Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Acta Neuropathol Commun ; 12(1): 120, 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39061104

RESUMO

This study aims to elucidate the clinical and molecular characteristics, treatment outcomes and prognostic factors of patients with histone H3 K27-mutant diffuse midline glioma. We retrospectively analyzed 93 patients with diffuse midline glioma (47 thalamus, 24 brainstem, 12 spinal cord and 10 other midline locations) treated at 24 affiliated hospitals in the Kansai Molecular Diagnosis Network for CNS Tumors. Considering the term "midline" areas, which had been confused in previous reports, we classified four midline locations based on previous reports and anatomical findings. Clinical and molecular characteristics of the study cohort included: age 4-78 years, female sex (41%), lower-grade histology (56%), preoperative Karnofsky performance status (KPS) scores ≥ 80 (49%), resection (36%), adjuvant radiation plus chemotherapy (83%), temozolomide therapy (76%), bevacizumab therapy (42%), HIST1H3B p.K27M mutation (2%), TERT promoter mutation (3%), MGMT promoter methylation (9%), BRAF p.V600E mutation (1%), FGFR1 mutation (14%) and EGFR mutation (3%). Median progression-free and overall survival time was 9.9 ± 1.0 (7.9-11.9, 95% CI) and 16.6 ± 1.4 (13.9-19.3, 95% CI) months, respectively. Female sex, preoperative KPS score ≥ 80, adjuvant radiation + temozolomide and radiation ≥ 50 Gy were associated with favorable prognosis. Female sex and preoperative KPS score ≥ 80 were identified as independent good prognostic factors. This study demonstrated the current state of clinical practice for patients with diffuse midline glioma and molecular analyses of diffuse midline glioma in real-world settings. Further investigation in a larger population would contribute to better understanding of the pathology of diffuse midline glioma.


Assuntos
Glioma , Histonas , Mutação , Humanos , Feminino , Masculino , Pessoa de Meia-Idade , Adulto , Glioma/genética , Glioma/patologia , Glioma/terapia , Idoso , Adolescente , Estudos Retrospectivos , Adulto Jovem , Histonas/genética , Criança , Pré-Escolar , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/terapia , Estudos de Coortes , Neoplasias do Sistema Nervoso Central/genética , Neoplasias do Sistema Nervoso Central/terapia , Neoplasias do Sistema Nervoso Central/patologia , Neoplasias do Sistema Nervoso Central/diagnóstico
2.
Cells ; 13(8)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38667286

RESUMO

Ischemic stroke is a major cerebrovascular disease with high morbidity and mortality rates; however, effective treatments for ischemic stroke-related neurological dysfunction have yet to be developed. In this study, we generated neural progenitor cells from human leukocyte antigen major loci gene-homozygous-induced pluripotent stem cells (hiPSC-NPCs) and evaluated their therapeutic effects against ischemic stroke. hiPSC-NPCs were intracerebrally transplanted into rat ischemic brains produced by transient middle cerebral artery occlusion at either the subacute or acute stage, and their in vivo survival, differentiation, and efficacy for functional improvement in neurological dysfunction were evaluated. hiPSC-NPCs were histologically identified in host brain tissues and showed neuronal differentiation into vGLUT-positive glutamatergic neurons, extended neurites into both the ipsilateral infarct and contralateral healthy hemispheres, and synaptic structures formed 12 weeks after both acute and subacute stage transplantation. They also improved neurological function when transplanted at the subacute stage with γ-secretase inhibitor pretreatment. However, their effects were modest and not significant and showed a possible risk of cells remaining in their undifferentiated and immature status in acute-stage transplantation. These results suggest that hiPSC-NPCs show cell replacement effects in ischemic stroke-damaged neural tissues, but their efficacy is insufficient for neurological functional improvement after acute or subacute transplantation. Further optimization of cell preparation methods and the timing of transplantation is required to balance the efficacy and safety of hiPSC-NPC transplantation.


Assuntos
Diferenciação Celular , Células-Tronco Pluripotentes Induzidas , AVC Isquêmico , Células-Tronco Neurais , Sinapses , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Humanos , Animais , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/transplante , Células-Tronco Neurais/citologia , AVC Isquêmico/patologia , AVC Isquêmico/terapia , Ratos , Sinapses/metabolismo , Masculino , Neuritos/metabolismo , Encéfalo/patologia , Isquemia Encefálica/terapia , Isquemia Encefálica/patologia , Neurônios/metabolismo , Neurônios/patologia , Ratos Sprague-Dawley , Acidente Vascular Cerebral/terapia , Acidente Vascular Cerebral/patologia
3.
Neurooncol Adv ; 6(1): vdae016, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38410136

RESUMO

Background: The study aims to explore MRI phenotypes that predict glioblastoma's (GBM) methylation status of the promoter region of MGMT gene (pMGMT) by qualitatively assessing contrast-enhanced T1-weighted intensity images. Methods: A total of 193 histologically and molecularly confirmed GBMs at the Kansai Network for Molecular Diagnosis of Central Nervous Tumors (KANSAI) were used as an exploratory cohort. From the Cancer Imaging Archive/Cancer Genome Atlas (TCGA) 93 patients were used as validation cohorts. "Thickened structure" was defined as the solid tumor component presenting circumferential extension or occupying >50% of the tumor volume. "Methylated contrast phenotype" was defined as indistinct enhancing circumferential border, heterogenous enhancement, or nodular enhancement. Inter-rater agreement was assessed, followed by an investigation of the relationship between radiological findings and pMGMT methylation status. Results: Fleiss's Kappa coefficient for "Thickened structure" was 0.68 for the exploratory and 0.55 for the validation cohort, and for "Methylated contrast phenotype," 0.30 and 0.39, respectively. The imaging feature, the presence of "Thickened structure" and absence of "Methylated contrast phenotype," was significantly predictive of pMGMT unmethylation both for the exploratory (p = .015, odds ratio = 2.44) and for the validation cohort (p = .006, odds ratio = 7.83). The sensitivities and specificities of the imaging feature, the presence of "Thickened structure," and the absence of "Methylated contrast phenotype" for predicting pMGMT unmethylation were 0.29 and 0.86 for the exploratory and 0.25 and 0.96 for the validation cohort. Conclusions: The present study showed that qualitative assessment of contrast-enhanced T1-weighted intensity images helps predict GBM's pMGMT methylation status.

4.
Acta Neuropathol Commun ; 11(1): 153, 2023 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-37749662

RESUMO

BACKGROUND: One of the most significant challenges in patients with medulloblastoma is reducing the dose of craniospinal irradiation (CSI) to minimize neurological sequelae in survivors. Molecular characterization of patients receiving lower than standard dose of CSI therapy is important to facilitate further reduction of treatment burden. METHODS: We conducted DNA methylation analysis using an Illumina Methylation EPIC array to investigate molecular prognostic markers in 38 patients with medulloblastoma who were registered in the Japan Pediatric Molecular Neuro-Oncology Group and treated with reduced-dose CSI. RESULTS: Among the patients, 23 were classified as having a standard-risk and 15 as high-risk according to the classic classification based on tumor resection rate and presence of metastasis, respectively. The median follow-up period was 71.5 months (12.0-231.0). The median CSI dose was 18 Gy (15.0-24.0) in both groups, and 5 patients in the high-risk group received a CSI dose of 18.0 Gy. Molecular subgrouping revealed that the standard-risk cohort included 5 WNT, 2 SHH, and 16 Group 3/4 cases; all 15 patients in the high-risk cohort had Group 3/4 medulloblastoma. Among the patients with Group 3/4 medulloblastoma, 9 of the 31 Group 3/4 cases were subclassified as subclass II, III, and V, which were known to an association with poor prognosis according to the novel subtyping among the subgroups. Patients with poor prognostic subtype showed worse prognosis than that of others (5-year progression survival rate 90.4% vs. 22.2%; p < 0.0001). The result was replicated in the multivariate analysis (hazard ratio12.77, 95% confidence interval for hazard ratio 2.38-99.21, p value 0.0026 for progression-free survival, hazard ratio 5.02, 95% confidence interval for hazard ratio 1.03-29.11, p value 0.044 for overall survival). CONCLUSION: Although these findings require validation in a larger cohort, the present findings suggest that novel subtyping of Group 3/4 medulloblastoma may be a promising prognostic biomarker even among patients treated with lower-dose CSI than standard treatment.


Assuntos
Neoplasias Cerebelares , Radiação Cranioespinal , Meduloblastoma , Criança , Humanos , Neoplasias Cerebelares/classificação , Neoplasias Cerebelares/patologia , Neoplasias Cerebelares/radioterapia , Neoplasias Cerebelares/cirurgia , Radiação Cranioespinal/efeitos adversos , População do Leste Asiático , Meduloblastoma/classificação , Meduloblastoma/patologia , Meduloblastoma/radioterapia , Meduloblastoma/cirurgia , Prognóstico , Biomarcadores Tumorais , Metilação de DNA
5.
NMC Case Rep J ; 9: 199-208, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35974956

RESUMO

Despite recent signs of progress in diagnostic radiology, it is quite rare that a glioblastoma (GBM) is detected asymptomatically. We describe two patients with asymptomatic nonenhancing GBMs that were not diagnosed with neoplasia at first. The patients had brain scans as medical checkups, and incidentally lesions were detected. In both cases, surgical specimens histopathologically showed no evidence of neoplasia, whereas molecular genetic findings were isocitrate dehydrogenase (IDH)-wildtype, O6-methylguanine-DNA methyltransferase promoter (pMGMT) unmethylated, and telomerase reverse transcriptase (TERT) promoter mutated, which matched to GBM. One patient was observed without adjuvant therapy and the tumor recurred 7 months later. Reoperation was performed, and histopathologically GBM was confirmed with the same molecular diagnosis as the first surgical specimen. Another patient was carefully observed, and chemoradiotherapy was begun 6 months after the operation following the extension of the lesion. Eventually, because of disease progression, both patients deceased. We postulate that in each case, the tumor was not lower-grade glioma but corresponded to the early growth phase of GBM cells. Thus far, cases of malignant transformation from lower-grade glioma or asymptomatic GBM with typical histologic features are reported. Nevertheless, to the best of our knowledge, no such case of nonenhancing, nonhistologically confirmed GBM was reported. We conjecture these cases shed light on the yet unknown natural history of GBM. GBM can take the form of radiological nonenhancing and histological nonneoplastic fashion before typical morphology. Molecular genetic analysis can diagnose atypical preceding GBM, and we recommend early surgical removal and adjuvant treatment.

6.
Brain Tumor Pathol ; 39(4): 218-224, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35666326

RESUMO

A recurrent tumor is defined as a re-emerging subclone originating from an ancestorial clone of the primary neoplasm. Hence, it should be distinguished from de novo tumor emerging from other clones. Herein, we describe an exceptional case in which the locally re-emerging glioma did not share genetic alterations of the primary tumor. While the initial tumor harbored mutations in IDH1 and TERT genes as well as 1p/19q codeletion, the re-emerging tumor did not present any of these genetic abnormalities. Variant calling for tumor samples using whole-genome sequencing revealed that 1696 mutations within the primary tumor faded in the re-emerging tumor, and that 4591 mutations were newly detected in the re-emerging tumor. These results suggested that the initial and re-emerging tumors did not share same clonal origins, although the second tumor appeared adjacent to the old surgical cavity 5 years after the initial surgery. We finally speculated that the re-emerging tumor could be a "de novo glioma" or "radiation-induced glioblastoma following treatment of a diffuse glioma." This case highlights the importance of molecular re-evaluation of clinically diagnosed "recurrent" glioma lesions.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Neoplasias Encefálicas/patologia , Glioblastoma/genética , Glioma/diagnóstico , Glioma/genética , Humanos , Isocitrato Desidrogenase/genética , Mutação , Filogenia
7.
Regen Ther ; 18: 321-333, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34522725

RESUMO

INTRODUCTION: Our group has conducted extensive basic and preclinical studies of the use of human induced pluripotent cell (iPSC)-derived neural stem/progenitor cell (hiPSC-NS/PC) grafts in models of spinal cord injury (SCI). Evidence from animal experiments suggests this approach is safe and effective. We are preparing to initiate a first-in-human clinical study of hiPSC-NS/PC transplantation in subacute SCI. SETTING: NS/PCs were prepared at a Good Manufacturing Practice-grade cell processing facility at Osaka National Hospital using a clinical-grade integration-free hiPSC line established by the iPSC Stock Project organized by the Kyoto University Center for iPS Cell Research and Application. After performing all quality checks, the long-term safety and efficacy of cells were confirmed using immunodeficient mouse models. METHODS: The forthcoming clinical study uses an open-label, single-arm design. The initial follow-up period is 1 year. The primary objective is to assess the safety of hiPSC-NS/PC transplantation in patients with subacute SCI. The secondary objective is to obtain preliminary evidence of its impact on neurological function and quality-of-life outcomes. Four patients with C3/4-Th10 level, complete subacute (within 24 days post-injury) SCI will be recruited. After obtaining consent, cryopreserved cells will be thawed and prepared following a multi-step process including treatment with a γ-secretase inhibitor to promote cell differentiation. A total of 2 × 106 cells will be transplanted into the injured spinal cord parenchyma 14-28 days post-injury. Patients will also receive transient immunosuppression. This study protocol has been reviewed and approved by the Certified Committee for Regenerative Medicine and the Japanese Ministry of Health, Labor and Welfare (University Hospital Medical Information Network Clinical Trials Registry [UMIN-CTR] number, UMIN000035074; Japan Registry of Clinical Trials [jRCT] number, jRCTa031190228). DISCUSSION/CONCLUSION: We plan to start recruiting a patient as soon as the COVID-19 epidemic subsides. The primary focus of this clinical study is safety, and the number of transplanted cells may be too low to confirm efficacy. After confirming safety, a dose-escalation study is planned.

8.
BMC Cancer ; 21(1): 1025, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34525976

RESUMO

BACKGROUND: Mutations in driver genes such as IDH and BRAF have been identified in gliomas. Meanwhile, dysregulations in the p53, RB1, and MAPK and/or PI3K pathways are involved in the molecular pathogenesis of glioblastoma. RAS family genes activate MAPK through activation of RAF and PI3K to promote cell proliferation. RAS mutations are a well-known driver of mutation in many types of cancers, but knowledge of their significance for glioma is insufficient. The purpose of this study was to reveal the frequency and the clinical phenotype of RAS mutant in gliomas. METHODS: This study analysed RAS mutations and their clinical significance in 242 gliomas that were stored as unfixed or cryopreserved specimens removed at Kyoto University and Osaka National Hospital between May 2006 and October 2017. The hot spots mutation of IDH1/2, H3F3A, HIST1H3B, and TERT promoter and exon 2 and exon 3 of KRAS, HRAS, and NRAS were analysed with Sanger sequencing method, and 1p/19q codeletion was analysed with multiplex ligation-dependent probe amplification. DNA methylation array was performed in some RAS mutant tumours to improve accuracy of diagnosis. RESULTS: RAS mutations were identified in four gliomas with three KRAS mutations and one NRAS mutation in one anaplastic oligodendroglioma, two anaplastic astrocytomas (IDH wild-type in each), and one ganglioglioma. RAS-mutant gliomas were identified with various types of glioma histology. CONCLUSION: RAS mutation appears infrequent, and it is not associated with any specific histological phenotype of glioma.


Assuntos
Neoplasias Encefálicas/genética , Genes ras/genética , Glioma/genética , Mutação , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Astrocitoma/genética , Neoplasias Encefálicas/patologia , Criança , Pré-Escolar , Metilação de DNA , Metilases de Modificação do DNA/metabolismo , Análise Mutacional de DNA/métodos , Enzimas Reparadoras do DNA/metabolismo , Éxons/genética , Feminino , Glioblastoma/genética , Glioma/patologia , Histonas/genética , Humanos , Isocitrato Desidrogenase/genética , Masculino , Pessoa de Meia-Idade , Oligodendroglioma/genética , Fenótipo , Regiões Promotoras Genéticas , Telomerase/genética , Proteínas Supressoras de Tumor/metabolismo , Adulto Jovem
9.
Sci Rep ; 11(1): 14408, 2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34257410

RESUMO

The characteristics of IDH-wild-type lower-grade astrocytoma remain unclear. According to cIMPACT-NOW update 3, IDH-wild-type astrocytomas with any of the following factors show poor prognosis: combination of chromosome 7 gain and 10 loss (+ 7/- 10), and/or EGFR amplification, and/or TERT promoter (TERTp) mutation. Multiplex ligation-dependent probe amplification (MLPA) can detect copy number alterations at reasonable cost. The purpose of this study was to identify a precise, cost-effective method for stratifying the prognosis of IDH-wild-type astrocytoma. Sanger sequencing, MLPA, and quantitative methylation-specific PCR were performed for 42 IDH-wild-type lower-grade astrocytomas surgically treated at Kyoto University Hospital, and overall survival was analysed for 40 patients who underwent first surgery. Of the 42 IDH-wild-type astrocytomas, 21 were classified as grade 4 using cIMPACT-NOW update 3 criteria and all had either TERTp mutation or EGFR amplification. Kaplan-Meier analysis confirmed the prognostic significance of cIMPACT-NOW criteria, and World Health Organization grade was also prognostic. Cox regression hazard model identified independent significant prognostic indicators of PTEN loss (risk ratio, 9.75; p < 0.001) and PDGFRA amplification (risk ratio, 13.9; p = 0.002). The classification recommended by cIMPACT-NOW update 3 could be completed using Sanger sequencing and MLPA. Survival analysis revealed PTEN and PDGFRA were significant prognostic factors for IDH-wild-type lower-grade astrocytoma.


Assuntos
Astrocitoma , Variações do Número de Cópias de DNA , Adulto , Glioma , Humanos , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Prognóstico
10.
Brain Tumor Pathol ; 38(2): 109-121, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33704596

RESUMO

We previously reported observing GLI3 in medulloblastomas expressing neuronal markers (NM) and/or glial fibrillary acidic protein (GFAP). Furthermore, patients with medulloblastomas expressing NM or GFAP tended to show favorable or poor prognosis, respectively. In the present study, we focused on the role of topoisomerase IIß (TOP2ß) as a possible regulator for neuronal differentiation in medulloblastomas and examined the pathological roles of GLI3, NM, GFAP, and TOP2ß expressions in a larger population. We divided 124 medulloblastomas into three groups (NM-/GFAP-, NM +/GFAP-, and GFAP +) based on their immunoreactivity (IR) against NM and GFAP. The relationship among GLI3, NM, GFAP, and TOP2ß was evaluated using fluorescent immunostaining and a publicly available single-cell RNA sequencing dataset. In total, 87, 30, and 7 medulloblastomas were classified as NM-/GFAP-, NM + /GFAP-, and GFAP +, and showed intermediate, good, and poor prognoses, respectively. GLI3-IR was frequently observed in NM +/GFAP- and GFAP + , and TOP2ß-IR was frequently observed only in NM +/GFAP- medulloblastomas. In fluorescent immunostaining, TOP2ß-IR was mostly co-localized with NeuN-IR but not with GFAP-IR. In single-cell RNA sequencing, TOP2ß expression was elevated in CMAS/DCX-positive, but not in GFAP-positive, cells. NM-IR and GFAP-IR are important for estimating the prognosis of patients with medulloblastoma; hence they should be assessed in clinical practice.


Assuntos
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , DNA Topoisomerases Tipo II/metabolismo , Regulação Neoplásica da Expressão Gênica/genética , Expressão Gênica/genética , Meduloblastoma/genética , Meduloblastoma/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteína Gli3 com Dedos de Zinco/metabolismo , Povo Asiático/genética , Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/patologia , Diferenciação Celular/genética , Criança , Pré-Escolar , Feminino , Proteína Glial Fibrilar Ácida , Humanos , Imuno-Histoquímica , Japão , Masculino , Meduloblastoma/patologia , Neurônios/patologia , Prognóstico
12.
PLoS One ; 15(12): e0243272, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33270750

RESUMO

Cluster of differentiation (CD) 166 or activated leukocyte cell adhesion molecule (ALCAM) is a transmembrane molecule known to be an intercellular adhesion factor. The expression and function of ALCAM in medulloblastoma (MB), a pediatric brain tumor with highly advanced molecular genetics, remains unclear. Therefore, this study aimed to clarify the significance and functional role of ALCAM expression in MB. ALCAM expression in 45 patients with MB was evaluated by immunohistochemical analysis of formalin-fixed paraffin-embedded clinical specimens and the relationship between ALCAM expression and pathological type/molecular subgroup, such as WNT, SHH, Group 3, and Group 4, was examined. Eight ALCAM positive (18%), seven partially positive (16%), and 30 negative (67%) cases were detected. All seven cases of the WNT molecular subgroup were ALCAM positive and ALCAM expression strongly correlated with this subgroup (P < 0.0001). In addition, functional studies using MB cell lines revealed ALCAM expression affected proliferation and migration as a positive regulator in vitro. However, ALCAM silencing did not affect survival or the formation of leptomeningeal dissemination in an orthotopic mouse model, but did induce a malignant phenotype with increased tumor cell invasion at the dissemination sites (P = 0.0029). In conclusion, our results revealed that ALCAM exhibited highly specific expression in the WNT subgroup of MB. Furthermore, we demonstrated that the cell kinetics of MB cell lines can be altered by the expression of ALCAM.


Assuntos
Antígenos CD/metabolismo , Moléculas de Adesão Celular Neuronais/metabolismo , Proteínas Fetais/metabolismo , Meduloblastoma/metabolismo , Proteínas Wnt/metabolismo , Molécula de Adesão de Leucócito Ativado/genética , Adolescente , Animais , Antígenos CD/fisiologia , Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/genética , Adesão Celular/genética , Moléculas de Adesão Celular Neuronais/fisiologia , Movimento Celular/genética , Proliferação de Células/genética , Neoplasias Cerebelares/genética , Criança , Pré-Escolar , Feminino , Proteínas Fetais/fisiologia , Expressão Gênica/genética , Perfilação da Expressão Gênica , Humanos , Lactente , Japão/epidemiologia , Masculino , Meduloblastoma/fisiopatologia , Camundongos , Invasividade Neoplásica , RNA Mensageiro/genética , Proteínas Wnt/genética , Adulto Jovem
13.
Neurooncol Adv ; 2(1): vdaa114, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33134923

RESUMO

BACKGROUND: Although mutations in the promoter region of the telomerase reverse transcriptase (TERTp) gene are the most common alterations in glioblastoma (GBM), their clinical significance remains unclear. Therefore, we investigated the impact of TERTp status on patient outcome and clinicopathological features in patients with GBM over a long period of follow-up. METHODS: We retrospectively analyzed 153 cases of GBM. Six patients with isocitrate dehydrogenase 1 (IDH1) or H3F3A gene mutations were excluded from this study. Among the 147 cases of IDH wild-type GBM, 92 (62.6%) had the TERTp mutation. Clinical, immunohistochemical, and genetic factors (BRAF, TP53 gene mutation, CD133, ATRX expression, O 6-methylguanine-DNA methyltransferase [MGMT] promoter methylation) and copy number alterations (CNAs) were investigated. RESULTS: GBM patients with the TERTp mutation were older at first diagnosis versus those with TERTp wild type (66.0 vs. 60.0 years, respectively, P = .034), and had shorter progression-free survival (7 vs. 10 months, respectively, P = .015) and overall survival (16 vs. 24 months, respectively, P = .017). Notably, magnetic resonance imaging performed showed that TERTp-mutant GBM was strongly associated with multifocal/distant lesions (P = .004). According to the CNA analysis, TERTp mutations were positively correlated with EGFR amp/gain, CDKN2A deletion, and PTEN deletion; however, these mutations were negatively correlated with PDGFR amp/gain, CDK4 gain, and TP53 deletion. CONCLUSIONS: TERTp mutations were strongly correlated with multifocal/distant lesions and poor prognosis in patients with IDH wild-type GBM. Less aggressive GBM with TERTp wild type may be a distinct clinical and molecular subtype of IDH wild-type GBM.

14.
Acta Neuropathol Commun ; 8(1): 201, 2020 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-33228806

RESUMO

TERT promoter mutations are commonly associated with 1p/19q codeletion in IDH-mutated gliomas. However, whether these mutations have an impact on patient survival independent of 1p/19q codeletion is unknown. In this study, we investigated the impact of TERT promoter mutations on survival in IDH-mutated glioma cases. Detailed clinical information and molecular status data were collected for a cohort of 560 adult patients with IDH-mutated gliomas. Among these patients, 279 had both TERT promoter mutation and 1p/19q codeletion, while 30 had either TERT promoter mutation (n = 24) or 1p/19q codeletion (n = 6) alone. A univariable Cox proportional hazard analysis for survival using clinical and genetic factors indicated that a Karnofsky performance status score (KPS) of 90 or 100, WHO grade II or III, TERT promoter mutation, 1p/19q codeletion, radiation therapy, and extent of resection (90-100%) were associated with favorable prognosis (p < 0.05). A multivariable Cox regression model revealed that TERT promoter mutation had a significantly favorable prognostic impact (hazard ratio = 0.421, p = 0.049), while 1p/19q codeletion did not have a significant impact (hazard ratio = 0.648, p = 0.349). Analyses incorporating patient clinical and genetic information were further conducted to identify subgroups showing the favorable prognostic impact of TERT promoter mutation. Among the grade II-III glioma patients with a KPS score of 90 or 100, those with IDH-TERT co-mutation and intact 1p/19q (n = 17) showed significantly longer survival than those with IDH mutation, wild-type TERT, and intact 1p/19q (n = 185) (5-year overall survival, 94% and 77%, respectively; p = 0.032). Our results demonstrate that TERT promoter mutation predicts favorable prognosis independent of 1p/19q codeletion in IDH-mutated gliomas. Combined with its adverse effect on survival among IDH-wild glioma cases, the bivalent prognostic impact of TERT promoter mutation may help further refine the molecular diagnosis and prognostication of diffuse gliomas.


Assuntos
Neoplasias Encefálicas/genética , Deleção Cromossômica , Cromossomos Humanos Par 19 , Cromossomos Humanos Par 1 , Glioma/genética , Regiões Promotoras Genéticas/genética , Telomerase/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Astrocitoma/genética , Astrocitoma/patologia , Astrocitoma/terapia , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/terapia , Feminino , Glioblastoma/genética , Glioblastoma/patologia , Glioblastoma/terapia , Glioma/patologia , Glioma/terapia , Humanos , Isocitrato Desidrogenase/genética , Avaliação de Estado de Karnofsky , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Mutação , Gradação de Tumores , Procedimentos Neurocirúrgicos , Oligodendroglioma/genética , Oligodendroglioma/patologia , Oligodendroglioma/terapia , Prognóstico , Modelos de Riscos Proporcionais , Radioterapia Adjuvante , Estudos Retrospectivos , Taxa de Sobrevida , Adulto Jovem
15.
Brain Tumor Pathol ; 37(2): 50-59, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32361941

RESUMO

Aging is a known negative prognostic factor in glioblastomas (GBM). Whether particular genetic backgrounds are a factor in poor outcomes of elderly patients with GBM warrants investigation. We aim to elucidate any differences between older and younger adult patients with IDH-wildtype GBM regarding both molecular characteristics and clinical outcomes. We collected adult cases diagnosed with IDH-wildtype GBM from the Kansai Network. Clinical and pathological characteristics were analyzed retrospectively and compared between older (≥ 70 years) and younger (≤ 50 years) cases. Included were 92 older vs. 33 younger cases. The older group included more patients with preoperative Karnofsky performance status score < 70 and had a shorter survival time than the younger group. MGMT promoter was methylated more frequently in the older group. TERT promoter mutation was more common in the older group. There were significant differences in DNA copy-number alteration profiles between age groups in PTEN deletion and CDK4 amplification/gain. In the older group, no molecular markers were identified, but surgical resection was an independent prognostic factor. Age-specific survival difference was significant in the MGMT methylated and TERT wildtype subgroup. Elderly patients have several potential factors in poor prognosis of glioblastomas. Varying molecular profiles may explain differing rates of survival between generations.


Assuntos
Neoplasias Encefálicas/genética , Glioblastoma/genética , Isocitrato Desidrogenase/genética , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Neoplasias Encefálicas/mortalidade , Estudos de Coortes , Metilases de Modificação do DNA/genética , Metilases de Modificação do DNA/metabolismo , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Feminino , Glioblastoma/mortalidade , Humanos , Japão , Masculino , Metilação , Pessoa de Meia-Idade , Prognóstico , Taxa de Sobrevida , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
16.
Sci Rep ; 9(1): 14435, 2019 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-31594994

RESUMO

We attempted to establish a magnetic resonance imaging (MRI)-based radiomic model for stratifying prognostic subgroups of newly diagnosed glioblastoma (GBM) patients and predicting O (6)-methylguanine-DNA methyltransferase promotor methylation (pMGMT-met) status of the tumor. Preoperative MRI scans from 201 newly diagnosed GBM patients were included in this study. A total of 489 texture features including the first-order feature, second-order features from 162 datasets, and location data from 182 datasets were collected. Supervised principal component analysis was used for prognostication and predictive modeling for pMGMT-met status was performed based on least absolute shrinkage and selection operator regression. 22 radiomic features that were correlated with prognosis were used to successfully stratify patients into high-risk and low-risk groups (p = 0.004, Log-rank test). The radiomic high- and low-risk stratification and pMGMT status were independent prognostic factors. As a matter of fact, predictive accuracy of the pMGMT methylation status was 67% when modeled by two significant radiomic features. A significant survival difference was observed among the combined high-risk group, combined intermediate-risk group (this group consists of radiomic low risk and pMGMT-unmet or radiomic high risk and pMGMT-met), and combined low-risk group (p = 0.0003, Log-rank test). Radiomics can be used to build a prognostic score for stratifying high- and low-risk GBM, which was an independent prognostic factor from pMGMT methylation status. On the other hand, predictive accuracy of the pMGMT methylation status by radiomic analysis was insufficient for practical use.


Assuntos
Neoplasias Encefálicas/genética , Metilação de DNA , Metilases de Modificação do DNA/genética , Enzimas Reparadoras do DNA/genética , Glioblastoma/genética , Regiões Promotoras Genéticas , Proteínas Supressoras de Tumor/genética , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/metabolismo , Estudos de Coortes , Glioblastoma/diagnóstico por imagem , Glioblastoma/metabolismo , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Prognóstico , Radiometria
17.
J Pharmacol Sci ; 140(4): 331-336, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31501056

RESUMO

Various chemicals, including pharmaceuticals, can induce acute or delayed neurotoxicity in humans. Because isolation of human primary neurons is extremely difficult, toxicity tests for these agents have been performed using in vivo or in vitro models. Human induced pluripotent stem cells (hiPSCs) can be used to establish hiPSC-derived neural stem/progenitor cells (hiPSC-NSPCs), which can then be used to obtain hiPSC-neurons. In this study, we differentiated hiPSC-NSPCs into neurons and evaluated the susceptibility of hiPSC-neurons and parental hiPSC-NSPCs to anticancer drugs in vitro by ATP assay and immunocytostaining. The hiPSC-neurons were more resistant to anticancer drugs than the parental hiPSC-NSPCs. In the toxicity tests, high-dose cisplatin reduced the levels of ELAVL3/4, a neuronal marker, in the hiPSC-neurons. These results suggest that our methodology is potentially applicable for efficient determination of the toxicity of any drug to hiPSC-neurons.


Assuntos
Antineoplásicos/farmacologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Técnicas de Cultura de Células/métodos , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Humanos , Células-Tronco Neurais
18.
Acta Neuropathol Commun ; 7(1): 99, 2019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-31215469

RESUMO

The diagnosis and prognostication of glioblastoma (GBM) remain to be solely dependent on histopathological findings and few molecular markers, despite the clinical heterogeneity in this entity. To address this issue, we investigated the prognostic impact of copy number alterations (CNAs) using two population-based IDH-wild-type GBM cohorts: an original Japanese cohort and a dataset from The Cancer Genome Atlas (TCGA). The molecular disproportions between these cohorts were dissected in light of cohort differences in GBM. The Japanese cohort was collected from cases registered in Kansai Molecular Diagnosis Network for CNS tumors (KNBTG). The somatic landscape around CNAs was analyzed for 212 KNBTG cases and 359 TCGA cases. Next, the clinical impacts of CNA profiles were investigated for 140 KNBTG cases and 152 TCGA cases treated by standard adjuvant therapy using temozolomide-based chemoradiation. The comparative profiling indicated unequal distribution of specific CNAs such as EGFR, CDKN2A, and PTEN among the two cohorts. Especially, the triple overlap CNAs in these loci (triple CNA) were much higher in frequency in TCGA (70.5%) than KNBTG (24.3%), and its prognostic impact was independently validated in both cohorts. The KNBTG cohort significantly showed better prognosis than the TCGA cohort (median overall survival 19.3 vs 15.6 months). This survival difference between the two cohorts completely resolved after subclassifying all cases according to the triple CNA status. The prognostic significance of triple CNA was identified in IDH-wild-type GBM. Distribution difference in prognostic CNA profiles potentially could cause survival differences across cohorts in clinical studies.


Assuntos
Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/genética , Variações do Número de Cópias de DNA , Glioblastoma/diagnóstico , Glioblastoma/genética , Isocitrato Desidrogenase/genética , Povo Asiático/genética , Estudos de Coortes , Regulação Neoplásica da Expressão Gênica , Humanos , Estimativa de Kaplan-Meier , Prognóstico
19.
Stem Cells Transl Med ; 8(7): 627-638, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30887735

RESUMO

The use of human induced pluripotent stem cells (hiPSCs) and recent advances in cell engineering have opened new prospects for cell-based therapy. However, there are concerns that must be addressed prior to their broad clinical applications and a major concern is tumorigenicity. Suicide gene approaches could eliminate wayward tumor-initiating cells even after cell transplantation, but their efficacy remains controversial. Another concern is the safety of genome editing. Our knowledge of human genomic safe harbors (GSHs) is still insufficient, making it difficult to predict the influence of gene integration on nearby genes. Here, we showed the topological architecture of human GSH candidates, AAVS1, CCR5, human ROSA26, and an extragenic GSH locus on chromosome 1 (Chr1-eGSH). Chr1-eGSH permitted robust transgene expression, but a 2 Mb-distant gene within the same topologically associated domain showed aberrant expression. Although knockin iPSCs carrying the suicide gene, herpes simplex virus thymidine kinase (HSV-TK), were sufficiently sensitive to ganciclovir in vitro, the resulting teratomas showed varying degrees of resistance to the drug in vivo. Our findings suggest that the Chr1-eGSH is not suitable for therapeutic gene integration and highlight that topological analysis could facilitate exploration of human GSHs for regenerative medicine applications. Our data indicate that the HSV-TK/ganciclovir suicide gene approach alone may be not an adequate safeguard against the risk of teratoma, and suggest that the combination of several distinct approaches could reduce the risks associated with cell therapy. Stem Cells Translational Medicine 2019;8:627&638.


Assuntos
Edição de Genes , Genes Transgênicos Suicidas , Genoma Humano , Células-Tronco Pluripotentes Induzidas/metabolismo , Animais , Linhagem Celular , Terapia Baseada em Transplante de Células e Tecidos , Ganciclovir/farmacologia , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Simplexvirus/enzimologia , Simplexvirus/genética , Teratoma/genética , Teratoma/metabolismo , Timidina Quinase/genética , Timidina Quinase/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo
20.
Sci Rep ; 9(1): 20311, 2019 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-31889117

RESUMO

Identification of genotypes is crucial for treatment of glioma. Here, we developed a method to predict tumor genotypes using a pretrained convolutional neural network (CNN) from magnetic resonance (MR) images and compared the accuracy to that of a diagnosis based on conventional radiomic features and patient age. Multisite preoperative MR images of 164 patients with grade II/III glioma were grouped by IDH and TERT promoter (pTERT) mutations as follows: (1) IDH wild type, (2) IDH and pTERT co-mutations, (3) IDH mutant and pTERT wild type. We applied a CNN (AlexNet) to four types of MR sequence and obtained the CNN texture features to classify the groups with a linear support vector machine. The classification was also performed using conventional radiomic features and/or patient age. Using all features, we succeeded in classifying patients with an accuracy of 63.1%, which was significantly higher than the accuracy obtained from using either the radiomic features or patient age alone. In particular, prediction of the pTERT mutation was significantly improved by the CNN texture features. In conclusion, the pretrained CNN texture features capture the information of IDH and TERT genotypes in grade II/III gliomas better than the conventional radiomic features.


Assuntos
Glioma/diagnóstico , Glioma/genética , Isocitrato Desidrogenase/genética , Imageamento por Ressonância Magnética , Mutação , Redes Neurais de Computação , Regiões Promotoras Genéticas , Telomerase/genética , Biomarcadores Tumorais , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética/métodos , Masculino , Gradação de Tumores , Estadiamento de Neoplasias , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA