Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomedicines ; 11(9)2023 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-37760837

RESUMO

Carpal tunnel syndrome (CTS) is the most frequent entrapment neuropathy. CTS therapy includes wrist immobilization, kinesiotherapy, non-steroidal anti-inflammatory drugs, carpal tunnel steroid injection, acupuncture, and physical therapy. Carpal tunnel decompression surgery (CTDS) is recommended after failure of conservative therapy. In many cases, neurological disorders continue despite CTDS. The aim of this study was to investigate the efficiency of direct transcutaneous electroneurostimulation (TENS) of the median nerve in the regression of residual neurological symptoms after CTDS. Material and Methods: 60 patients aged 28-62 years with persisting sensory and motor disorders after CTDS were studied; 15 patients received sham stimulation with a duration 30 min.; 15 patients received high-frequency low-amplitude TENS (HF TENS) with a duration 30 min; 15 patients received low-frequency high-amplitude TENS (LF TENS) with a duration 30 min; and 15 patients received a co-administration of HF TENS (with a duration of15 min) and LF TENS (with a duration of 15 min). Results: Our research showed that TENS significantly decreased the pain syndrome, sensory disorders, and motor deficits in the patients after CTDS. Predominantly, negative and positive sensory symptoms and the pain syndrome improved after the HF TENS course. Motor deficits, reduction of fine motor skill performance, electromyography changes, and affective responses to chronic pain syndrome regressed significantly after the LF TENS course. Co-administration of HF TENS and LF TENS was significantly more effective than use of sham stimulation, HF TENS, or LF TENS in patients with residual neurological symptoms after CTDS.

2.
Genes (Basel) ; 14(5)2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37239445

RESUMO

Antipsychotic (AP)-induced adverse drug reactions (ADRs) are a current problem of biological and clinical psychiatry. Despite the development of new generations of APs, the problem of AP-induced ADRs has not been solved and continues to be actively studied. One of the important mechanisms for the development of AP-induced ADRs is a genetically-determined impairment of AP efflux across the blood-brain barrier (BBB). We present a narrative review of publications in databases (PubMed, Springer, Scopus, Web of Science E-Library) and online resources: The Human Protein Atlas; GeneCards: The Human Gene Database; US National Library of Medicine; SNPedia; OMIM Online Mendelian Inheritance in Man; The PharmGKB. The role of 15 transport proteins involved in the efflux of drugs and other xenobiotics across cell membranes (P-gp, TAP1, TAP2, MDR3, BSEP, MRP1, MRP2, MRP3, MRP4, MRP5, MRP6, MRP7, MRP8, MRP9, BCRP) was analyzed. The important role of three transporter proteins (P-gp, BCRP, MRP1) in the efflux of APs through the BBB was shown, as well as the association of the functional activity and expression of these transport proteins with low-functional and non-functional single nucleotide variants (SNVs)/polymorphisms of the ABCB1, ABCG2, ABCC1 genes, encoding these transport proteins, respectively, in patients with schizophrenia spectrum disorders (SSDs). The authors propose a new pharmacogenetic panel "Transporter protein (PT)-Antipsychotic (AP) Pharmacogenetic test (PGx)" (PTAP-PGx), which allows the evaluation of the cumulative contribution of the studied genetic biomarkers of the impairment of AP efflux through the BBB. The authors also propose a riskometer for PTAP-PGx and a decision-making algorithm for psychiatrists. Conclusions: Understanding the role of the transportation of impaired APs across the BBB and the use of genetic biomarkers for its disruption may make it possible to reduce the frequency and severity of AP-induced ADRs, since this risk can be partially modified by the personalized selection of APs and their dosing rates, taking into account the genetic predisposition of the patient with SSD.


Assuntos
Antipsicóticos , Proteínas Associadas à Resistência a Múltiplos Medicamentos , Estados Unidos , Humanos , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Antipsicóticos/efeitos adversos , Barreira Hematoencefálica/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Neoplasias/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Biomarcadores/metabolismo
3.
J Clin Med ; 12(8)2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37109269

RESUMO

Chiari 1 Malformation (CM1) is classically defined as a caudal displacement of the cerebellar tonsils through the foramen magnum into the spinal cord. Modern imaging techniques and experimental studies disclose a different etiology for the development of CM1, but the main etiology factor is a structural defect in the skull as a deformity or partial reduction, which push down the lower part of the brain and cause the cerebellum to compress into the spinal canal. CM1 is classified as a rare disease. CM1 can present with a wide variety of symptoms, also non-specific, with consequent controversies on diagnosis and surgical decision-making, particularly in asymptomatic or minimally symptomatic. Other disorders, such as syringomyelia (Syr), hydrocephalus, and craniocervical instability can be associated at the time of the diagnosis or appear secondarily. Therefore, CM1-related Syr is defined as a single or multiple fluid-filled cavities within the spinal cord and/or the bulb. A rare CM1-related disorder is syndrome of lateral amyotrophic sclerosis (ALS mimic syndrome). We present a unique clinical case of ALS mimic syndrome in a young man with CM1 and a huge singular syringomyelic cyst with a length from segment C2 to Th12. At the same time, the clinical picture showed upper hypotonic-atrophic paraparesis in the absence of motor disorders in the lower extremities. Interestingly, this patient did not have a disorder of superficial and deep types of sensitivity. This made it difficult to diagnose CM1. For a long time, the patient's symptoms were regarded as a manifestation of ALS, as an independent neurological disease, and not as a related disorder of CM1. Surgical treatment for CM1 was not effective, but it allowed to stabilize the course of CM1-related ALS mimic syndrome over the next two years.

4.
Metabolites ; 13(1)2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36677060

RESUMO

Valproic acid (VPA) and its salts are psychotropic drugs that are widely used in neurological diseases (epilepsy, neuropathic pain, migraine, etc.) and psychiatric disorders (schizophrenia, bipolar affective disorder, addiction diseases, etc.). In addition, the indications for the appointment of valproate have been expanding in recent years in connection with the study of new mechanisms of action of therapeutic and toxic metabolites of VPA in the human body. Thus, VPA is considered a component of disease-modifying therapy for multiple tumors, neurodegenerative diseases (Huntington's disease, Parkinson's disease, Duchenne progressive dystrophy, etc.), and human immunodeficiency syndrome. The metabolism of VPA is complex and continues to be studied. Known pathways of VPA metabolism include: ß-oxidation in the tricarboxylic acid cycle (acetylation); oxidation with the participation of cytochrome P-450 isoenzymes (P-oxidation); and glucuronidation. The complex metabolism of VPA explains the diversity of its active and inactive metabolites, which have therapeutic, neutral, or toxic effects. It is known that some active metabolites of VPA may have a stronger clinical effect than VPA itself. These reasons explain the relevance of this narrative review, which summarizes the results of studies of blood (serum, plasma) and urinary metabolites of VPA from the standpoint of the pharmacogenomics and pharmacometabolomics. In addition, a new personalized approach to assessing the cumulative risk of developing VPA-induced adverse reactions is presented and ways for their correction are proposed depending on the patient's pharmacogenetic profile and the level of therapeutic and toxic VPA metabolites in the human body fluids (blood, urine).

5.
Biomedicines ; 10(8)2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-36009557

RESUMO

Among neurological adverse reactions in patients with schizophrenia treated with antipsychotics (APs), drug-induced parkinsonism (DIP) is the most common motility disorder caused by drugs affecting dopamine receptors. One of the causes of DIP is the disruption of neurotransmitter interactions that regulate the signaling pathways of the dopaminergic, cholinergic, GABAergic, adenosinergic, endocannabinoid, and other neurotransmitter systems. Presently, the development mechanisms remain poorly understood despite the presence of the considered theories of DIP pathogenesis.

6.
Int J Mol Sci ; 23(2)2022 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-35055144

RESUMO

Temporal lobe epilepsy (TLE) is one of the most common forms of focal epilepsy in children and adults. TLE is characterized by variable onset and seizures. Moreover, this form of epilepsy is often resistant to pharmacotherapy. The search for new mechanisms for the development of TLE may provide us with a key to the development of new diagnostic methods and a personalized approach to the treatment. In recent years, the role of non-coding ribonucleic acids (RNA) has been actively studied, among which microRNA (miR) is of the greatest interest. (1) Background: The purpose of the systematic review is to analyze the studies carried out on the role of miRs in the development of mesial TLE (mTLE) and update the existing knowledge about the biomarkers of this disease. (2) Methods: The search for publications was carried out in the databases PubMed, Springer, Web of Science, Clinicalkeys, Scopus, OxfordPress, Cochrane. The search was carried out using keywords and combinations. We analyzed publications for 2016-2021, including original studies in an animal model of TLE and with the participation of patients with TLE, thematic and systemic reviews, and Cochrane reviews. (3) Results: this thematic review showed that miR‒155, miR‒153, miR‒361‒5p, miR‒4668‒5p, miR‒8071, miR‒197‒5p, miR‒145, miR‒181, miR‒199a, miR‒1183, miR‒129‒2‒3p, miR‒143‒3p (upregulation), miR-134, miR‒0067835, and miR‒153 (downregulation) can be considered as biomarkers of mTLE. However, the roles of miR‒146a, miR‒142, miR‒106b, and miR‒223 are questionable and need further study. (4) Conclusion: In the future, it will be possible to consider previously studied miRs, which have high specificity and sensitivity in mTLE, as prognostic biomarkers (predictors) of the risk of developing this disease in patients with potentially epileptogenic structural damage to the mesial regions of the temporal lobe of the brain (congenital disorders of the neuronal migration and neurogenesis, brain injury, neuro-inflammation, tumor, impaired blood supply, neurodegeneration, etc.).


Assuntos
Biomarcadores Tumorais/genética , Epilepsia do Lobo Temporal/genética , MicroRNAs/genética , Animais , Modelos Animais de Doenças , Regulação da Expressão Gênica , Humanos
7.
Int J Mol Sci ; 22(12)2021 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-34204341

RESUMO

Regular physical activity in cyclic sports can influence the so-called "angiogenic switch", which is considered as an imbalance between proangiogenic and anti-angiogenic molecules. Disruption of the synthesis of angiogenic molecules can be caused by local changes in tissues under the influence of excessive physical exertion and its consequences, such as chronic oxidative stress and associated hypoxia, metabolic acidosis, sports injuries, etc. A review of publications on signaling pathways that activate and inhibit angiogenesis in skeletal muscles, myocardium, lung, and nervous tissue under the influence of intense physical activity in cyclic sports. Materials: We searched PubMed, SCOPUS, Web of Science, Google Scholar, Clinical keys, and e-LIBRARY databases for full-text articles published from 2000 to 2020, using keywords and their combinations. Results: An important aspect of adaptation to training loads in cyclic sports is an increase in the number of capillaries in muscle fibers, which improves the metabolism of skeletal muscles and myocardium, as well as nervous and lung tissue. Recent studies have shown that myocardial endothelial cells not only respond to hemodynamic forces and paracrine signals from neighboring cells, but also take an active part in heart remodeling processes, stimulating the growth and contractility of cardiomyocytes or the production of extracellular matrix proteins in myofibroblasts. As myocardial vascularization plays a central role in the transition from adaptive heart hypertrophy to heart failure, further study of the signaling mechanisms involved in the regulation of angiogenesis in the myocardium is important in sports practice. The study of the "angiogenic switch" problem in the cerebrovascular and cardiovascular systems allows us to claim that the formation of new vessels is mediated by a complex interaction of all growth factors. Although the lungs are one of the limiting systems of the body in cyclic sports, their response to high-intensity loads and other environmental stresses is often overlooked. Airway epithelial cells are the predominant source of several growth factors throughout lung organogenesis and appear to be critical for normal alveolarization, rapid alveolar proliferation, and normal vascular development. There are many controversial questions about the role of growth factors in the physiology and pathology of the lungs. The presented review has demonstrated that when doing sports, it is necessary to give a careful consideration to the possible positive and negative effects of growth factors on muscles, myocardium, lung tissue, and brain. Primarily, the "angiogenic switch" is important in aerobic sports (long distance running). Conclusions: Angiogenesis is a physiological process of the formation of new blood capillaries, which play an important role in the functioning of skeletal muscles, myocardium, lung, and nervous tissue in athletes. Violation of the "angiogenic switch" as a balance between proangiogenic and anti-angiogenic molecules can lead to a decrease in the functional resources of the nervous, musculoskeletal, cardiovascular, and respiratory systems in athletes and, as a consequence, to a decrease in sports performance.


Assuntos
Atletas , Neovascularização Fisiológica , Esportes/fisiologia , Biomarcadores , Suscetibilidade a Doenças , Exercício Físico , Regulação da Expressão Gênica , Hemodinâmica , Humanos , Modelos Biológicos , Especificidade de Órgãos/genética , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
8.
Horm Behav ; 120: 104695, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31987898

RESUMO

In mammals, the development of healthy offspring requires maternal care. Behavior by lactating mothers toward other individuals is an important component of maternal aggression. However, it is unclear whether fathers display aggression primed by pups (an external factor), and the protection mechanism is poorly understood. To address this question, we examined paternal aggression in the ICR mouse strain. We found that sires exposed to cues from pups and lactating dams showed stronger aggression toward intruders than did sires that were deprived of family cues or exposed to nonlactating mates. c-Fos immunohistochemistry showed that cells in both the paraventricular and supraoptic nuclei (PVN and SON, respectively) in the hypothalamus of sires exposed to any cues were highly activated. However, c-Fos activation in oxytocinergic neurons was increased only in sires exposed to pup cues and solely in the PVN. In Cd38-knockout sires, the presence of pups induced no or reduced parental aggression; however, this phenotype was recovered, that is, aggression increased to the wild-type level, after intraperitoneal administration of oxytocin (OT). Specific c-Fos activation patterns induced by pup cues were not found in the PVN of knockout sires. These results demonstrate that the PVN is one of the primary hypothalamic areas involved in paternal aggression and suggest that a CD38-dependent OT mechanism in oxytocinergic neurons is critical for part of the behavior associated with the protection of offspring by nurturing male mice.


Assuntos
ADP-Ribosil Ciclase 1/metabolismo , ADP-Ribosil Ciclase/metabolismo , Agressão/efeitos dos fármacos , Glicoproteínas de Membrana/metabolismo , Ocitocina/farmacologia , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Núcleo Hipotalâmico Paraventricular/metabolismo , Comportamento Paterno/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Pai/psicologia , Feminino , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos ICR , Camundongos Knockout , Comportamento de Nidação/efeitos dos fármacos , Comportamento Social
9.
Nature ; 446(7131): 41-5, 2007 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-17287729

RESUMO

CD38, a transmembrane glycoprotein with ADP-ribosyl cyclase activity, catalyses the formation of Ca2+ signalling molecules, but its role in the neuroendocrine system is unknown. Here we show that adult CD38 knockout (CD38-/-) female and male mice show marked defects in maternal nurturing and social behaviour, respectively, with higher locomotor activity. Consistently, the plasma level of oxytocin (OT), but not vasopressin, was strongly decreased in CD38-/- mice. Replacement of OT by subcutaneous injection or lentiviral-vector-mediated delivery of human CD38 in the hypothalamus rescued social memory and maternal care in CD38-/- mice. Depolarization-induced OT secretion and Ca2+ elevation in oxytocinergic neurohypophysial axon terminals were disrupted in CD38-/- mice; this was mimicked by CD38 metabolite antagonists in CD38+/+ mice. These results reveal that CD38 has a key role in neuropeptide release, thereby critically regulating maternal and social behaviours, and may be an element in neurodevelopmental disorders.


Assuntos
ADP-Ribosil Ciclase 1/metabolismo , Comportamento Materno/fisiologia , Ocitocina/metabolismo , Comportamento Social , ADP-Ribosil Ciclase 1/deficiência , ADP-Ribosil Ciclase 1/genética , Amnésia/genética , Amnésia/metabolismo , Animais , Cálcio/metabolismo , Sinalização do Cálcio , Feminino , Regulação da Expressão Gênica , Humanos , Injeções , Masculino , Memória/fisiologia , Camundongos , Atividade Motora/fisiologia , Ocitocina/administração & dosagem , Ocitocina/sangue , Ocitocina/farmacologia , Vasopressinas/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA