Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Chem Biol ; 29(8): 1303-1316.e3, 2022 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-35830852

RESUMO

The potential of small molecules to localize within subcellular compartments is rarely explored. To probe this question, we measured the localization of Hsp70 inhibitors using fluorescence microscopy. We found that even closely related analogs had dramatically different distributions, with some residing predominantly in the mitochondria and others in the ER. CRISPRi screens supported this idea, showing that different compounds had distinct chemogenetic interactions with Hsp70s of the ER (HSPA5/BiP) and mitochondria (HSPA9/mortalin) and their co-chaperones. Moreover, localization seemed to determine function, even for molecules with conserved binding sites. Compounds with distinct partitioning have distinct anti-proliferative activity in breast cancer cells compared with anti-viral activity in cellular models of Dengue virus replication, likely because different sets of Hsp70s are required in these processes. These findings highlight the contributions of subcellular partitioning and chemogenetic interactions to small molecule activity, features that are rarely explored during medicinal chemistry campaigns.


Assuntos
Proteínas de Choque Térmico HSP70 , Chaperonas Moleculares , Sítios de Ligação , Chaperona BiP do Retículo Endoplasmático , Proteínas de Choque Térmico HSP70/metabolismo , Chaperonas Moleculares/metabolismo , Domínios Proteicos
2.
Cell Chem Biol ; 29(3): 490-501.e4, 2022 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-35108506

RESUMO

Castration-resistant prostate cancer (CRPC) is associated with an increased reliance on heat shock protein 70 (HSP70), but it is not clear what other protein homeostasis (proteostasis) factors might be involved. To address this question, we performed functional and synthetic lethal screens in four prostate cancer cell lines. These screens confirmed key roles for HSP70, HSP90, and their co-chaperones, but also suggested that the mitochondrial chaperone, HSP60/HSPD1, is selectively required in CRPC cell lines. Knockdown of HSP60 does not impact the stability of androgen receptor (AR) or its variants; rather, it is associated with loss of mitochondrial spare respiratory capacity, partly owing to increased proton leakage. Finally, transcriptional data revealed a correlation between HSP60 levels and poor survival of prostate cancer patients. These findings suggest that re-wiring of the proteostasis network is associated with CRPC, creating selective vulnerabilities that might be targeted to treat the disease.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Linhagem Celular Tumoral , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Masculino , Chaperonas Moleculares/metabolismo , Neoplasias de Próstata Resistentes à Castração/genética , Proteostase , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo
3.
J Med Chem ; 64(19): 14809-14821, 2021 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-34606726

RESUMO

The protein homeostasis (proteostasis) network is composed of multiple pathways that work together to balance protein folding, stability, and turnover. Cancer cells are particularly reliant on this network; however, it is hypothesized that inhibition of one node might lead to compensation. To better understand these connections, we dosed 22Rv1 prostate cancer cells with inhibitors of four proteostasis targets (Hsp70, Hsp90, proteasome, and p97), either alone or in binary combinations, and measured the effects on cell growth. The results reveal a series of additive, synergistic, and antagonistic relationships, including strong synergy between inhibitors of p97 and the proteasome and striking antagonism between inhibitors of Hsp90 and the proteasome. Based on RNA-seq, these relationships are associated, in part, with activation of stress pathways. Together, these results suggest that cocktails of proteostasis inhibitors might be a powerful way of treating some cancers, although antagonism that blunts the efficacy of both molecules is also possible.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Próstata/patologia , Proteostase/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Proteínas de Choque Térmico HSP70 , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Masculino , Complexo de Endopeptidases do Proteassoma/metabolismo , Receptores Androgênicos/metabolismo , Análise de Sequência de RNA , Estresse Fisiológico
4.
Sci Signal ; 12(583)2019 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-31138768

RESUMO

Inhibitors targeting KRASG12C, a mutant form of the guanosine triphosphatase (GTPase) KRAS, are a promising new class of oncogene-specific therapeutics for the treatment of tumors driven by the mutant protein. These inhibitors react with the mutant cysteine residue by binding covalently to the switch-II pocket (S-IIP) that is present only in the inactive guanosine diphosphate (GDP)-bound form of KRASG12C, sparing the wild-type protein. We used a genome-scale CRISPR interference (CRISPRi) functional genomics platform to systematically identify genetic interactions with a KRASG12C inhibitor in cellular models of KRASG12C mutant lung and pancreatic cancer. Our data revealed genes that were selectively essential in this oncogenic driver-limited cell state, meaning that their loss enhanced cellular susceptibility to direct KRASG12C inhibition. We termed such genes "collateral dependencies" (CDs) and identified two classes of combination therapies targeting these CDs that increased KRASG12C target engagement or blocked residual survival pathways in cells and in vivo. From our findings, we propose a framework for assessing genetic dependencies induced by oncogene inhibition.


Assuntos
Neoplasias Pulmonares/metabolismo , Neoplasias Pancreáticas/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Animais , Antineoplásicos/farmacologia , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cisteína/genética , Feminino , Genômica , Células HEK293 , Humanos , Neoplasias Pulmonares/genética , Camundongos , Camundongos Nus , Mutação , Transplante de Neoplasias , Oncogenes , Neoplasias Pancreáticas/genética , Ligação Proteica , Proteômica , Proteínas Proto-Oncogênicas p21(ras)/genética , Análise de Sequência de RNA , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA