Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
JHEP Rep ; 6(9): 101117, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39263329

RESUMO

Background & Aims: People who drink alcohol excessively are at increased risk of developing metabolic dysfunction and alcohol-related liver disease (MetALD) or the more severe form alcohol-related liver disease (ALD). One of the most significant challenges concerns the early detection of MetALD/ALD. Previously, we have demonstrated that the lysosomal enzyme cathepsin D (CTSD) is an early marker for metabolic dysfunction-associated steatohepatitis (MASH). Here, we hypothesized that plasma CTSD can also serve as an early indicator of MetALD/ALD. Methods: We included 303 persistent heavy drinkers classified as having MetALD or ALD (n = 152) and abstinent patients with a history of excessive drinking (n = 151). Plasma CTSD levels of patients with MetALD/ALD without decompensation were compared with 40 healthy controls. Subsequently, the relationship between plasma CTSD levels and hepatic histological scores was established. Receiver-operating characteristic curves were generated to assess the precision of plasma CTSD levels in detecting MetALD/ALD. Lastly, plasma CTSD levels were compared between abstainers and drinkers. Results: Plasma CTSD levels were higher in patients with MetALD/ALD compared to healthy controls. While hepatic disease parameters (AST/ALT ratio, liver stiffness measurement) were higher at advanced histopathological stages (assessed by liver biopsy), plasma CTSD levels were already elevated at early histopathological stages. Furthermore, combining plasma CTSD levels with liver stiffness measurement and AST/ALT ratio yielded enhanced diagnostic precision (AUC 0.872) in detecting MetALD/ALD in contrast to the utilization of CTSD alone (AUC 0.804). Plasma CTSD levels remained elevated in abstainers. Conclusion: Elevated levels of CTSD in the circulation can serve as an early indicator of MetALD/ALD. Impact and implications: Alcohol-related liver disease is the leading cause of liver disease-related morbidity and mortality worldwide. However, the currently available non-invasive methods to diagnose MetALD/ALD are only able to detect advanced stages of MetALD/ALD. Here, we demonstrate that plasma levels of the lysosomal enzyme cathepsin D are already elevated at early stages of MetALD/ALD. Moreover, cathepsin D levels outperformed the currently available non-invasive methods to detect MetALD/ALD. Plasma levels of cathepsin D could therefore be a useful non-invasive marker for detection of MetALD/ALD.

2.
Biomedicines ; 11(2)2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36830818

RESUMO

Cancer is the second leading cause of death worldwide and the global cancer burden rises rapidly. The risk factors for cancer development can often be attributed to lifestyle factors, of which an unhealthy diet is a major contributor. Dietary fat is an important macronutrient and therefore a crucial part of a well-balanced and healthy diet, but it is still unclear which specific fatty acids contribute to a healthy and well-balanced diet in the context of cancer risk and prognosis. In this review, we describe epidemiological evidence on the associations between the intake of different classes of fatty acids and the risk of developing cancer, and we provide preclinical evidence on how specific fatty acids can act on tumor cells, thereby modulating tumor progression and metastasis. Moreover, the pro- and anti-inflammatory effects of each of the different groups of fatty acids will be discussed specifically in the context of inflammation-induced cancer progression and we will highlight challenges as well as opportunities for successful application of fatty acid tailored nutritional interventions in the clinic.

3.
Biomedicines ; 10(10)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36289617

RESUMO

Cathepsins are lysosomal proteases that are essential to maintain cellular physiological homeostasis and are involved in multiple processes, such as immune and energy regulation. Predominantly, cathepsins reside in the lysosomal compartment; however, they can also be secreted by cells and enter the extracellular space. Extracellular cathepsins have been linked to several pathologies, including non-alcoholic steatohepatitis (NASH) and hepatocellular carcinoma (HCC). NASH is an increasingly important risk factor for the development of HCC, which is the third leading cause of cancer-related deaths and poses a great medical and economic burden. While information regarding the involvement of cathepsins in NASH-induced HCC (NASH-HCC) is limited, data to support the role of cathepsins in either NASH or HCC is accumulating. Since cathepsins play a role in both NASH and HCC, it is likely that the role of cathepsins is more significant in NASH-HCC compared to HCC derived from other etiologies. In the current review, we provide an overview on the available data regarding cathepsins in NASH and HCC, argue that cathepsins play a key role in the transition from NASH to HCC, and shed light on therapeutic options in this context.

4.
Front Nutr ; 9: 868436, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35811951

RESUMO

Although immunotherapy represents one of the most potent therapeutic anti-cancer approaches, only a limited number of patients shows clinical benefit. Recent evidence suggests that patients' nutritional status plays a major role in immunotherapy outcome. Fatty acids are essential in a balanced diet and well-known to influence the immune response. Moreover, short-chain fatty acids (SCFAs) show beneficial effects in metabolic disorders as well as in cancer and polyunsaturated fatty acids (PUFAs) contribute to body weight and fat free mass preservation in cancer patients. In line with these data, several studies imply a role for SCFAs and PUFAs in boosting the outcome of immunotherapy. In this review, we specifically focus on mechanistic data showing that SCFAs modulate the immunogenicity of tumor cells and we discuss the direct effects of SCFAs and PUFAs on the immune system in the context of cancer. We provide preclinical and clinical evidence indicating that SCFAs and PUFAs may have the potential to boost immunotherapy efficacy. Finally, we describe the challenges and address opportunities for successful application of nutritional interventions focusing on SCFAs and PUFAs to increase the therapeutic potential of immunotherapeutic approaches for cancer.

5.
J Lipid Res ; 63(2): 100167, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35007562

RESUMO

Niemann-Pick type C1 (NPC1) disease is a progressive lysosomal storage disorder caused by mutations of the NPC1 gene. While neurodegeneration is the most severe symptom, a large proportion of NPC1 patients also present with splenomegaly, which has been attributed to cholesterol and glycosphingolipid accumulation in late endosomes and lysosomes. However, recent data also reveal an increase in the inflammatory monocyte subset in the Npc1nih mouse model expressing an Npc1 null allele. We evaluated the contribution of hematopoietic cells to splenomegaly in NPC1 disease under conditions of hypercholesterolemia. We transplanted Npc1nih (Npc1 null mutation) or Npc1wt bone marrow (BM) into Ldlr-/- mice and fed these mice a cholesterol-rich Western-type diet. At 9 weeks after BM transplant, on a chow diet, the Npc1 null mutation increased plasma granulocyte-colony stimulating factor (G-CSF) by 2-fold and caused mild neutrophilia. At 18 weeks after BM transplant, including 9 weeks of Western-type diet feeding, the Npc1 mutation increased G-csf mRNA levels by ∼5-fold in splenic monocytes/macrophages accompanied by a ∼4-fold increase in splenic neutrophils compared with controls. We also observed ∼5-fold increased long-term and short-term hematopoietic stem cells (HSCs) in the spleen, and a ∼30-75% decrease of these populations in BM, reflecting HSC mobilization, presumably downstream of elevated G-CSF. In line with these data, four patients with NPC1 disease showed higher plasma G-CSF compared with age-matched and gender-matched healthy controls. In conclusion, we show elevated G-CSF levels and HSC mobilization in the setting of an Npc1 null mutation and propose that this contributes to splenomegaly in patients with NPC1 disease.


Assuntos
Mobilização de Células-Tronco Hematopoéticas
6.
J Am Heart Assoc ; 10(18): e017524, 2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34493066

RESUMO

Background We have shown previously that low-density lipoprotein (LDL) can be oxidized in the lysosomes of macrophages, that this oxidation can be inhibited by cysteamine, an antioxidant that accumulates in lysosomes, and that this drug decreases atherosclerosis in LDL receptor-deficient mice fed a high-fat diet. We have now performed a regression study with cysteamine, which is of more relevance to the treatment of human disease. Methods and Results LDL receptor-deficient mice were fed a high-fat diet to induce atherosclerotic lesions. They were then reared on chow diet and drinking water containing cysteamine or plain drinking water. Aortic atherosclerosis was assessed, and samples of liver and skeletal muscle were analyzed. There was no regression of atherosclerosis in the control mice, but cysteamine caused regression of between 32% and 56% compared with the control group, depending on the site of the lesions. Cysteamine substantially increased markers of lesion stability, decreased ceroid, and greatly decreased oxidized phospholipids in the lesions. The liver lipid levels and expression of cluster of differentiation 68, acetyl-coenzyme A acetyltransferase 2, cytochromes P450 (CYP)27, and proinflammatory cytokines and chemokines were decreased by cysteamine. Skeletal muscle function and oxidative fibers were increased by cysteamine. There were no changes in the plasma total cholesterol, LDL cholesterol, high-density lipoprotein cholesterol, or triacylglycerol concentrations attributable to cysteamine. Conclusions Inhibiting the lysosomal oxidation of LDL in atherosclerotic lesions by antioxidants targeted at lysosomes causes the regression of atherosclerosis and improves liver and muscle characteristics in mice and might be a promising novel therapy for atherosclerosis in patients.


Assuntos
Aterosclerose , Água Potável , Animais , Aterosclerose/tratamento farmacológico , Aterosclerose/genética , Aterosclerose/prevenção & controle , Colesterol , Cisteamina/farmacologia , Humanos , Lipoproteínas LDL , Fígado , Camundongos , Músculos , Receptores de LDL/genética
7.
J Cancer ; 12(19): 5817-5824, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34475995

RESUMO

Recent evidence established a link between disturbed lipid metabolism and increased risk for cancer. One of the most prominent features related to disturbed lipid metabolism is an increased production of oxidized low-density-lipoproteins (oxLDL), which results from elevated oxidative stress. OxLDL is known to have detrimental effects on healthy cells and plays a primary role in diseases related to the metabolic syndrome. Nevertheless, so far, the exact role of oxLDL in cancer cell metabolism is not yet known. To examine changes in metabolic profile induced by oxLDL, pancreatic KLM-1 cells were treated with oxLDL in a concentration- (25 or 50 µg/ml) and/or time-dependent (4 hr or 8 hr) manner and the impact of oxLDL on oxygen consumption rates (OCR) as well as extracellular acidification rates (ECAR) was analyzed using Seahorse technology. Subsequently, to establish the link between oxLDL and glycolysis, stabilization of the master regulator hypoxia-inducible factor 1-alpha (HIF-1α) was measured by means of Western blot. Furthermore, autophagic responses were assessed by measuring protein levels of the autophagosomal marker LC3B-II. Finally, the therapeutic potential of natural anti-oxLDL IgM antibodies in reversing these effects was tested. Incubation of KLM-1 cells with oxLDL shifted the energy balance towards a more glycolytic phenotype, which is an important hallmark of cancer cells. These data were supported by measurement of increased oxLDL-mediated HIF-1α stabilization. In line, oxLDL incubation also increased the levels of LC3B-II, suggesting an elevated autophagic response. Importantly, antibodies against oxLDL were able to reverse these oxLDL-mediated metabolic effects. Our data provides a novel proof-of-concept that oxLDL induces a shift in energy balance. These data not only support a role for oxLDL in the progression of cancer but also suggest the possibility of targeting oxLDL as a therapeutic option in cancer.

8.
Front Immunol ; 12: 716357, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34489968

RESUMO

Lifestyle- and genetically induced disorders related to disturbances in cholesterol metabolism have shown the detrimental impact of excessive cholesterol levels on a plethora of pathological processes such as inflammation. In this context, two-hydroxypropyl-ß-cyclodextrin (CD) is increasingly considered as a novel pharmacological compound to decrease cellular cholesterol levels due to its ability to increase cholesterol solubility. However, recent findings have reported contra-indicating events after the use of CD questioning the clinical applicability of this compound. Given its potential as a therapeutic compound in metabolic inflammatory diseases, in this study, we evaluated the inflammatory effects of CD administration in the context of cholesterol-induced metabolic inflammation in vivo and in vitro. The inflammatory and cholesterol-depleting effects of CD were first investigated in low-density lipoprotein receptor knockout (Ldlr-/ ) mice that were transplanted with Npc1nih or Npc1wt bone marrow and were fed either regular chow or a high-fat, high-cholesterol (HFC) diet for 12 weeks, thereby creating an extreme model of lysosomal cholesterol-induced metabolic inflammation. In the final three weeks, these mice received daily injections of either control (saline) or CD subcutaneously. Subsequently, the inflammatory properties of CD were investigated in vitro in two macrophage cell lines and in murine bone marrow-derived macrophages (BMDMs). While CD administration improved cholesterol mobilization outside lysosomes in BMDMs, an overall pro-inflammatory profile was observed after CD treatment, evidenced by increased hepatic inflammation in vivo and a strong increase in cytokine release and inflammatory gene expression in vitro in murine BMDMs and macrophages cell lines. Nevertheless, this CD-induced pro-inflammatory profile was time-dependent, as short term exposure to CD did not result in a pro-inflammatory response in BMDM. While CD exerts desired cholesterol-depleting effects, its inflammatory effect is dependent on the exposure time. As such, using CD in the clinic, especially in a metabolic inflammatory context, should be closely monitored as it may lead to undesired, pro-inflammatory side effects.


Assuntos
2-Hidroxipropil-beta-Ciclodextrina/farmacologia , Inflamação/etiologia , 2-Hidroxipropil-beta-Ciclodextrina/efeitos adversos , Animais , Biomarcadores , Linhagem Celular , Colesterol/sangue , Colesterol/metabolismo , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica/efeitos dos fármacos , Inflamação/metabolismo , Inflamação/patologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipídeos/sangue , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Lisossomos/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Knockout , Receptores de LDL/genética , Receptores de LDL/metabolismo
9.
Cells ; 10(8)2021 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-34440652

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver disease and is characterized by different stages varying from benign fat accumulation to non-alcoholic steatohepatitis (NASH) that may progress to cirrhosis and liver cancer. In recent years, a regulatory role of long non-coding RNAs (lncRNAs) in NAFLD has emerged. Therefore, we aimed to characterize the still poorly understood lncRNA contribution to disease progression. Transcriptome analysis in 60 human liver samples with various degrees of NAFLD/NASH was combined with a functional genomics experiment in an in vitro model where we exposed HepG2 cells to free fatty acids (FFA) to induce steatosis, then stimulated them with tumor necrosis factor alpha (TNFα) to mimic inflammation. Bioinformatics analyses provided a functional prediction of novel lncRNAs. We further functionally characterized the involvement of one novel lncRNA in the nuclear-factor-kappa B (NF-κB) signaling pathway by its silencing in Hepatoma G2 (HepG2) cells. We identified 730 protein-coding genes and 18 lncRNAs that responded to FFA/TNFα and associated with human NASH phenotypes with consistent effect direction, with most being linked to inflammation. One novel intergenic lncRNA, designated lncTNF, was 20-fold up-regulated upon TNFα stimulation in HepG2 cells and positively correlated with lobular inflammation in human liver samples. Silencing lncTNF in HepG2 cells reduced NF-κB activity and suppressed expression of the NF-κB target genes A20 and NFKBIA. The lncTNF we identified in the NF-κB signaling pathway may represent a novel target for controlling liver inflammation.


Assuntos
Hepatócitos/metabolismo , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , RNA Longo não Codificante/metabolismo , Transcriptoma , Estudos de Casos e Controles , Progressão da Doença , Ácidos Graxos não Esterificados/farmacologia , Perfilação da Expressão Gênica , Células Hep G2 , Hepatócitos/efeitos dos fármacos , Hepatócitos/patologia , Humanos , Mediadores da Inflamação , Fígado/efeitos dos fármacos , Fígado/patologia , NF-kappa B/genética , NF-kappa B/metabolismo , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/patologia , RNA Longo não Codificante/genética , RNA-Seq , Fator de Necrose Tumoral alfa/farmacologia
10.
Biomol Concepts ; 12(1): 110-115, 2021 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-34370929

RESUMO

Previous studies associated plasma cathepsin D (CTSD) activity with hepatic insulin resistance in overweight and obese humans. Insulin resistance is a major feature of non-alcoholic fatty liver disease (NAFLD) and is one of the multiple hits determining the progression towards non-alcoholic steatohepatitis (NASH). In line, we have previously demonstrated that plasma CTSD levels are increased in NASH patients. However, it is not known whether insulin resistance associates with plasma CTSD activity in NAFLD. To increase our understanding regarding the mechanisms by which insulin resistance mediates NAFLD, fifty-five liver biopsy or MRI-proven NAFLD patients (BMI>25kg/m2) were included to investigate the link between plasma CTSD activity to insulin resistance in NAFLD. We concluded that HOMA-IR and plasma insulin levels are independently associated with plasma CTSD activity in NAFLD patients (standardized coefficient ß: 0.412, 95% Cl: 0.142~0.679, p=0.004 and standardized coefficient ß: 0.495, 95% Cl: 0.236~0.758, p=0.000, respectively). Together with previous studies, these data suggest that insulin resistance may link to NAFLD via elevation of CTSD activity in plasma. As such, these data pave the way for testing CTSD inhibitors as a pharmacological treatment of NAFLD.


Assuntos
Resistência à Insulina , Hepatopatia Gordurosa não Alcoólica , Catepsina D , Humanos , Fígado , Obesidade
11.
Cells ; 9(7)2020 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-32668602

RESUMO

Cathepsins are the most abundant lysosomal proteases that are mainly found in acidic endo/lysosomal compartments where they play a vital role in intracellular protein degradation, energy metabolism, and immune responses among a host of other functions. The discovery that cathepsins are secreted and remain functionally active outside of the lysosome has caused a paradigm shift. Contemporary research has unraveled many versatile functions of cathepsins in extralysosomal locations including cytosol and extracellular space. Nevertheless, extracellular cathepsins are majorly upregulated in pathological states and are implicated in a wide range of diseases including cancer and cardiovascular diseases. Taking advantage of the differential expression of the cathepsins during pathological conditions, much research is focused on using cathepsins as diagnostic markers and therapeutic targets. A tailored therapeutic approach using selective cathepsin inhibitors is constantly emerging to be safe and efficient. Moreover, recent development of proteomic-based approaches for the identification of novel physiological substrates offers a major opportunity to understand the mechanism of cathepsin action. In this review, we summarize the available evidence regarding the role of cathepsins in health and disease, discuss their potential as biomarkers of disease progression, and shed light on the potential of extracellular cathepsin inhibitors as safe therapeutic tools.


Assuntos
Catepsinas/metabolismo , Doença , Animais , Citosol/metabolismo , Endossomos/metabolismo , Espaço Extracelular/metabolismo , Humanos , Lisossomos/metabolismo
12.
J Pathol ; 251(4): 429-439, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32472585

RESUMO

Despite the increased awareness of differences in the inflammatory response between men and women, only limited research has focused on the biological factors underlying these sex differences. The cholesterol derivative 27-hydroxycholesterol (27HC) has been shown to have opposite inflammatory effects in independent experiments using mouse models of atherosclerosis and non-alcoholic steatohepatitis (NASH), pathologies characterized by cholesterol-induced inflammation. As the sex of mice in these in vivo models differed, we hypothesized that 27HC exerts opposite inflammatory effects in males compared to females. To explore whether the sex-opposed inflammatory effects of 27HC translated to humans, plasma 27HC levels were measured and correlated with hepatic inflammatory parameters in obese individuals. To investigate whether 27HC exerts sex-opposed effects on inflammation, we injected 27HC into female and male Niemann-Pick disease type C1 mice (Npc1nih ) that were used as an extreme model of cholesterol-induced inflammation. Finally, the involvement of estrogen signaling in this mechanism was studied in bone marrow-derived macrophages (BMDMs) that were treated with 27HC and 17ß-estradiol (E2). Plasma 27HC levels showed opposite correlations with hepatic inflammatory indicators between female and male obese individuals. Likewise, hepatic 27HC levels oppositely correlated between female and male Npc1nih mice. Twenty-seven hydroxycholesterol injections reduced hepatic inflammation in female Npc1nih mice in contrast to male Npc1nih mice, which showed increased hepatic inflammation after 27HC injections. Furthermore, 27HC administration also oppositely affected inflammation in female and male BMDMs cultured in E2-enriched medium. Remarkably, female BMDMs showed higher ERα expression compared to male BMDMs. Our findings identify that the sex-opposed inflammatory effects of 27HC are E2-dependent and are potentially related to differences in ERα expression between females and males. Hence, the individual's sex needs to be taken into account when 27HC is employed as a therapeutic tool as well as in macrophage estrogen research in general. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.


Assuntos
Aterosclerose/patologia , Estrogênios/metabolismo , Hidroxicolesteróis/farmacologia , Inflamação/patologia , Hepatopatia Gordurosa não Alcoólica/patologia , Transdução de Sinais/efeitos dos fármacos , Animais , Receptor alfa de Estrogênio/metabolismo , Feminino , Humanos , Fígado/metabolismo , Fígado/patologia , Macrófagos/patologia , Masculino , Camundongos , Fatores Sexuais
13.
Biomedicines ; 8(2)2020 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-32046285

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is a spectrum of liver diseases ranging from simple steatosis to non-alcoholic steatohepatitis, fibrosis, cirrhosis, and/or hepatocellular carcinoma. Due to its increasing prevalence, NAFLD is currently a major public health concern. Although a wide variety of preclinical models have contributed to better understanding the pathophysiology of NAFLD, it is not always obvious which model is best suitable for addressing a specific research question. This review provides insights into currently existing models, mainly focusing on murine models, which is of great importance to aid in the identification of novel therapeutic options for human NAFLD.

14.
Diab Vasc Dis Res ; 17(1): 1479164119892140, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31868000

RESUMO

BACKGROUND: C-type lectin receptors, including Dectin-2, are pattern recognition receptors on monocytes and macrophages that mainly recognize sugars and sugar-like structures present on fungi. Activation of C-type lectin receptors induces downstream CARD9 signalling, leading to the production of cytokines. We hypothesized that under hyperglycaemic conditions, as is the case in diabetes mellitus, glycosylated protein (sugar-like) structures activate C-type lectin receptors, leading to immune cell activation and increased atherosclerosis development. METHODS: Low-density lipoprotein receptor-deficient mice were lethally irradiated and transplanted with bone marrow from control wild-type, Dectin-2-/- or Card9-/- mice. After 6 weeks of recovery, mice received streptozotocin injections (50 mg/g BW; 5 days) to induce hyperglycaemia. After an additional 2 weeks, mice were fed a Western-type diet (0.1% cholesterol) for 10 weeks. RESULTS AND CONCLUSION: Deletion of haematopoietic Dectin-2 reduced the number of circulating Ly6Chi monocytes, increased pro-inflammatory cytokine production, but did not affect atherosclerosis development. Deletion of haematopoietic CARD9 tended to reduce macrophage and collagen content in atherosclerotic lesions, again without influencing the lesion size. Deletion of haematopoietic Dectin-2 did not influence atherosclerosis development under hyperglycaemic conditions, despite some minor effects on inflammation. Deletion of haematopoietic CARD9 induced minor alterations in plaque composition under hyperglycaemic conditions, without affecting lesion size.


Assuntos
Doenças da Aorta/etiologia , Aterosclerose/etiologia , Glicemia/metabolismo , Proteínas Adaptadoras de Sinalização CARD/genética , Diabetes Mellitus Experimental/complicações , Deleção de Genes , Células-Tronco Hematopoéticas/metabolismo , Lectinas Tipo C/genética , Animais , Antígenos Ly/metabolismo , Aorta/metabolismo , Aorta/patologia , Doenças da Aorta/genética , Doenças da Aorta/metabolismo , Doenças da Aorta/patologia , Aterosclerose/genética , Aterosclerose/metabolismo , Aterosclerose/patologia , Biomarcadores/sangue , Transplante de Medula Óssea , Proteínas Adaptadoras de Sinalização CARD/deficiência , Células Cultivadas , Colágeno/metabolismo , Citocinas/metabolismo , Diabetes Mellitus Experimental/sangue , Dieta Ocidental , Predisposição Genética para Doença , Lectinas Tipo C/deficiência , Macrófagos Peritoneais/metabolismo , Macrófagos Peritoneais/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/metabolismo , Monócitos/patologia , Placa Aterosclerótica , Receptores de LDL/deficiência , Receptores de LDL/genética
15.
Diabetologia ; 63(2): 374-384, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31690989

RESUMO

AIMS/HYPOTHESIS: Insulin resistance in skeletal muscle and liver plays a major role in the pathophysiology of type 2 diabetes. The hyperinsulinaemic-euglycaemic clamp is considered the gold standard for assessing peripheral and hepatic insulin sensitivity, yet it is a costly and labour-intensive procedure. Therefore, easy-to-measure, cost-effective approaches to determine insulin sensitivity are needed to enable organ-specific interventions. Recently, evidence emerged that plasma cathepsin D (CTSD) is associated with insulin sensitivity and hepatic inflammation. Here, we aimed to investigate whether plasma CTSD is associated with hepatic and/or peripheral insulin sensitivity in humans. METHODS: As part of two large clinical trials (one designed to investigate the effects of antibiotics, and the other to investigate polyphenol supplementation, on insulin sensitivity), 94 overweight and obese adults (BMI 25-35 kg/m2) previously underwent a two-step hyperinsulinaemic-euglycaemic clamp (using [6,6-2H2]glucose) to assess hepatic and peripheral insulin sensitivity (per cent suppression of endogenous glucose output during the low-insulin-infusion step, and the rate of glucose disappearance during high-insulin infusion [40 mU/(m2 × min)], respectively). In this secondary analysis, plasma CTSD levels, CTSD activity and plasma inflammatory cytokines were measured. RESULTS: Plasma CTSD levels were positively associated with the proinflammatory cytokines IL-8 and TNF-α (IL-8: standardised ß = 0.495, p < 0.001; TNF-α: standardised ß = 0.264, p = 0.012). Plasma CTSD activity was negatively associated with hepatic insulin sensitivity (standardised ß = -0.206, p = 0.043), independent of age, sex, BMI and waist circumference, but it was not associated with peripheral insulin sensitivity. However, plasma IL-8 and TNF-α were not significantly correlated with hepatic insulin sensitivity. CONCLUSIONS/INTERPRETATION: We demonstrate that plasma CTSD activity, but not systemic inflammation, is inversely related to hepatic insulin sensitivity, suggesting that plasma CTSD activity may be used as a non-invasive marker for hepatic insulin sensitivity in humans.


Assuntos
Catepsina D/sangue , Insulina/sangue , Fígado/metabolismo , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Glicemia/metabolismo , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/patologia , Feminino , Humanos , Resistência à Insulina/fisiologia , Masculino , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Obesidade/sangue , Obesidade/patologia , Sobrepeso/sangue , Sobrepeso/patologia , Fator de Necrose Tumoral alfa/sangue
16.
Sci Rep ; 9(1): 14956, 2019 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-31628414

RESUMO

While the link between diet-induced changes in gut microbiota and lipid metabolism in metabolic syndrome (MetS) has been established, the contribution of host genetics is rather unexplored. As several findings suggested a role for the lysosomal lipid transporter Niemann-Pick type C1 (NPC1) in macrophages during MetS, we here explored whether a hematopoietic Npc1 mutation, induced via bone marrow transplantation, influences gut microbiota composition in low-density lipoprotein receptor knockout (Ldlr-/-) mice fed a high-fat, high-cholesterol (HFC) diet for 12 weeks. Ldlr-/- mice fed a HFC diet mimic a human plasma lipoprotein profile and show features of MetS, providing a model to explore the role of host genetics on gut microbiota under MetS conditions. Fecal samples were used to profile the microbial composition by 16 s ribosomal RNA gene sequencing. The hematopoietic Npc1 mutation shifted the gut microbiota composition and increased microbial richness and diversity. Variations in plasma lipid levels correlated with microbial diversity and richness as well as with several bacterial genera. This study suggests that host genetic influences on lipid metabolism affect the gut microbiome under MetS conditions. Future research investigating the role of host genetics on gut microbiota might therefore lead to identification of diagnostic and therapeutic targets for MetS.


Assuntos
Microbioma Gastrointestinal , Células-Tronco Hematopoéticas/citologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Síndrome Metabólica/microbiologia , Animais , Transplante de Medula Óssea , Colesterol na Dieta , Dieta Hiperlipídica , Feminino , Granuloma/metabolismo , Hepatócitos/metabolismo , Inflamação , Células de Kupffer , Metabolismo dos Lipídeos , Fígado/metabolismo , Lisossomos/metabolismo , Masculino , Camundongos , Camundongos Knockout , Mutação , Proteína C1 de Niemann-Pick , Fenótipo , Polimorfismo de Nucleotídeo Único , RNA Ribossômico 16S/metabolismo , Receptores de LDL/genética
17.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1864(12): 158518, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31479734

RESUMO

Unhealthy Western-type diet and physical inactivity are highly associated with the current obesity epidemic and its related metabolic diseases such as atherosclerosis and non-alcoholic steatohepatitis. In addition, increasing evidence indicates that obesity is also a major risk factor for several types of common cancers. Recent studies have provided correlative support that disturbed lipid metabolism plays a role in cancer risk and development, pointing towards parallels in metabolic derangements between metabolic diseases and cancer. An important feature of disturbed lipid metabolism is the increase in circulating low-density lipoproteins, which can be oxidized (oxLDL). Elevated oxLDL and the level of its receptors have been positively associated with increased risk of various types of cancer. This review discusses the pro-oncogenic role of oxLDL in tumor development, progression and potential therapies, and provides insights into the underlying mechanisms.


Assuntos
Carcinogênese/metabolismo , Lipoproteínas LDL/metabolismo , Neoplasias/metabolismo , Animais , Carcinogênese/patologia , Progressão da Doença , Humanos , Lipoproteínas LDL/análise , Neoplasias/patologia , Neoplasias/terapia
18.
Biomolecules ; 9(5)2019 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-31060228

RESUMO

Dietary and lifestyle changes are leading to an increased occurrence of non-alcoholic fatty liver disease (NAFLD). Using a hyperlipidemic murine model for non-alcoholic steatohepatitis (NASH), we have previously demonstrated that the lysosomal protease cathepsin D (CTSD) is involved with lipid dysregulation and inflammation. However, despite identifying CTSD as a major player in NAFLD pathogenesis, the specific role of extracellular CTSD in NAFLD has not yet been investigated. Given that inhibition of intracellular CTSD is highly unfavorable due to its fundamental physiological function, we here investigated the impact of a highly specific and potent small-molecule inhibitor of extracellular CTSD (CTD-002) in the context of NAFLD. Treatment of bone marrow-derived macrophages with CTD-002, and incubation of hepatic HepG2 cells with a conditioned medium derived from CTD-002-treated macrophages, resulted in reduced levels of inflammation and improved cholesterol metabolism. Treatment with CTD-002 improved hepatic steatosis in high fat diet-fed rats. Additionally, plasma levels of insulin and hepatic transaminases were significantly reduced upon CTD-002 administration. Collectively, our findings demonstrate for the first time that modulation of extracellular CTSD can serve as a novel therapeutic modality for NAFLD.


Assuntos
Catepsina D/antagonistas & inibidores , Espaço Extracelular/enzimologia , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Inibidores de Proteases/uso terapêutico , Alanina Transaminase/metabolismo , Animais , Aspartato Aminotransferases/metabolismo , Catepsina D/metabolismo , Células Cultivadas , Dieta Hiperlipídica , Células Hep G2 , Humanos , Inflamação/patologia , Lipoproteínas LDL , Fígado/efeitos dos fármacos , Fígado/patologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Inibidores de Proteases/farmacologia , Ratos Sprague-Dawley , Fator de Necrose Tumoral alfa/metabolismo
19.
Lipids ; 53(4): 457-462, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29746008

RESUMO

Although phytosterols, plant-derived sterol-like components, are well known for their cholesterol-lowering properties, their atherogenic potential is still under debate. Although they are known to share structural similarities with cholesterol, it is unclear whether their oxidized forms (oxyphytosterols) have the capacity to mediate proinflammatory responses in macrophages. In the present study, bone marrow-derived macrophages were treated with oxidized low-density lipoproteins, oxyphytosterols (7keto-sito/campesterol [7keto-sit/camp] or 7-beta-hydroxy-sito/campesterol [7ßOH-sit/camp]), nonoxidized phytosterol (ß-sitosterol), or carrier-control (cyclodextrin) in a dose- and time-dependent manner. Inflammatory cytokine release, activity, and the corresponding mRNA expression levels were analyzed. 7ßOH-sit/camp, rather than 7keto-sit/camp, induced a modest proinflammatory response in wild-type cells derived from C57Bl/6 mice. The observed mild inflammatory effects are independent of the low-density lipoprotein receptor and Cluster of differentiation 36/Scavenger receptor-a. These data suggest that exogenously added oxyphytosterols do not affect macrophage-mediated inflammatory responses, at least in vitro.


Assuntos
Inflamação/imunologia , Macrófagos/efeitos dos fármacos , Fitosteróis/farmacologia , Animais , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fitosteróis/administração & dosagem
20.
J Clin Transl Res ; 3(3): 318-327, 2018 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30895273

RESUMO

BACKGROUND: Intestinal failure-associated liver disease (IFALD) is a clinical challenge. The pathophysiol-ogy is multifactorial and remains poorly understood. Disturbed recirculation of bile salts, e.g. due to loss of bile via an enterocutaneous fistula, is considered a major contributing factor. We hypothesize that impaired signaling via the bile salt receptor FXR underlies the development of IFALD. The aim of this study was to investigate whether activation of FXR improves liver homeostasis during chronic loss of bile in rats. METHODS: To study consequences of chronic loss of bile, rats underwent external biliary drainage (EBD) or sham surgery for seven days, and the prophylactic potential of the FXR agonist INT-747 was assessed. RESULTS: EBD for 7 days resulted in liver test abnormalities and histological liver damage. Expression of the intestinal FXR target gene Fgf15 was undetectable after EBD, and this was accompanied by an anticipated increase in hepatic Cyp7a1 expression, indicating increased bile salt synthesis. Treatment with INT-747 improved serum biochemistry, reduced loss of bile fluid in drained rats and prevented development of drainage-associated histological liver injury. CONCLUSIONS: EBD results in extensive hepatobiliary injury and cholestasis. These data suggest that FXR activation might be a novel therapy in preventing liver dysfunction in patients with intestinal failure. RELEVANCE FOR PATIENTS: This study demonstrates that chronic loss of bile causes liver injury in rats. Abro-gated recycling of bile salts impairing of enterohepatic bile salt/FXR signaling underlies these pathological changes, as administration of FXR agonist INT747 prevents biliary drainage-induced liver damage. Phar-macological activation of FXR might be a therapeutic strategy to treat disorders accompanied by a per-turbed enterohepatic circulation such as intestinal failure-associated liver disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA