Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
BMC Oral Health ; 24(1): 122, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38263027

RESUMO

BACKGROUND: Since AI algorithms can analyze patient data, medical records, and imaging results to suggest treatment plans and predict outcomes, they have the potential to support pathologists and clinicians in the diagnosis and treatment of oral and maxillofacial pathologies, just like every other area of life in which it is being used. The goal of the current study was to examine all of the trends being investigated in the area of oral and maxillofacial pathology where AI has been possibly involved in helping practitioners. METHODS: We started by defining the important terms in our investigation's subject matter. Following that, relevant databases like PubMed, Scopus, and Web of Science were searched using keywords and synonyms for each concept, such as "machine learning," "diagnosis," "treatment planning," "image analysis," "predictive modelling," and "patient monitoring." For more papers and sources, Google Scholar was also used. RESULTS: The majority of the 9 studies that were chosen were on how AI can be utilized to diagnose malignant tumors of the oral cavity. AI was especially helpful in creating prediction models that aided pathologists and clinicians in foreseeing the development of oral and maxillofacial pathology in specific patients. Additionally, predictive models accurately identified patients who have a high risk of developing oral cancer as well as the likelihood of the disease returning after treatment. CONCLUSIONS: In the field of oral and maxillofacial pathology, AI has the potential to enhance diagnostic precision, personalize care, and ultimately improve patient outcomes. The development and application of AI in healthcare, however, necessitates careful consideration of ethical, legal, and regulatory challenges. Additionally, because AI is still a relatively new technology, caution must be taken when applying it to this industry.


Assuntos
Algoritmos , Inteligência Artificial , Humanos , Processamento de Imagem Assistida por Computador , Prontuários Médicos , Boca/patologia , Face/patologia
2.
BMC Oral Health ; 24(1): 103, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38233799

RESUMO

Gene sequencing (GS) has numerous applications in combatting oral-cavity related disorders, including identifying genetic risk factors for diseases, developing targeted therapies, and improving diagnostic methods. It can help identify specific genetic mutations or variations that increase the risk of developing oral-cavity related disorders, such as oral cancer, periodontal disease, and cleft lip and palate. By the means of the following investigation, our primary objective was to assess the impact of GS technique in diagnosing and potentially treating diseases of the oral cavity by the means of a systematic review and meta-analysis. We commenced by defining the terms "gene sequencing," "oral cavity," and "disorders" as the important elements in our investigation's subject. Next, relevant databases like PubMed, Scopus, Embase, Web of Science, and Google Scholar were searched using keywords and synonyms for each concept, such as "genomic sequencing," "DNA sequencing," "oral health," "oral diseases," "dental caries," "periodontal disease," "oral cancer," and "salivary gland disorders." We combined several search terms, such as "gene sequencing AND oral disorders AND periodontal disease" or "oral cancer OR genomic sequencing," to further hone your search results using Boolean operators like "AND" and "OR." The oral cavity analysis obtained by CS in the selected articles revealed that most of the disorders were, in fact, a direct causal event influenced by the oral microbiome. Moreover, each sampled oral cavity evidenced a different microbial community, which predicted the precipitation of benign as well as malignant conditions, though not on a definitive basis. In the last ten years, genomic sequencing had advanced remarkably as majority of our selected studies observed, making it possible to diagnose and treat a variety of oral and maxillofacial disorders, including cancer. It was also used to ascertain a person's genetic make-up as well as to spot numerous genetic abnormalities that can predispose individuals to diseases. Understanding the different sequencing techniques and the resulting genetic anomalies may help with their clinical application and lead to an improvement in illness diagnosis and prognosis as a whole in the field of dentistry.


Assuntos
Fenda Labial , Fissura Palatina , Cárie Dentária , Doenças da Boca , Neoplasias Bucais , Doenças Periodontais , Humanos , Doenças da Boca/genética , Neoplasias Bucais/diagnóstico , Neoplasias Bucais/genética , Doenças Periodontais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA