Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
BMC Genomics ; 15: 702, 2014 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-25149281

RESUMO

BACKGROUND: Iron is an essential micronutrient for all living things, required in plants for photosynthesis, respiration and metabolism. A lack of bioavailable iron in soil leads to iron deficiency chlorosis (IDC), causing a reduction in photosynthesis and interveinal yellowing of leaves. Soybeans (Glycine max (L.) Merr.) grown in high pH soils often suffer from IDC, resulting in substantial yield losses. Iron efficient soybean cultivars maintain photosynthesis and have higher yields under IDC-promoting conditions than inefficient cultivars. RESULTS: To capture signaling between roots and leaves and identify genes acting early in the iron efficient cultivar Clark, we conducted a RNA-Seq study at one and six hours after replacing iron sufficient hydroponic media (100 µM iron(III) nitrate nonahydrate) with iron deficient media (50 µM iron(III) nitrate nonahydrate). At one hour of iron stress, few genes were differentially expressed in leaves but many were already changing expression in roots. By six hours, more genes were differentially expressed in the leaves, and a massive shift was observed in the direction of gene expression in both roots and leaves. Further, there was little overlap in differentially expressed genes identified in each tissue and time point. CONCLUSIONS: Genes involved in hormone signaling, regulation of DNA replication and iron uptake utilization are key aspects of the early iron-efficiency response. We observed dynamic gene expression differences between roots and leaves, suggesting the involvement of many transcription factors in eliciting rapid changes in gene expression. In roots, genes involved iron uptake and development of Casparian strips were induced one hour after iron stress. In leaves, genes involved in DNA replication and sugar signaling responded to iron deficiency. The differentially expressed genes (DEGs) and signaling components identified here represent new targets for soybean improvement.


Assuntos
Glycine max/genética , Glycine max/metabolismo , Deficiências de Ferro , Doenças das Plantas/genética , Folhas de Planta/genética , Raízes de Plantas/genética , Transdução de Sinais , Sítios de Ligação , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Homeostase , Família Multigênica , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Ligação Proteica , Estresse Fisiológico , Fatores de Tempo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
2.
Plant Cell Environ ; 37(1): 213-34, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23742135

RESUMO

In soybean [Glycine max (L.) Merr.], iron deficiency results in interveinal chlorosis and decreased photosynthetic capacity, leading to stunting and yield loss. In this study, gene expression analyses investigated the role of soybean replication protein A (RPA) subunits during iron stress. Nine RPA homologs were significantly differentially expressed in response to iron stress in the near isogenic lines (NILs) Clark (iron efficient) and Isoclark (iron inefficient). RPA homologs exhibited opposing expression patterns in the two NILs, with RPA expression significantly repressed during iron deficiency in Clark but induced in Isoclark. We used virus induced gene silencing (VIGS) to repress GmRPA3 expression in the iron inefficient line Isoclark and mirror expression in Clark. GmRPA3-silenced plants had improved IDC symptoms and chlorophyll content under iron deficient conditions and also displayed stunted growth regardless of iron availability. RNA-Seq comparing gene expression between GmRPA3-silenced and empty vector plants revealed massive transcriptional reprogramming with differential expression of genes associated with defense, immunity, aging, death, protein modification, protein synthesis, photosynthesis and iron uptake and transport genes. Our findings suggest the iron efficient genotype Clark is able to induce energy controlling pathways, possibly regulated by SnRK1/TOR, to promote nutrient recycling and stress responses in iron deficient conditions.


Assuntos
Regulação da Expressão Gênica de Plantas , Genoma de Planta/genética , Glycine max/fisiologia , Deficiências de Ferro , Proteína de Replicação A/metabolismo , Perfilação da Expressão Gênica , Inativação Gênica , Modelos Biológicos , Análise de Sequência com Séries de Oligonucleotídeos , Filogenia , Proteínas de Plantas/metabolismo , Ligação Proteica , Proteína de Replicação A/genética , Glycine max/genética , Estresse Fisiológico , Simbiose
3.
Breed Sci ; 61(5): 437-44, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23136483

RESUMO

The soybean genome assembly has been available since the end of 2008. Significant features of the genome include large, gene-poor, repeat-dense pericentromeric regions, spanning roughly 57% of the genome sequence; a relatively large genome size of ~1.15 billion bases; remnants of a genome duplication that occurred ~13 million years ago (Mya); and fainter remnants of older polyploidies that occurred ~58 Mya and >130 Mya. The genome sequence has been used to identify the genetic basis for numerous traits, including disease resistance, nutritional characteristics, and developmental features. The genome sequence has provided a scaffold for placement of many genomic feature elements, both from within soybean and from related species. These may be accessed at several websites, including http://www.phytozome.net, http://soybase.org, http://comparative-legumes.org, and http://www.legumebase.brc.miyazaki-u.ac.jp. The taxonomic position of soybean in the Phaseoleae tribe of the legumes means that there are approximately two dozen other beans and relatives that have undergone independent domestication, and which may have traits that will be useful for transfer to soybean. Methods of translating information between species in the Phaseoleae range from design of markers for marker assisted selection, to transformation with Agrobacterium or with other experimental transformation methods.

4.
Plant Physiol ; 158(4): 1745-54, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22319075

RESUMO

Prevalent on calcareous soils in the United States and abroad, iron deficiency is among the most common and severe nutritional stresses in plants. In soybean (Glycine max) commercial plantings, the identification and use of iron-efficient genotypes has proven to be the best form of managing this soil-related plant stress. Previous studies conducted in soybean identified a significant iron efficiency quantitative trait locus (QTL) explaining more than 70% of the phenotypic variation for the trait. In this research, we identified candidate genes underlying this QTL through molecular breeding, mapping, and transcriptome sequencing. Introgression mapping was performed using two related near-isogenic lines in which a region located on soybean chromosome 3 required for iron efficiency was identified. The region corresponds to the previously reported iron efficiency QTL. The location was further confirmed through QTL mapping conducted in this study. Transcriptome sequencing and quantitative real-time-polymerase chain reaction identified two genes encoding transcription factors within the region that were significantly induced in soybean roots under iron stress. The two induced transcription factors were identified as homologs of the subgroup lb basic helix-loop-helix (bHLH) genes that are known to regulate the strategy I response in Arabidopsis (Arabidopsis thaliana). Resequencing of these differentially expressed genes unveiled a significant deletion within a predicted dimerization domain. We hypothesize that this deletion disrupts the Fe-DEFICIENCY-INDUCED TRANSCRIPTION FACTOR (FIT)/bHLH heterodimer that has been shown to induce known iron acquisition genes.


Assuntos
Genes de Plantas/genética , Estudos de Associação Genética , Glycine max/genética , Glycine max/metabolismo , Ferro/metabolismo , Locos de Características Quantitativas/genética , Cromossomos de Plantas/genética , Cruzamentos Genéticos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Marcadores Genéticos , Endogamia , Repetições de Microssatélites/genética , Modelos Moleculares , Anotação de Sequência Molecular , Fenótipo , Mapeamento Físico do Cromossomo , Reação em Cadeia da Polimerase em Tempo Real , Recombinação Genética/genética , Análise de Sequência de DNA , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
5.
Plant Cell ; 23(9): 3129-36, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21917551

RESUMO

With the advent of high-throughput sequencing, the availability of genomic sequence for comparative genomics is increasing exponentially. Numerous completed plant genome sequences enable characterization of patterns of the retention and evolution of genes within gene families due to multiple polyploidy events, gene loss and fractionation, and differential evolutionary pressures over time and across different gene families. In this report, we trace the changes that have occurred in 12 surviving homoeologous genomic regions from three rounds of polyploidy that contributed to the current Glycine max genome: a genome triplication before the origin of the rosids (~130 to 240 million years ago), a genome duplication early in the legumes (~58 million years ago), and a duplication in the Glycine lineage (~13 million years ago). Patterns of gene retention following the genome triplication event generally support predictions of the Gene Balance Hypothesis. Finally, we find that genes in networks with a high level of connectivity are more strongly conserved than those with low connectivity and that the enrichment of these highly connected genes in the 12 highly conserved homoeologous segments may in part explain their retention over more than 100 million years and repeated polyploidy events.


Assuntos
Evolução Molecular , Genoma de Planta , Glycine max/genética , Poliploidia , DNA de Plantas/genética , Duplicação Gênica , Família Multigênica , Filogenia , Análise de Sequência de DNA , Sintenia
6.
Nature ; 463(7278): 178-83, 2010 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-20075913

RESUMO

Soybean (Glycine max) is one of the most important crop plants for seed protein and oil content, and for its capacity to fix atmospheric nitrogen through symbioses with soil-borne microorganisms. We sequenced the 1.1-gigabase genome by a whole-genome shotgun approach and integrated it with physical and high-density genetic maps to create a chromosome-scale draft sequence assembly. We predict 46,430 protein-coding genes, 70% more than Arabidopsis and similar to the poplar genome which, like soybean, is an ancient polyploid (palaeopolyploid). About 78% of the predicted genes occur in chromosome ends, which comprise less than one-half of the genome but account for nearly all of the genetic recombination. Genome duplications occurred at approximately 59 and 13 million years ago, resulting in a highly duplicated genome with nearly 75% of the genes present in multiple copies. The two duplication events were followed by gene diversification and loss, and numerous chromosome rearrangements. An accurate soybean genome sequence will facilitate the identification of the genetic basis of many soybean traits, and accelerate the creation of improved soybean varieties.


Assuntos
Genoma de Planta/genética , Genômica , Glycine max/genética , Poliploidia , Arabidopsis/genética , Cruzamento , Cromossomos de Plantas/genética , Evolução Molecular , Duplicação Gênica , Genes Duplicados/genética , Genes de Plantas/genética , Dados de Sequência Molecular , Família Multigênica/genética , Filogenia , Nodulação/genética , Locos de Características Quantitativas/genética , Recombinação Genética , Sequências Repetitivas de Ácido Nucleico/genética , Óleo de Soja/biossíntese , Sintenia/genética , Fatores de Transcrição/genética
7.
BMC Genomics ; 10: 376, 2009 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-19678937

RESUMO

BACKGROUND: Soybeans grown in the upper Midwestern United States often suffer from iron deficiency chlorosis, which results in yield loss at the end of the season. To better understand the effect of iron availability on soybean yield, we identified genes in two near isogenic lines with changes in expression patterns when plants were grown in iron sufficient and iron deficient conditions. RESULTS: Transcriptional profiles of soybean (Glycine max, L. Merr) near isogenic lines Clark (PI548553, iron efficient) and IsoClark (PI547430, iron inefficient) grown under Fe-sufficient and Fe-limited conditions were analyzed and compared using the Affymetrix GeneChip Soybean Genome Array. There were 835 candidate genes in the Clark (PI548553) genotype and 200 candidate genes in the IsoClark (PI547430) genotype putatively involved in soybean's iron stress response. Of these candidate genes, fifty-eight genes in the Clark genotype were identified with a genetic location within known iron efficiency QTL and 21 in the IsoClark genotype. The arrays also identified 170 single feature polymorphisms (SFPs) specific to either Clark or IsoClark. A sliding window analysis of the microarray data and the 7X genome assembly coupled with an iterative model of the data showed the candidate genes are clustered in the genome. An analysis of 5' untranslated regions in the promoter of candidate genes identified 11 conserved motifs in 248 differentially expressed genes, all from the Clark genotype, representing 129 clusters identified earlier, confirming the cluster analysis results. CONCLUSION: These analyses have identified the first genes with expression patterns that are affected by iron stress and are located within QTL specific to iron deficiency stress. The genetic location and promoter motif analysis results support the hypothesis that the differentially expressed genes are co-regulated. The combined results of all analyses lead us to postulate iron inefficiency in soybean is a result of a mutation in a transcription factor(s), which controls the expression of genes required in inducing an iron stress response.


Assuntos
Genoma de Planta , Glycine max/genética , Deficiências de Ferro , Análise de Sequência com Séries de Oligonucleotídeos , Doenças das Plantas/genética , Análise por Conglomerados , DNA de Plantas/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Genótipo , Ferro/metabolismo , Regiões Promotoras Genéticas , Locos de Características Quantitativas , Análise de Sequência de DNA , Glycine max/metabolismo
8.
DNA Res ; 15(2): 93-102, 2008 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-18334514

RESUMO

A single recessive gene, rxp, on linkage group (LG) D2 controls bacterial leaf-pustule resistance in soybean. We identified two homoeologous contigs (GmA and GmA') composed of five bacterial artificial chromosomes (BACs) during the selection of BAC clones around Rxp region. With the recombinant inbred line population from the cross of Pureunkong and Jinpumkong 2, single-nucleotide polymorphism and simple sequence repeat marker genotyping were able to locate GmA' on LG A1. On the basis of information in the Soybean Breeders Toolbox and our results, parts of LG A1 and LG D2 share duplicated regions. Alignment and annotation revealed that many homoeologous regions contained kinases and proteins related to signal transduction pathway. Interestingly, inserted sequences from GmA and GmA' had homology with transposase and integrase. Estimation of evolutionary events revealed that speciation of soybean from Medicago and the recent divergence of two soybean homoeologous regions occurred at 60 and 12 million years ago, respectively. Distribution of synonymous substitution patterns, K(s), yielded a first secondary peak (mode K(s) = 0.10-0.15) followed by two smaller bulges were displayed between soybean homologous regions. Thus, diploidized paleopolyploidy of soybean genome was again supported by our study.


Assuntos
Duplicação Gênica , Genoma de Planta , Glycine max/genética , Análise de Sequência de DNA , Mapeamento Cromossômico , Cromossomos Artificiais Bacterianos , Cromossomos de Plantas , Evolução Molecular , Dados de Sequência Molecular , Poliploidia
9.
BMC Genomics ; 8: 476, 2007 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-18154662

RESUMO

BACKGROUND: Iron is one of fourteen mineral elements required for proper plant growth and development of soybean (Glycine max L. Merr.). Soybeans grown on calcareous soils, which are prevalent in the upper Midwest of the United States, often exhibit symptoms indicative of iron deficiency chlorosis (IDC). Yield loss has a positive linear correlation with increasing severity of chlorotic symptoms. As soybean is an important agronomic crop, it is essential to understand the genetics and physiology of traits affecting plant yield. Soybean cultivars vary greatly in their ability to respond successfully to iron deficiency stress. Microarray analyses permit the identification of genes and physiological processes involved in soybean's response to iron stress. RESULTS: RNA isolated from the roots of two near isogenic lines, which differ in iron efficiency, PI 548533 (Clark; iron efficient) and PI 547430 (IsoClark; iron inefficient), were compared on a spotted microarray slide containing 9,728 cDNAs from root specific EST libraries. A comparison of RNA transcripts isolated from plants grown under iron limiting hydroponic conditions for two weeks revealed 43 genes as differentially expressed. A single linkage clustering analysis of these 43 genes showed 57% of them possessed high sequence similarity to known stress induced genes. A control experiment comparing plants grown under adequate iron hydroponic conditions showed no differences in gene expression between the two near isogenic lines. Expression levels of a subset of the differentially expressed genes were also compared by real time reverse transcriptase PCR (RT-PCR). The RT-PCR experiments confirmed differential expression between the iron efficient and iron inefficient plants for 9 of 10 randomly chosen genes examined. To gain further insight into the iron physiological status of the plants, the root iron reductase activity was measured in both iron efficient and inefficient genotypes for plants grown under iron sufficient and iron limited conditions. Iron inefficient plants failed to respond to decreased iron availability with increased activity of Fe reductase. CONCLUSION: These experiments have identified genes involved in the soybean iron deficiency chlorosis response under iron deficient conditions. Single linkage cluster analysis suggests iron limited soybeans mount a general stress response as well as a specialized iron deficiency stress response. Root membrane bound reductase capacity is often correlated with iron efficiency. Under iron-limited conditions, the iron efficient plant had high root bound membrane reductase capacity while the iron inefficient plants reductase levels remained low, further limiting iron uptake through the root. Many of the genes up-regulated in the iron inefficient NIL are involved in known stress induced pathways. The most striking response of the iron inefficient genotype to iron deficiency stress was the induction of a profusion of signaling and regulatory genes, presumably in an attempt to establish and maintain cellular homeostasis. Genes were up-regulated that point toward an increased transport of molecules through membranes. Genes associated with reactive oxidative species and an ROS-defensive enzyme were also induced. The up-regulation of genes involved in DNA repair and RNA stability reflect the inhospitable cellular environment resulting from iron deficiency stress. Other genes were induced that are involved in protein and lipid catabolism; perhaps as an effort to maintain carbon flow and scavenge energy. The under-expression of a key glycolitic gene may result in the iron-inefficient genotype being energetically challenged to maintain a stable cellular environment. These experiments have identified candidate genes and processes for further experimentation to increase our understanding of soybeans' response to iron deficiency stress.


Assuntos
Regulação da Expressão Gênica de Plantas/genética , Glycine max/genética , Glycine max/metabolismo , Deficiências de Ferro , Ferro/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Doenças das Plantas/genética , Análise por Conglomerados , DNA Complementar/genética , Etiquetas de Sequências Expressas , FMN Redutase/metabolismo , Perfilação da Expressão Gênica , Genes de Plantas/genética , Hidroponia , Família Multigênica/genética , Fenótipo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Reação em Cadeia da Polimerase , RNA de Plantas/análise , RNA de Plantas/genética , Glycine max/enzimologia
10.
BMC Genomics ; 8: 330, 2007 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-17880721

RESUMO

BACKGROUND: Soybean, Glycine max (L.) Merr., is a well documented paleopolyploid. What remains relatively under characterized is the level of sequence identity in retained homeologous regions of the genome. Recently, the Department of Energy Joint Genome Institute and United States Department of Agriculture jointly announced the sequencing of the soybean genome. One of the initial concerns is to what extent sequence identity in homeologous regions would have on whole genome shotgun sequence assembly. RESULTS: Seventeen BACs representing approximately 2.03 Mb were sequenced as representative potential homeologous regions from the soybean genome. Genetic mapping of each BAC shows that 11 of the 20 chromosomes are represented. Sequence comparisons between homeologous BACs shows that the soybean genome is a mosaic of retained paleopolyploid regions. Some regions appear to be highly conserved while other regions have diverged significantly. Large-scale "batch" reassembly of all 17 BACs combined showed that even the most homeologous BACs with upwards of 95% sequence identity resolve into their respective homeologous sequences. Potential assembly errors were generated by tandemly duplicated pentatricopeptide repeat containing genes and long simple sequence repeats. Analysis of a whole-genome shotgun assembly of 80,000 randomly chosen JGI-DOE sequence traces reveals some new soybean-specific repeat sequences. CONCLUSION: This analysis investigated both the structure of the paleopolyploid soybean genome and the potential effects retained homeology will have on assembling the whole genome shotgun sequence. Based upon these results, homeologous regions similar to those characterized here will not cause major assembly issues.


Assuntos
Genes Duplicados/genética , Genoma de Planta/genética , Glycine max/genética , Mapeamento Físico do Cromossomo/métodos , Poliploidia , Sequências Repetitivas de Ácido Nucleico , Análise de Sequência de DNA/métodos , Sequência de Bases/genética , Cromossomos Artificiais Bacterianos/genética , Cromossomos de Plantas/genética , Evolução Molecular , Marcadores Genéticos , Repetições de Microssatélites , Filogenia , Polimorfismo Genético/genética , Software , Especificidade da Espécie , Sintenia/genética
11.
Plant Physiol Biochem ; 45(5): 287-92, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17466527

RESUMO

Iron deficiency chlorosis (IDC) in soybeans has proven to be a perennial problem in the calcareous soils of the U.S. upper Midwest. A historically difficult trait to study in fields, the use of hydroponics in a controlled greenhouse environment has provided a mechanism to study genetic variation while limiting environmental complications. IDC susceptible plants growing in calcareous soils and in iron-controlled hydroponic experiments often exhibit a characteristic chlorotic phenotype early in the growing season but are able to re-green later in the season. To examine the changes in gene expression of these plants, near-isogenic lines, iron efficient PI548553 (Clark) and iron inefficient PI547430 (IsoClark), developed for their response to iron deficiency stress [USDA, ARS, National Genetic Resources Program, Germplasm Resources Information Network - GRIN. (Online Database) National Germplasm Resources Laboratory, Beltsville, MD, 2004. Available: http://www.ars.grin.gov/cgi-bin/npgs/html/acc_search.pl?accid=PI+547430. [22] were grown in iron-deficient hydroponic conditions for one week, then transferred to iron sufficient conditions for another week. This induced a phenotypic response mimicking the growth of the plants in the field; initial chlorosis followed by re-greening. RNA was isolated from root tissue and transcript profiles were examined between the two near-isogenic lines using publicly available cDNA microarrays. By alleviating the iron deficiency stress our expectation was that plants would return to baseline expression levels. However, the microarray comparison identified four cDNAs that were under-expressed by a two-fold or greater difference in the iron inefficient plant compared to the iron efficient plant. This differential expression was re-examined and confirmed by real time PCR experimentation. Control experiments showed that these genes are not differentially expressed in plants grown continually under iron rich hydroponic conditions. The expression differences suggest potential residual effects of iron deficiency on plant health.


Assuntos
Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Glycine max/genética , Glycine max/metabolismo , Deficiências de Ferro , Análise de Sequência com Séries de Oligonucleotídeos , Doenças das Plantas/genética , Adaptação Fisiológica/genética , DNA de Plantas/genética , Proteínas de Plantas/metabolismo , Solo/análise
12.
Genetics ; 174(2): 1017-28, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16888343

RESUMO

The paleopolyploid soybean genome was investigated by sequencing homeologous BAC clones anchored by duplicate N-hydroxycinnamoyl/benzoyltransferase (HCBT) genes. The homeologous BACs were genetically mapped to linkage groups C1 and C2. Annotation of the 173,747- and 98,760-bp BACs showed that gene conservation in both order and orientation is high between homeologous regions with only a single gene insertion/deletion and local tandem duplications differing between the regions. The nucleotide sequence conservation extends into intergenic regions as well, probably due to conserved regulatory sequences. Most of the homeologs appear to have a role in either transcription/DNA binding or cellular signaling, suggesting a potential preference for retention of duplicate genes with these functions. Reverse transcriptase-PCR analysis of homeologs showed that in the tissues sampled, most homeologs have not diverged greatly in their transcription profiles. However, four cases of changes in transcription were identified, primarily in the HCBT gene cluster. Because a mapped locus corresponds to a soybean cyst nematode (SCN) QTL, the potential role of HCBT genes in response to SCN is discussed. These results are the first sequenced-based analysis of homeologous BACs in soybean, a diploidized paleopolyploid.


Assuntos
Cromossomos Artificiais Bacterianos/genética , Sequência Conservada , Glycine max/genética , Homologia de Sequência , Transcrição Gênica , Sequência de Bases , Mapeamento Cromossômico , Dados de Sequência Molecular
13.
Curr Opin Plant Biol ; 9(2): 104-9, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16458041

RESUMO

Two of the most important observations from whole-genome sequences have been the high rate of gene birth and death and the prevalence of large-scale duplication events, including polyploidy. There is also a growing appreciation that polyploidy is more than the sum of the gene duplications it creates, in part because polyploidy duplicates the members of entire regulatory networks. Thus, it may be important to distinguish paralogs that are produced by individual gene duplications from the homoeologous sequences produced by (allo)polyploidy. This is not a simple task, for several reasons, including the chromosomally cryptic nature of many duplications and the variable rates of gene evolution. Recent progress has been made in understanding patterns of gene and genome duplication in the legume family, specifically in soybean.


Assuntos
Fabaceae/genética , Duplicação Gênica , Glycine max/genética , Poliploidia , Evolução Biológica , Mapeamento Cromossômico , Etiquetas de Sequências Expressas , Fabaceae/citologia , Glycine max/citologia
15.
Genome ; 47(4): 764-8, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15284882

RESUMO

Soybean (Glycine max L. Merr.) is presumed to be an ancient polyploid based on chromosome number and multiple RFLP fragments in genetic mapping. Direct cytogenetic observation of duplicated regions within the soybean genome has not heretofore been reported. Employing fluorescence in situ hybridization (FISH) of genetically anchored bacterial artificial chromosomes (BACs) in soybean, we were able to observe that the distal ends of molecular linkage group E had duplicated regions on linkage groups A2 and B2. Further, using fiber-FISH, it was possible to measure the molecular size and organization of one of the duplicated regions. As FISH did not require repetitive DNA for blocking fluorescence signals, we assume that the 200-kb genome region is relatively low in repetitive sequences. This observation, along with the observation that the BACs are located in distal euchromatin regions, has implications for genome structure/evolution and the approach used to sequence the soybean genome.


Assuntos
Duplicação Gênica , Genoma de Planta , Glycine max/genética , Evolução Biológica , Cromossomos Artificiais Bacterianos/genética , Cromossomos de Plantas/genética , Ligação Genética , Hibridização in Situ Fluorescente , Polimorfismo de Fragmento de Restrição
16.
Genome ; 47(2): 404-13, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15060594

RESUMO

Soybean cyst nematode (SCN) resistance in soybean is a complex oligogenic trait. One of the most important nematode resistance genes, rhg1, has been mapped to a distal region of molecular linkage group G in soybean. A simplified genetic system to identify soybean genes with modified expression in response to SCN led to the identification of several genes within the nematode feeding sites. The genes were mapped to reveal their linkage relationship to known QTLs associated with soybean cyst nematode (SCN) resistance. One candidate, a phosphoribosyl formyl glycinamidine (FGAM) synthase (EC 6.3.5.3) gene, mapped to the same genomic interval as the major SCN resistance gene rhg1 within linkage group G. Isolation of FGAM synthase from a soybean bacterial artificial chromosome (BAC) library revealed two highly homologous paralogs. The genes appeared to be well conserved between bacteria and humans. Promoter analysis of the two soybean homologs was carried out with the Arabidopsis thaliana - Heterodera schachtii system to investigate gene response to nematode feeding. The two promoters and their derived deletion constructions effected green fluorescent protein (GFP) expression within nematode feeding sites. The 1.0-kb promoter sequence immediately adjacent to the translation start site was sufficient to direct expression of GFP within syncytia. A wound-inducible element and a floral organ expression sequence were also identified within these promoters. Although a nematode-responsive element could not be identified, the observed expression of GFP within feeding sites supports the hypothesis that plant gene expression is redirected within feeding sites to benefit the parasite.


Assuntos
Carbono-Nitrogênio Ligases com Glutamina como Doadora de N-Amida/genética , Glycine max/genética , Glycine max/parasitologia , Regiões Promotoras Genéticas/genética , Tylenchoidea/patogenicidade , Animais , Arabidopsis/genética , Sequência de Bases , Caulimovirus/genética , Cromossomos Artificiais Bacterianos/genética , Mapeamento de Sequências Contíguas , Ingestão de Alimentos , Expressão Gênica , Genes Reporter/genética , Glucuronidase/análise , Interações Hospedeiro-Parasita/genética , Dados de Sequência Molecular , Doenças das Plantas/genética , Doenças das Plantas/parasitologia , Proteínas de Plantas/genética , Raízes de Plantas/citologia , Raízes de Plantas/metabolismo , Locos de Características Quantitativas , Elementos de Resposta/genética , Plântula/citologia , Plântula/metabolismo , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA