA inhibitor. Foxo1 knockdown by siRNA initiated early suppression of Selenop, but not Srebf1, by EPA. However, EPA did not affect the nuclear translocation of the FoxO1 protein. Neither ERK1/2 nor PKA inhibitor affected FoxO1 nuclear translocation. In summary, FoxO1 knockdown accelerates the EPA-mediated Selenop downregulation independent of SREBP-1c in hepatocytes. EPA upregulates Foxo1 mRNA via the ERK1/2 pathway without altering its protein and nuclear translocation. These findings suggest redundant and conflicting transcriptional networks in the lipid-induced redox regulation.


Assuntos
Diabetes Mellitus Tipo 2 , Ácido Eicosapentaenoico , Regulação para Baixo , Proteína Forkhead Box O1 , Hepatócitos , Humanos , Insulina , RNA Mensageiro , Selenoproteína P , Proteína de Ligação a Elemento Regulador de Esterol 1 , Esteróis
8.
J Infect Dis ; 226(3): 407-419, 2022 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-32515477

RESUMO

BACKGROUND: Many long noncoding RNAs (lncRNAs) have important roles in biological processes. The lncRNA HULC was found to be upregulated in human hepatoma tissues. HULC is thought to be involved in multiple steps of hepatoma development and progression; however, the relationship between HULC and hepatitis C virus (HCV) infection, which is a leading cause of hepatoma, remains unclear. METHODS: We examined the effect of HCV replication on HULC expression and the underlying mechanism using cell culture systems. Subsequently, we tested the effect of HULC suppression and overexpression on HCV replication. Finally, we examined the impact of HCV eradication on HULC expression using human liver tissue and blood samples. RESULTS: HCV replication increased HULC expression in cell cultures. A promoter assay showed that an HCV nonstructural protein, NS5A, increased HULC transcription. HULC suppression inhibited HCV replication; conversely, its overexpression enhanced HCV replication. These effects on HCV replication seemed to occur by the modification of HCV translation. Measurements from human liver and blood samples showed that HCV eradication significantly reduced HULC levels in the liver and blood. CONCLUSIONS: HCV infection increases HULC expression in vitro and in vivo. HULC modulates HCV replication through an HCV internal ribosome entry site-directed translation step.


Assuntos
Carcinoma Hepatocelular , Hepatite C , Neoplasias Hepáticas , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Longo não Codificante/farmacologia , Hepacivirus/genética , Regulação para Cima , Neoplasias Hepáticas/genética , Replicação Viral , RNA Viral
9.
Sci Rep ; 11(1): 13021, 2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34158541

RESUMO

A syngeneic mouse model bearing a transplanted tumor is indispensable for the evaluation of the efficacy of immune checkpoint inhibitors (ICIs). However, few syngeneic mouse models of liver cancer are available. We established liver tumor cell lines (MHCF1 and MHCF5) from hepatitis C virus transgenic mice fed an atherogenic high-fat diet. MHCF1 and MHCF5 were successfully transplanted into the subcutaneous space of syngeneic C57BL/6 mice, in addition, they efficiently developed orthotopic tumors in the liver of syngeneic C57BL/6 mice. MHCF5 grew rapidly and showed a more malignant phenotype compared with MHCF1. Histologically, MHCF1-derived tumors were a combined type of hepatocellular carcinoma and MHCF5-derived tumors showed a sarcomatous morphology. Interestingly, MHCF1 and MHCF5 showed different sensitivity against an anti-PD1 antibody and MHCF5-derived tumors were resistant to this antibody. CD8 T cells infiltrated the MHCF1-derived tumors, but no CD8 T cells were found within the MHCF5-derived tumors. Gene expression profiling and whole-exon sequencing revealed that MHCF5 displayed the features of an activated cancer stem cell-like signature of sonic hedgehog and Wnt signaling. Therefore, these cell lines could be useful for the identification of new biomarkers and molecular mechanisms of ICI resistance and the development of new drugs against liver cancer.


Assuntos
Aterosclerose/patologia , Dieta Hiperlipídica , Hepacivirus/fisiologia , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/virologia , Aloenxertos/patologia , Animais , Anticorpos Antineoplásicos/metabolismo , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/virologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/imunologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação/genética , Receptor de Morte Celular Programada 1/metabolismo , Transdução de Sinais/genética , Baço/patologia , Sequenciamento do Exoma
10.
PLoS One ; 16(2): e0246313, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33539396

RESUMO

Human hepatitis B virus (HBV) infection remains a serious health problem worldwide. However, the mechanism for the maintenance of HBV in a latent state within host cells remains unclear. Here, using single-cell RNA sequencing analysis, we identified four genes linked to the maintenance of HBV in a liver cell line expressing HBV RNA at a low frequency. These genes included DOCK11 and DENND2A, which encode small GTPase regulators. In primary human hepatocytes infected with HBV, knockdown of these two genes decreased the amount of both HBV DNA and covalently closed circular DNA to below the limit of detection. Our findings reveal a role for DOCK11 and DENND2A in the maintenance of HBV.


Assuntos
Hepatite B/metabolismo , Hepatócitos/metabolismo , Interações entre Hospedeiro e Microrganismos/genética , Sequência de Bases , DNA Viral/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Células Hep G2 , Hepatite B/fisiopatologia , Vírus da Hepatite B/patogenicidade , Hepatócitos/virologia , Interações entre Hospedeiro e Microrganismos/fisiologia , Humanos , Infecção Latente/fisiopatologia , Fígado/patologia , Fígado/virologia , Cultura Primária de Células , Análise de Célula Única , Replicação Viral/genética
11.
Hepatol Commun ; 3(12): 1687-1703, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31832575

RESUMO

The circadian rhythm of the liver plays an important role in maintaining its metabolic homeostasis. We performed comprehensive expression analysis of microRNAs (miRNAs) using TaqMan polymerase chain reaction of liver biopsy tissues to identify the miRNAs that are significantly up-regulated in advanced chronic hepatitis C (CHC). We found miR-10a regulated various liver metabolism genes and was markedly up-regulated by hepatitis C virus infection and poor nutritional conditions. The expression of miR-10a was rhythmic and down-regulated the expression of the circadian rhythm gene brain and muscle aryl hydrocarbon receptor nuclear translocator-like 1 (Bmal1) by directly suppressing the expression of RA receptor-related orphan receptor alpha (RORA). Overexpression of miR-10a in hepatocytes blunted circadian rhythm of Bmal1 and inhibited the expression of lipid synthesis genes (sterol regulatory element binding protein [SREBP]1, fatty acid synthase [FASN], and SREBP2), gluconeogenesis (peroxisome proliferator-activated receptor gamma coactivator 1 alpha [PGC1α]), protein synthesis (mammalian target of rapamycin [mTOR] and ribosomal protein S6 kinase [S6K]) and bile acid synthesis (liver receptor homolog 1 [LRH1]). The expression of Bmal1 was significantly correlated with the expression of mitochondrial biogenesis-related genes and reduced Bmal1 was associated with increased serum alanine aminotransferase levels and progression of liver fibrosis in CHC. Thus, impaired circadian rhythm expression of Bmal1 by miR-10a disturbs metabolic adaptations, leading to liver damage, and is closely associated with the exacerbation of abnormal liver metabolism in patients with advanced CHC. In patients with hepatitis C-related liver cirrhosis, liver tissue miR-10a levels were significantly associated with hepatic reserve, fibrosis markers, esophageal varix complications, and hepatitis C-related hepatocellular carcinoma recurrence. Conclusion: MiRNA-10a is involved in abnormal liver metabolism in cirrhotic liver through down-regulation of the expression of the circadian rhythm gene Bmal1. Therefore, miR-10a is a possible useful biomarker for estimating the prognosis of liver cirrhosis.

12.
Sci Rep ; 9(1): 7943, 2019 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-31138826

RESUMO

Hepatitis C virus (HCV) cell culture systems have facilitated the development of efficient direct-acting antivirals against HCV. Huh-7.5, a subline of the human hepatoma cell line Huh-7, has been used widely to amplify HCV because HCV can efficiently replicate in these cells due to a defect in innate antiviral signalling. Recently, we established a novel cell line, KH, derived from human hepatocellular carcinoma, which showed atypical uptake of gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid (Gd-EOB-DTPA) in a Gd-EOB-DTPA-enhanced magnetic resonance imaging study. KH cells expressed hepatocyte markers including microRNA-122 (miR-122) at a lower level than Huh-7.5 cells. We demonstrated that KH cells could support the entire life cycle of HCV; however, HCV replicated at a lower rate in KH cells compared to Huh-7.5 cells, and virus particles produced from KH cells seemed to have some disadvantages in viral assembly compared with those produced from Huh-7.5 cells. KH cells had more robust interferon-stimulated gene expression and induction upon HCV RNA transfection, interferon-α2b addition, and HCV infection than Huh-7.5 cells. Interestingly, both miR-122 supplementation and IRF3 knockout in KH cells boosted HCV replication to a similar level as in Huh-7.5 cells, suggesting that intact innate antiviral signalling and lower miR-122 expression limit HCV replication in KH cells. KH cells will enable a deeper understanding of the role of the innate immune response in persistent HCV infection.


Assuntos
Hepacivirus/genética , Hepatócitos/virologia , Interações Hospedeiro-Patógeno/genética , MicroRNAs/genética , RNA Viral/genética , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Regulação da Expressão Gênica , Hepacivirus/imunologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/imunologia , Interações Hospedeiro-Patógeno/imunologia , Humanos , Fator Regulador 3 de Interferon/antagonistas & inibidores , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/imunologia , Interferon alfa-2 , Interferon-alfa/farmacologia , MicroRNAs/imunologia , Especificidade de Órgãos , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , RNA Viral/imunologia , Transdução de Sinais , Transfecção , Vírion/genética , Vírion/imunologia , Replicação Viral
13.
Cell Host Microbe ; 25(4): 588-601.e7, 2019 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-30974086

RESUMO

Patients infected with hepatitis C virus (HCV) have an increased risk of developing type 2 diabetes. HCV infection is linked to various liver abnormalities, potentially contributing to this association. We show that HCV infection increases the levels of hepatic selenoprotein P (SeP) mRNA (SEPP1 mRNA) and serum SeP, a hepatokine linked to insulin resistance. SEPP1 mRNA inhibits type I interferon responses by limiting the function of retinoic-acid-inducible gene I (RIG-I), a sensor of viral RNA. SEPP1 mRNA binds directly to RIG-I and inhibits its activity. SEPP1 mRNA knockdown in hepatocytes causes a robust induction of interferon-stimulated genes and decreases HCV replication. Clinically, high SeP serum levels are significantly associated with treatment failure of direct-acting antivirals in HCV-infected patients. Thus, SeP regulates insulin resistance and innate immunity, possibly inducing immune tolerance in the liver, and its upregulation may explain the increased risk of type 2 diabetes in HCV-infected patients.


Assuntos
Proteína DEAD-box 58/antagonistas & inibidores , Hepatite C/patologia , Interações Hospedeiro-Patógeno , Evasão da Resposta Imune , RNA Mensageiro/metabolismo , Selenoproteína P/biossíntese , Humanos , Receptores Imunológicos
14.
Sci Rep ; 9(1): 1621, 2019 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-30733490

RESUMO

Notch1 is regulated by E3 ubiquitin ligases, with proteasomal degradation of the Notch intracellular domain affecting the transcription of target genes. cAMP response element-binding protein (CREB) mediates the transcription of hepatitis B virus (HBV) covalently closed circular DNA (cccDNA). We assessed the relationship between HBV cccDNA and Notch signaling activities. HBV cccDNA levels and relative gene expression were evaluated in HBV-replicating cells treated with Jagged1 shRNA and a γ-secretase inhibitor. The effects of these factors in surgically resected clinical samples were also assessed. Notch inhibition suppressed HBV cccDNA and CREB-related expression but increased ITCH and NUMB levels. Proteasome inhibitor augmented HBV cccDNA, restored Notch and CREB expression, and inhibited ITCH and NUMB function. Increased HBV cccDNA was observed after ITCH and NUMB blockage, even after treatment with the adenylate cyclase activator forskolin; protein kinase A (PKA) inhibitor had the opposite effect. Notch activation and E3 ligase inactivation were observed in HBV-positive cells in clinical liver tissue. Collectively, these findings reveal that Notch signaling activity facilitates HBV cccDNA transcription via CREB to trigger the downstream PKA-phospho-CREB cascade and is regulated by E3 ubiquitin ligase-modulation of the Notch intracellular domain.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Vírus da Hepatite B/genética , Hepatite B/metabolismo , Receptores Notch/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Adulto , Idoso , DNA Circular , Feminino , Células Hep G2 , Interações Hospedeiro-Patógeno , Humanos , Proteína Jagged-1/genética , Proteína Jagged-1/metabolismo , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Pessoa de Meia-Idade , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Fragmentos de Peptídeos/metabolismo , Receptor Notch1/genética , Receptor Notch1/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Sialoglicoproteínas/metabolismo , Transdução de Sinais , Transcrição Gênica , Ubiquitina-Proteína Ligases/genética
15.
Sci Rep ; 8(1): 13143, 2018 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-30177680

RESUMO

Osteopontin (OPN) is involved in cell proliferation, migration, inflammation, and tumor progression in various tissues. OPN induces stemness by interacting with CD44, but the functional relevance of OPN-mediated interferon (IFN) signaling and hepatitis C virus (HCV) replication in stem cell populations remains unclear. In this study, we investigated the effect of OPN on HCV replication and IFN signaling in cancer stem cells (CSCs) positive for epithelial cell adhesion molecule (EpCAM) and CD44. We show that the EpCAM+/CD44+ CSCs show marked HCV replication when compared to EpCAM-/CD44- cells. In addition, OPN significantly enhances this HCV replication in EpCAM+/CD44+ CSCs and markedly suppresses IFN-stimulated gene expression. The GSK-3ß inhibitor BIO increases the EpCAM+/CD44+ CSC population and OPN expression and impairs IFN signaling via STAT1 degradation. Taken together, our data suggest that OPN enhances HCV replication in the EpCAM+/CD44+ CSCs, while it also negatively regulates the IFN signaling pathway via inhibition of STAT1 phosphorylation and degradation. Therefore, OPN may represent a novel therapeutic target for treating HCV-related hepatocellular carcinoma.


Assuntos
Regulação Neoplásica da Expressão Gênica , Hepacivirus/genética , Receptores de Hialuronatos/genética , Células-Tronco Neoplásicas/virologia , Osteopontina/genética , Transdução de Sinais/genética , Replicação Viral , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/virologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Molécula de Adesão da Célula Epitelial/genética , Molécula de Adesão da Célula Epitelial/metabolismo , Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Glicogênio Sintase Quinase 3 beta/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Hepacivirus/crescimento & desenvolvimento , Hepatite C/genética , Hepatite C/metabolismo , Hepatite C/patologia , Hepatite C/virologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/patologia , Hepatócitos/virologia , Interações Hospedeiro-Patógeno/genética , Humanos , Receptores de Hialuronatos/metabolismo , Interferon-alfa/antagonistas & inibidores , Interferon-alfa/farmacologia , Fígado/efeitos dos fármacos , Fígado/patologia , Fígado/virologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/virologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Osteopontina/metabolismo , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/metabolismo
16.
Int J Mol Sci ; 19(2)2018 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-29360739

RESUMO

Hepatocellular carcinoma (HCC) frequently develops from hepatitis C virus (HCV) and hepatitis B virus (HBV) infection. We previously reported that peretinoin, an acyclic retinoid, inhibits HCV replication. This study aimed to examine the influence of peretinoin on the HBV lifecycle. HBV-DNA and covalently closed circular DNA (cccDNA) were evaluated by a qPCR method in HepG2.2.15 cells. Peretinoin significantly reduced the levels of intracellular HBV-DNA, nuclear cccDNA, and HBV transcript at a concentration that did not induce cytotoxicity. Conversely, other retinoids, such as 9-cis, 13-cis retinoic acid (RA), and all-trans-retinoic acid (ATRA), had no effect or rather increased HBV replication. Mechanistically, although peretinoin increased the expression of HBV-related transcription factors, as observed for other retinoids, peretinoin enhanced the binding of histone deacetylase 1 (HDAC1) to cccDNA in the nucleus and negatively regulated HBV transcription. Moreover, peretinoin significantly inhibited the expression of SPHK1, a potential inhibitor of HDAC activity, and might be involved in hepatic inflammation, fibrosis, and HCC. SPHK1 overexpression in cells cancelled the inhibition of HBV replication induced by peretinoin. This indicates that peretinoin activates HDAC1 and thereby suppresses HBV replication by inhibiting the sphingosine metabolic pathway. Therefore, peretinoin may be a novel therapeutic agent for HBV replication and chemoprevention against HCC.


Assuntos
Antivirais/farmacologia , Vírus da Hepatite B/efeitos dos fármacos , Redes e Vias Metabólicas/efeitos dos fármacos , Retinoides/farmacologia , Esfingosina/metabolismo , Replicação Viral/efeitos dos fármacos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Linhagem Celular , Células Cultivadas , DNA Circular/genética , DNA Circular/metabolismo , DNA Viral/genética , DNA Viral/metabolismo , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Histona Desacetilase 1/metabolismo , Humanos , Ligação Proteica , Transdução de Sinais/efeitos dos fármacos
17.
Gut ; 67(2): 362-371, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-27789659

RESUMO

OBJECTIVE: The clinical significance of polymorphisms in the interleukin-28B gene encoding interferon (IFN)-λ3, which has antiviral effects, is known in chronic HCV but not in HBV infection. Thus, we measured IFN-λ3 levels in patients with HBV and investigated its clinical significance and association with nucleos(t)ide (NUC) analogue administration. DESIGN: Serum IFN-λ3 level was measured in 254 patients with HBV with varying clinical conditions using our own high sensitivity method. The resulting values were compared with various clinical variables. In addition, cell lines originating from various organs were cultured with NUCs, and the production of IFN-λ3 was evaluated. RESULTS: Higher serum IFN-λ3 levels were detected in the patients treated with nucleotide analogues (adefovir or tenofovir) compared with those treated with nucleoside analogues (lamivudine or entecavir). There were no other differences in the clinical background between the two groups. A rise in the serum IFN-λ3 levels was observed during additional administration of the nucleotide analogues. In vitro experiments showed that the nucleotide analogues directly and dose-dependently induced IFN-λ3 production only in colon cancer cells. Furthermore, the supernatant from cultured adefovir-treated colon cancer cells significantly induced IFN-stimulated genes (ISGs) and inhibited hepatitis B surface antigen (HBsAg) production in hepatoma cells, as compared with the supernatant from entecavir-treated cells. CONCLUSIONS: We discovered that the nucleotide analogues show an additional pharmacological effect by inducing IFN-λ3 production, which further induces ISGs and results in a reduction of HBsAg production. These findings provide novel insights for HBV treatment and suggest IFN-λ3 induction as a possible target.


Assuntos
Antivirais/uso terapêutico , Carcinoma Hepatocelular/sangue , Hepatite B Crônica/sangue , Hepatite B Crônica/tratamento farmacológico , Interleucinas/sangue , Neoplasias Hepáticas/sangue , Adenina/análogos & derivados , Adenina/farmacologia , Adenina/uso terapêutico , Adulto , Idoso , Idoso de 80 Anos ou mais , Antivirais/farmacologia , Infecções Assintomáticas , Meios de Cultivo Condicionados/farmacologia , DNA Viral/sangue , Feminino , Expressão Gênica/efeitos dos fármacos , Genótipo , Guanina/análogos & derivados , Guanina/farmacologia , Guanina/uso terapêutico , Células HT29 , Células Hep G2 , Antígenos de Superfície da Hepatite B/metabolismo , Vírus da Hepatite B/genética , Humanos , Interferons , Interleucinas/farmacologia , Lamivudina/farmacologia , Lamivudina/uso terapêutico , Cirrose Hepática/sangue , Masculino , Pessoa de Meia-Idade , Organofosfonatos/farmacologia , Organofosfonatos/uso terapêutico , Polimorfismo Genético , Proteínas Recombinantes , Tenofovir/farmacologia , Tenofovir/uso terapêutico , Regulação para Cima/genética , Adulto Jovem
18.
Sci Rep ; 7(1): 16978, 2017 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-29208982

RESUMO

Sphingosine-1-phospate is a potent bioactive lipid metabolite that regulates cancer progression. Because sphingosine kinase 1 and sphingosine kinase 2 (SPHK 1/2) are both essential for sphingosine-1-phospate production, they could be a therapeutic target in various cancers. Peretinoin, an acyclic retinoid, inhibits post-therapeutic recurrence of hepatocellular carcinoma via unclear mechanisms. In this study, we assessed effects of peretinoin on SPHK expression and liver cancer development in vitro and in vivo. We examined effects of peretinoin on expression, enzymatic and promoter activity of SPHK1 in a human hepatoma cell line, Huh-7. We also investigated effects of SPHK1 on hepatocarcinogenesis induced by diethylnitrosamine using SPHK1 knockout mice. Peretinoin treatment of Huh-7 cells reduced mRNA levels, protein expression and enzymatic activity of SPHK1. Peretinoin reduced SPHK1 promoter activity; this effect of peretinoin was blocked by overexpression of Sp1, a transcription factor. Deletion of all Sp1 binding sites within the SPHK1 promoter region abolished SPHK1 promoter activity, suggesting that peretinoin reduced mRNA levels of SPHK1 via Sp1. Additionally, diethylnitrosamine-induced hepatoma was fewer and less frequent in SPHK1 knockout compared to wild-type mice. Our data showed crucial roles of SPHK1 in hepatocarcinogenesis and suggests that peretinoin prevents hepatocarcinogenesis by suppressing mRNA levels of SPHK1.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Retinoides/farmacologia , Animais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Dietilnitrosamina/toxicidade , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Hepatite C/tratamento farmacológico , Hepatite C/enzimologia , Hepatite C/genética , Humanos , Fígado/metabolismo , Cirrose Hepática/enzimologia , Cirrose Hepática/genética , Cirrose Hepática/virologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas Experimentais/induzido quimicamente , Neoplasias Hepáticas Experimentais/genética , Camundongos Knockout , Camundongos Transgênicos , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Esfingolipídeos/genética , Esfingolipídeos/metabolismo
19.
Anticancer Res ; 37(7): 3397-3403, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28668827

RESUMO

BACKGROUND/AIM: Anthracimycin, a secondary metabolite of Streptomyces, has been shown to inhibit the invasion of certain cancer cell lines. MATERIALS AND METHODS: In this study we evaluated the effect of anthracimycin on cell growth and signaling pathways in hepatocellular carcinoma (HCC). RESULTS: Anthracimycin suppressed cell proliferation and motility and induced apoptosis in human HCC cell lines. Furthermore, anthracimycin had no effect on the enrichment of EpCAM-high liver cancer stem cells (CSCs), while fluorouracil dramatically enriched the CSCs with activation of the stemness-related genes EPCAM and SOX9 in HuH7 cells. Mechanistically, anthracimycin suppressed mammalian target of rapamycin (mTOR) signaling, and was most effective at inhibiting HCC cell proliferation with mTOR activation. CONCLUSION: Anthracimycin is a novel mTOR inhibitor capable of suppressing the proliferation of CSCs and non-CSCs equally well in HCC, and it is suggested that anthracimycin could be effective in the eradication of HCC associated with mTOR-signaling activation.


Assuntos
Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Policetídeos/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Apoptose/efeitos dos fármacos , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Molécula de Adesão da Célula Epitelial/metabolismo , Fluoruracila/farmacologia , Humanos , Neoplasias Hepáticas/metabolismo , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Transdução de Sinais/efeitos dos fármacos
20.
Oncotarget ; 8(25): 39978-39993, 2017 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-28591717

RESUMO

The pathogenesis of non-alcoholic steatohepatitis (NASH) is still unclear and the prevention of the development of hepatocellular carcinoma (HCC) has not been established. We established an atherogenic and high-fat diet mouse model that develops hepatic steatosis, inflammation, fibrosis, and liver tumors at a high frequency. Using two NASH-HCC mouse models, we showed that peretinoin, an acyclic retinoid, significantly improved liver histology and reduced the incidence of liver tumors. Interestingly, we found that peretinoin induced autophagy in the liver of mice, which was characterized by the increased co-localized expression of microtubule-associated protein light chain 3B-II and lysosome-associated membrane protein 2, and increased autophagosome formation and autophagy flux in the liver. These findings were confirmed using primary mouse hepatocytes. Among representative autophagy pathways, the autophagy related (Atg) 5-Atg12-Atg16L1 pathway was impaired; especially, Atg16L1 was repressed at both the mRNA and protein level. Decreased Atg16L1 mRNA expression was also found in the liver of patients with NASH according to disease progression. Promoter analysis revealed that peretinoin activated the promoter of Atg16L1 by increasing the expression of CCAAT/enhancer-binding-protein-alpha. Interestingly, Atg16L1 overexpression in HepG2 cells inhibited palmitate-induced NF-kB activation and interleukin-6-induced STAT3 activation. We showed that Atg16L1 induced the de-phosphorylation of Gp130, a receptor subunit of interleukin-6 family cytokines, which subsequently repressed phosphorylated-STAT3 (Tyr705) levels, and this process might be independent of autophagy function. Thus, peretinoin prevents the progression of NASH and the development of HCC through activating the autophagy pathway by increased Atg16L1 expression, which is an essential regulator of autophagy and anti-inflammatory proteins.


Assuntos
Autofagia/efeitos dos fármacos , Carcinoma Hepatocelular/prevenção & controle , Neoplasias Hepáticas/prevenção & controle , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Retinoides/farmacologia , Animais , Autofagia/genética , Proteínas Relacionadas à Autofagia , Carcinoma Hepatocelular/etiologia , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Células Cultivadas , Dieta Aterogênica/efeitos adversos , Dieta Hiperlipídica/efeitos adversos , Perfilação da Expressão Gênica/métodos , Células Hep G2 , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Neoplasias Hepáticas/etiologia , Masculino , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/etiologia , Interferência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA