Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Vis Exp ; (208)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39007605

RESUMO

The meningeal lymphatic vessels (MLVs) play an important role in the removal of toxins from the brain. The development of innovative technologies for the stimulation of MLV functions is a promising direction in the progress of the treatment of various brain diseases associated with MLV abnormalities, including Alzheimer's and Parkinson's diseases, brain tumors, traumatic brain injuries, and intracranial hemorrhages. Sleep is a natural state when the brain's drainage processes are most active. Therefore, stimulation of the brain's drainage and MLVs during sleep may have the most pronounced therapeutic effects. However, such commercial technologies do not currently exist. This study presents a new portable technology of transcranial photobiomodulation (tPBM) under electroencephalographic (EEG) control of sleep designed to photo-stimulate removal of toxins (e.g., soluble amyloid beta (Aß)) from the brain of aged BALB/c mice with the ability to compare the therapeutic effectiveness of different optical resources. The technology can be used in the natural condition of a home cage without anesthesia, maintaining the motor activity of mice. These data open up new prospects for developing non-invasive and clinically promising photo-technologies for the correction of age-related changes in the MLV functions and brain's drainage processes and for effectively cleansing brain tissues from metabolites and toxins. This technology is intended both for preclinical studies of the functions of the sleeping brain and for developing clinically relevant treatments for sleep-related brain diseases.


Assuntos
Encéfalo , Eletroencefalografia , Camundongos Endogâmicos BALB C , Sono , Animais , Camundongos , Encéfalo/efeitos da radiação , Eletroencefalografia/métodos , Sono/fisiologia , Sono/efeitos da radiação , Terapia com Luz de Baixa Intensidade/métodos , Peptídeos beta-Amiloides/metabolismo , Vasos Linfáticos/efeitos da radiação , Vasos Linfáticos/fisiologia
2.
Biomedicines ; 12(2)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38397864

RESUMO

There is an association between sleep quality and glioma-specific outcomes, including survival. The critical role of sleep in survival among subjects with glioma may be due to sleep-induced activation of brain drainage (BD), that is dramatically suppressed in subjects with glioma. Emerging evidence demonstrates that photobiomodulation (PBM) is an effective technology for both the stimulation of BD and as an add-on therapy for glioma. Emerging evidence suggests that PBM during sleep stimulates BD more strongly than when awake. In this study on male Wistar rats, we clearly demonstrate that the PBM course during sleep vs. when awake more effectively suppresses glioma growth and increases survival compared with the control. The study of the mechanisms of this phenomenon revealed stronger effects of the PBM course in sleeping vs. awake rats on the stimulation of BD and an immune response against glioma, including an increase in the number of CD8+ in glioma cells, activation of apoptosis, and blockage of the proliferation of glioma cells. Our new technology for sleep-phototherapy opens a new strategy to improve the quality of medical care for patients with brain cancer, using promising smart-sleep and non-invasive approaches of glioma treatment.

3.
Biomolecules ; 13(11)2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-38002287

RESUMO

Anesthesia enables the painless performance of complex surgical procedures. However, the effects of anesthesia on the brain may not be limited only by its duration. Also, anesthetic agents may cause long-lasting changes in the brain. There is growing evidence that anesthesia can disrupt the integrity of the blood-brain barrier (BBB), leading to neuroinflammation and neurotoxicity. However, there are no widely used methods for real-time BBB monitoring during surgery. The development of technologies for an express diagnosis of the opening of the BBB (OBBB) is a challenge for reducing post-surgical/anesthesia consequences. In this study on male rats, we demonstrate a successful application of machine learning technology, such as artificial neural networks (ANNs), to recognize the OBBB induced by isoflurane, which is widely used in surgery. The ANNs were trained on our previously presented data obtained on the sound-induced OBBB with an 85% testing accuracy. Using an optical and nonlinear analysis of the OBBB, we found that 1% isoflurane does not induce any changes in the BBB, while 4% isoflurane caused significant BBB leakage in all tested rats. Both 1% and 4% isoflurane stimulate the brain's drainage system (BDS) in a dose-related manner. We show that ANNs can recognize the OBBB induced by 4% isoflurane in 57% of rats and BDS activation induced by 1% isoflurane in 81% of rats. These results open new perspectives for the development of clinically significant bedside technologies for EEG-monitoring of OBBB and BDS.


Assuntos
Anestesia , Anestésicos Inalatórios , Isoflurano , Masculino , Ratos , Animais , Isoflurano/farmacologia , Barreira Hematoencefálica , Anestésicos Inalatórios/farmacologia , Encéfalo , Eletroencefalografia
4.
Int J Mol Sci ; 24(18)2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37762000

RESUMO

Over sixty years, laser technologies have undergone a technological revolution and become one of the main tools in biomedicine, particularly in neuroscience, neurodegenerative diseases and brain tumors. Glioblastoma is the most lethal form of brain cancer, with very limited treatment options and a poor prognosis. In this study on rats, we demonstrate that glioblastoma (GBM) growth can be suppressed by photosensitizer-free laser treatment (PS-free-LT) using a quantum-dot-based 1267 nm laser diode. This wavelength, highly absorbed by oxygen, is capable of turning triplet oxygen to singlet form. Applying 1267 nm laser irradiation for a 4 week course with a total dose of 12.7 kJ/cm2 firmly suppresses GBM growth and increases survival rate from 34% to 64%, presumably via LT-activated apoptosis, inhibition of the proliferation of tumor cells, a reduction in intracranial pressure and stimulation of the lymphatic drainage and clearing functions. PS-free-LT is a promising breakthrough technology in non- or minimally invasive therapy for superficial GBMs in infants as well as in adult patients with high photosensitivity or an allergic reaction to PSs.

5.
Materials (Basel) ; 16(4)2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36837099

RESUMO

Flavonoid-containing Gratiola officinalis extract has been studied in relation to breast carcinoma and human cervical cancer cells in encapsulated and native form. Encapsulation was realized in polymer shells, which were formed by the layer-by-layer method using sequential adsorption of poly(allylamine hydrochloride) and poly(sodium 4-styrenesulfonate) on the destructible cores. The extract was prepared by the author's method and characterized using high performance liquid chromatography. By means of optical and fluorescent microscopy, cell changes under the action of pure and encapsulated extracts were comprehensively studied, and statistical analysis was carried out. Cells were stained with propidium iodide, acridine orange, and Hoechst 33258. A fluorescence microscope with a digital video camera were used for cell imaging. The encapsulated extract caused 100% death of breast cancer SKBR-3 cells and 34% death of cervical cancer HeLa cells and prevented the formation of autophagosomes in both cultures. Analysis of the viability and morphological features of tumor cells under the action of microencapsulated extract allows us to consider microencapsulation as an effective strategy for delivering Gratiola officinalis extract to tumor cells and a promising way to overcome the protective autophagy.

6.
Pharmaceutics ; 15(2)2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36839889

RESUMO

The progress in brain diseases treatment is limited by the blood-brain barrier (BBB), which prevents delivery of the vast majority of drugs from the blood into the brain. In this study, we discover unknown phenomenon of opening of the BBBB (BBBO) by low-level laser treatment (LLLT, 1268 nm) in the mouse cortex. LLLT-BBBO is accompanied by activation of the brain drainage system contributing effective delivery of liposomes into glioblastoma (GBM). The LLLT induces the generation of singlet oxygen without photosensitizers (PSs) in the blood endothelial cells and astrocytes, which can be a trigger mechanism of BBBO. LLLT-BBBO causes activation of the ABC-transport system with a temporal decrease in the expression of tight junction proteins. The BBB recovery is accompanied by activation of neuronal metabolic activity and stabilization of the BBB permeability. LLLT-BBBO can be used as a new opportunity of interstitial PS-free photodynamic therapy (PDT) for modulation of brain tumor immunity and improvement of immuno-therapy for GBM in infants in whom PDT with PSs, radio- and chemotherapy are strongly limited, as well as in adults with a high allergic reaction to PSs.

7.
Int J Mol Sci ; 24(3)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36769101

RESUMO

Complex immunosuppressive therapy is prescribed in medical practice to patients with glomerulonephritis to help them overcome symptoms and prevent chronic renal failure. Such an approach requires long-term systemic administration of strong medications, which causes severe side effects. This work shows the efficiency of polymer capsule accumulation (2.8 ± 0.4 µm) containing labeled etanercept (100 µg per dose) in the kidneys of mice. The comparison of injection into the renal artery and tail vein shows the significant superiority of the intra-arterial administration strategy. The etanercept retention rate of 18% and 8% ID in kidneys was found 1 min and 1 h after injection, respectively. The capsules were predominantly localized in the glomeruli after injection in mice using a model of acute glomerulonephritis. Histological analysis confirmed a significant therapeutic effect only in animals with intra-arterial administration of microcapsules with etanercept. The proposed strategy combines endovascular surgery and the use of polymer microcapsules containing a high molecular weight drug that can be successfully applied to treat a wide range of kidney diseases associated with glomerular pathology.


Assuntos
Glomerulonefrite , Camundongos , Animais , Etanercepte/uso terapêutico , Cápsulas , Glomerulonefrite/patologia , Rim/patologia , Glomérulos Renais/patologia
8.
Adv Exp Med Biol ; 1395: 53-57, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36527613

RESUMO

The blood-brain barrier (BBB) poses a significant challenge for drug delivery to the brain. Therefore, the development of safe methods for an effective delivery of medications to the brain can be a revolutionary step in overcoming this limitation. Using a quantum-dot-based 1267 nm laser (photosensitiser-free generation of singlet oxygen), we clearly show the photostimulation of lymphatic delivery of bevacizumab (BMZ) to the brain tissues and the meninges. These pilot findings open promising perspectives for photomodulation of a lymphatic brain drug delivery bypassing the BBB, and potentially enabling a breakthrough strategy in therapy of glioma using BMZ and other chemotherapy drugs.


Assuntos
Vasos Linfáticos , Oxigênio Singlete , Bevacizumab , Encéfalo , Barreira Hematoencefálica , Sistemas de Liberação de Medicamentos
9.
Front Oncol ; 12: 1010188, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36313687

RESUMO

Background: The development of new methods for modulation of drug distribution across to the brain is a crucial step in the effective therapies for glioblastoma (GBM). In our previous work, we discovered the phenomenon of music-induced opening of the blood-brain barrier (OBBB) in healthy rodents. In this pilot study on rats, we clearly demonstrate that music-induced BBB opening improves the therapeutic effects of bevacizumab (BZM) in rats with GBM via increasing BZM distribution to the brain along the cerebral vessels. Methods: The experiments were performed on Wistar male rats (200-250 g, n=161) using transfected C6-TagRFP cell line and the loud rock music for OBBB. The OBBB was assessed by spectrofluorometric assay of Evans Blue (EB) extravasation and confocal imaging of fluorescent BZM (fBZM) delivery into the brain. Additionally, distribution of fBZM and Omniscan in the brain was studied using fluorescent and magnetic resonance imaging (MRI), respectively. To analyze the therapeutic effects of BZM on the GBM growth in rats without and with OBBB, the GBM volume (MRI scans), as well as immunohistochemistry assay of proliferation (Ki67 marker) and apoptosis (Bax marker) in the GBM cells were studied. The Mann-Whitney-Wilcoxon test was used for all analysis, the significance level was p < 0.05, n=7 in each group. Results: Our finding clearly demonstrates that music-induced OBBB increases the delivery of EB into the brain tissues and the extravasation of BZM into the brain around the cerebral vessels of rats with GBM. Music significantly increases distribution of tracers (fBZM and Omniscan) in the rat brain through the pathways of brain drainage system (perivascular and lymphatic), which are an important route of drug delivery into the brain. The music-induced OBBB improves the suppressive effects of BZM on the GBM volume and the cellular mechanisms of tumor progression that was accompanied by higher survival among rats in the GBM+BZM+Music group vs. other groups. Conclusion: We hypothesized that music improves the therapeutic effects of BZM via OBBB in the normal cerebral vessels and lymphatic drainage of the brain tissues. This contributes better distribution of BZM in the brain fluids and among the normal cerebral vessels, which are used by GBM for invasion and co-opt existing vessels as a satellite tumor form. These results open the new perspectives for an improvement of therapeutic effects of BZM via the music-induced OBBB for BZM in the normal cerebral vessels, which are used by GBM for migration and progression.

10.
Pharmaceutics ; 15(1)2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36678667

RESUMO

The blood-brain barrier (BBB) limits the delivery of majority of cancer drugs and thereby complicates brain tumor treatment. The nasal-brain-lymphatic system is discussed as a pathway for brain drug delivery overcoming the BBB. However, in most cases, this method is not sufficient to achieve a therapeutic effect due to brain drug delivery in a short distance. Therefore, it is necessary to develop technologies to overcome the obstacles facing nose-to-brain delivery of promising pharmaceuticals. In this study, we clearly demonstrate intranasal delivery of liposomes to the mouse brain reaching glioblastoma (GBM). In the experiments with ablation of the meningeal lymphatic network, we report an important role of meningeal pathway for intranasal delivery of liposomes to the brain. Our data revealed that GBM is characterized by a dramatic reduction of intranasal delivery of liposomes to the brain that was significantly improved by near-infrared (1267 nm) photostimulation of the lymphatic vessels in the area of the cribriform plate and the meninges. These results open new perspectives for non-invasive improvement of efficiency of intranasal delivery of cancer drugs to the brain tissues using nanocarriers and near-infrared laser-based therapeutic devices, which are commercially available and widely used in clinical practice.

11.
Int J Biol Macromol ; 195: 398-411, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34921890

RESUMO

Detection and study of biologically active compounds seems a promising area of research in cancer diagnostics and therapies. The glycoprotein and polysaccharide fractions showing high cytotoxicity towards several human and animal cancer cell lines: A549, Hep-2, HeLa, С6 and SPEV-2 were isolated from basidiomycete Lentinus edodes vegetative mycelium and fruiting body and further characterized. It was found that water-soluble glycoprotein fractions caused the most significant, 70-100% inhibition of metabolic activity of SPЕV-2, А549 and С6 cell lines. The effective concentrations of glycoprotein fractions reducing the viability of cancer cell lines were determined. The protein and subunit composition of fractions was studied; the highly active galactose-specific lectins were found to be present in these fractions. Comparative analysis of transcriptomes of L. edodes vegetative mycelium, fruiting body and primordium revealed the presence of carbohydrate-binding glycoproteins (lectins) specific for each stage of basidiomycete morphogenesis. Histological examination revealed some morphological indicators of immune system activation and the absence of toxic effect on gastro-intestinal mucosa of animals at peroral administration of fungal glycoprotein fractions. Fungal protein and, in particular, lectin preparations derived from L. еdodes vegetative mycelium might be considered as novel prospective tools in cancer diagnostics and therapies.


Assuntos
Proteínas Fúngicas/farmacologia , Cogumelos Shiitake/química , Cogumelos Shiitake/metabolismo , Basidiomycota/química , Basidiomycota/metabolismo , Linhagem Celular Tumoral , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Galactose/metabolismo , Células HeLa , Humanos , Lectinas/química , Micélio/química , Polissacarídeos/química , Polissacarídeos/metabolismo
12.
Cells ; 10(12)2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34943796

RESUMO

The deposition of amyloid-ß (Aß) in the brain is a risk factor for Alzheimer's disease (AD). Therefore, new strategies for the stimulation of Aß clearance from the brain can be useful in preventing AD. Transcranial photostimulation (PS) is considered a promising method for AD therapy. In our previous studies, we clearly demonstrated the PS-mediated stimulation of lymphatic clearing functions, including Aß removal from the brain. There is increasing evidence that sleep plays an important role in Aß clearance. Here, we tested our hypothesis that PS at night can stimulate Aß clearance from the brain more effectively than PS during the day. Our results on healthy mice show that Aß clearance from the brain occurs faster at night than during wakefulness. The PS course at night improves memory and reduces Aß accumulation in the brain of AD mice more effectively than the PS course during the day. Our results suggest that night PS is a more promising candidate as an effective method in preventing AD than daytime PS. These data are an important informative platform for the development of new noninvasive and nonpharmacological technologies for AD therapy as well as for preventing Aß accumulation in the brain of people with disorder of Aß metabolism, sleep deficit, elderly age, and jet lag.


Assuntos
Doença de Alzheimer/prevenção & controle , Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Encéfalo/efeitos da radiação , Luz , Animais , Eletroencefalografia , Corantes Fluorescentes/metabolismo , Linfa/metabolismo , Masculino , Memória/efeitos da radiação , Camundongos Endogâmicos BALB C , Fases do Sono/fisiologia , Fases do Sono/efeitos da radiação , Vigília/fisiologia , Vigília/efeitos da radiação
13.
Biomed Opt Express ; 10(10): 5182-5197, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31646040

RESUMO

In this paper, measurements of the optical properties (diffuse reflectance, total and collimated transmittance) of brain tissues in healthy rats and rats with C6-glioma were performed in the spectral range from 350 to 1800 nm. Using these measurements, characteristic tissue optical parameters, such as absorption coefficient, scattering coefficient, reduced scattering coefficient, and scattering anisotropy factor were reconstructed. It was obtained that the 10-day development of glioma led to increase of absorption coefficient, which was associated with the water content elevation in the tumor. However, further development of the tumor (formation of the necrotic core) led to decrease in the water content. The dependence of the scattering properties on the different stages of model glioma development was more complex. Light penetration depth into the healthy and tumor brain was evaluated.

14.
Biomed Opt Express ; 10(8): 4115-4125, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31452998

RESUMO

Using an original model of stress-induced colon adenocarcinoma, we uncover atypical vasorelaxation effects of a mucosa injection of epinephrine assessed by laser speckle contrast imaging and a significant increase of fluorescent intensity of 5-ALA/PpIX from malignant colon tissues by a mucosa injection of nitroglycerine. We clearly demonstrate a high activity of adrenergic and nitrergic mechanisms underlying this phenomenon and discuss their application in improving of optical approaches for effective diagnosis of gastrointestinal cancer.

15.
J Biomed Opt ; 22(12): 1-9, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29275545

RESUMO

The meningeal lymphatic vessels were discovered 2 years ago as the drainage system involved in the mechanisms underlying the clearance of waste products from the brain. The blood-brain barrier (BBB) is a gatekeeper that strongly controls the movement of different molecules from the blood into the brain. We know the scenarios during the opening of the BBB, but there is extremely limited information on how the brain clears the substances that cross the BBB. Here, using the model of sound-induced opening of the BBB, we clearly show how the brain clears dextran after it crosses the BBB via the meningeal lymphatic vessels. We first demonstrate successful application of optical coherence tomography (OCT) for imaging of the lymphatic vessels in the meninges after opening of the BBB, which might be a new useful strategy for noninvasive analysis of lymphatic drainage in daily clinical practice. Also, we give information about the depth and size of the meningeal lymphatic vessels in mice. These new fundamental data with the applied focus on the OCT shed light on the mechanisms of brain clearance and the role of lymphatic drainage in these processes that could serve as an informative platform for a development of therapy and diagnostics of diseases associated with injuries of the BBB such as stroke, brain trauma, glioma, depression, or Alzheimer disease.


Assuntos
Barreira Hematoencefálica/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Sistema Glinfático/diagnóstico por imagem , Tomografia de Coerência Óptica/métodos , Animais , Barreira Hematoencefálica/fisiologia , Encéfalo/fisiologia , Permeabilidade Capilar/fisiologia , Sistema Glinfático/fisiologia , Masculino , Camundongos , Sonicação
16.
Biomed Opt Express ; 8(11): 5040-5048, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29188101

RESUMO

Photodynamic treatment (PDT) causes a significant increase in the permeability of the blood-brain barrier (BBB) in healthy mice. Using different doses of laser radiation (635 nm, 10-40 J/cm2) and photosensitizer (5-aminolevulinic acid - 5-ALA, 20 and 80 mg/kg, i.v.), we found that the optimal PDT for the reversible opening of the BBB is 15 J/cm2 and 5-ALA, 20 mg/kg, exhibiting brain tissues recovery 3 days after PDT. Further increases in the laser radiation or 5-ALA doses have no amplifying effect on the BBB permeability, but are associated with severe damage of brain tissues. These results can be an informative platform for further studies of new strategies in brain drug delivery and for better understanding of mechanisms underlying cerebrovascular effects of PDT-related fluorescence guided resection of brain tumor.

17.
Theranostics ; 3(3): 167-80, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23471188

RESUMO

Gold nanoparticles (GNPs) and GNP-based multifunctional nanocomposites are the subject of intensive studies and biomedical applications. This minireview summarizes our recent efforts in analytical and theranostic applications of engineered GNPs and nanocomposites by using plasmonic properties of GNPs and various optical techniques. Specifically, we consider analytical biosensing; visualization and bioimaging of bacterial, mammalian, and plant cells; photodynamic treatment of pathogenic bacteria; and photothermal therapy of xenografted tumors. In addition to recently published reports, we discuss new data on dot immunoassay diagnostics of mycobacteria, multiplexed immunoelectron microscopy analysis of Azospirillum brasilense, materno-embryonic transfer of GNPs in pregnant rats, and combined photodynamic and photothermal treatment of rat xenografted tumors with gold nanorods covered by a mesoporous silica shell doped with hematoporphyrin.


Assuntos
Ouro/uso terapêutico , Nanocompostos/uso terapêutico , Nanopartículas/uso terapêutico , Animais , Infecções Bacterianas/diagnóstico , Infecções Bacterianas/terapia , Diagnóstico por Imagem/métodos , Modelos Animais de Doenças , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/efeitos da radiação , Ouro/efeitos da radiação , Humanos , Nanocompostos/efeitos da radiação , Nanopartículas/efeitos da radiação , Neoplasias/diagnóstico , Neoplasias/terapia , Fototerapia/métodos , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA