Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
EXCLI J ; 23: 862-882, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38983782

RESUMO

A major characteristic of cancer is dysregulated cell division, which results in aberrant growth of cells. Consequently, medicinal targets that prevent cell division would be useful in the fight against cancer. The primary regulator of proliferation is a complex consisting of cyclin and cyclin-dependent kinases (CDKs). The FDA has granted approval for CDK inhibitors (CDKIs) to treat metastatic hormone receptor-positive breast cancer. Specifically, CDK4/6 CDKIs block the enzyme activity of CDK4 and CDK6. Unfortunately, the majority of first-generation CDK inhibitors, also known as pan-CDK inhibitors because they target multiple CDKs, have not been authorized for clinical use owing to their serious side effects and lack of selection. In contrast to this, significant advancements have been created to permit the use of pan-CDK inhibitors in therapeutic settings. Notably, the toxicity and negative consequences of pan-CDK inhibitors have been lessened in recent years thanks to the emergence of combination therapy tactics. Therefore, pan-CDK inhibitors have renewed promise for clinical use when used in a combination regimen. The members of the CDK family have been reviewed and their primary roles in cell cycle regulation were covered in this review. Next, we provided an overview of the state of studies on CDK inhibitors.

2.
Clin Nutr ESPEN ; 63: 502-507, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39047867

RESUMO

BACKGROUND & AIMS: Docosahexaenoic acid (DHA) and linoleic acid (LA) have been shown to exhibit anti-proliferative effects against breast cancer cells. However, the mechanisms underlying these effects are not yet fully understood. One potential mechanism is through the regulation of microRNAs (miRs), which are known to play a crucial role in breast cancer development and progression. This study aimed to investigate the expression of miR-342 and miR-101 as tumor-suppressor miRs in the human HER-2 positive breast cancer cell line BT-474 after treatment with DHA, LA, alone or in combination with Taxol, a standard chemotherapy agent. METHODS: The human breast cancer cell line BT-474 was cultured, and the IC50 for Taxol was determined using the MTT assay. Cells were then cultured and treated for 24 h with 100 µM DHA and 50 µM LA, alone or in combination with the respective IC50 of Taxol. Cells were harvested, and miRNA extraction and cDNA synthesis were performed using standard methods. Expression levels of miRs were analyzed using quantitative real-time PCR (qRT-PCR), and results were normalized against U6 snRNA expression levels. RESULTS: The Taxol IC50 for BT-474 cells was 19 nM. According to the data obtained from our study, it was observed that Taxol treatment resulted in the down-regulation of both miR-101 and miR-342 (3.69 (p < 0.0001) and 1.88 fold, (p < 0.0001) respectively). In addition, DHA, LA and DHA + LA caused up-regulation of miR-101 (0.11, 0.05, 0.03 fold (p < 0.0001) respectively) but not miR-342 (decreased by 1.93 (p < 0.0001), 2.89 (p < 0.0001) and 1.19 fold (p = 0.0029) respectively). Notably, treatment with DHA, LA and DHA + LA was able to restore the down-regulated expression of miR-101 (0.25 (p < 0.0001), 0.05 (p = 0.0012) and 0.06 fold (p < 0.0001) respectively) during Taxol treatment. CONCLUSION: Our study demonstrates that DHA and LA can effectively compensate for the reduced expression of miR-101 during Taxol treatment. These findings suggest that dietary fatty acids may play a critical role in modulating the anti-cancer effects of chemotherapy agents. Future studies are needed to investigate the functional aspects of dietary fatty acids on breast cancer development and progression.

3.
Cell Commun Signal ; 22(1): 56, 2024 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-38243252

RESUMO

Colorectal cancer is one of the most common causes of mortality worldwide. There are several potential risk factors responsible for the initiation and progression of colorectal cancer, including age, family history, a history of inflammatory bowel disease, and lifestyle factors such as physical activity and diet. For decades, there has been a vast amount of study on treatment approaches for colorectal cancer, which has led to conventional therapies such as chemotherapy, surgery, etc. Considering the high prevalence and incidence rate, scholars believe there is an urgent need for an alternative, more efficacious treatment with fewer adverse effects than the abovementioned treatments. Immunotherapy has emerged as a potential treatment alternative in a few years and has become one of the fastest-evolving therapeutic methods. Immunotherapy works by activating or enhancing the immune system's power to identify and attack cancerous cells. This review summarizes the most crucial new immunotherapy methods under investigation for colorectal cancer treatment, including Immune checkpoint inhibitors, CAR-T cell therapy, BiTEs, Tumor-infiltrating lymphocytes, and Oncolytic virus therapy. Furthermore, this study discusses the application of combination therapy, precision medicine, biomarker discovery, overcoming resistance, and immune-related adverse effects. Video Abstract.


Assuntos
Neoplasias Colorretais , Neoplasias , Vírus Oncolíticos , Humanos , Imunoterapia/efeitos adversos , Imunoterapia/métodos , Imunoterapia Adotiva , Neoplasias Colorretais/terapia , Linfócitos T , Neoplasias/terapia
4.
Pathol Res Pract ; 249: 154732, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37567033

RESUMO

Cytokines bind to specific receptors on target cells to activate intracellular signaling pathways that control diverse cellular functions, such as proliferation, differentiation, migration, and death. They are essential for the growth, activation, and operation of immune cells and the control of immunological reactions to pathogens, cancer cells, and other dangers. Based on their structural and functional properties, cytokines can be roughly categorized into different families, such as the tumor necrosis factor (TNF) family, interleukins, interferons, and chemokines. Leukocytes produce interleukins, a class of cytokines that have essential functions in coordinating and communicating with immune cells. Cancer, inflammation, and autoimmunity are immune-related disorders brought on by dysregulation of cytokine production or signaling. Understanding cytokines' biology to create novel diagnostic, prognostic, and therapeutic methods for various immune-related illnesses is crucial. Different immune cells, including T cells, B cells, macrophages, and dendritic cells, and other cells in the body, including epithelial cells and fibroblasts, generate and secrete interleukins. The present study's main aim is to fully understand interleukins' roles in cancer development and identify new therapeutic targets and strategies for cancer treatment.


Assuntos
Interleucinas , Neoplasias , Humanos , Citocinas/metabolismo , Neoplasias/tratamento farmacológico , Fator de Necrose Tumoral alfa , Imunoterapia
5.
Pathol Res Pract ; 248: 154632, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37480597

RESUMO

Neoplasms are a worldwide recognized non-contagious disease which has the most mortality rate after cardiovascular diseases. For decades, there has been a vast amount of study on treatment methods of cancer which has led to conventional therapies such as chemotherapy, radiation therapy, surgery and so on. Clinicians and researchers believed that there is an urgent need, considering the high rate of incidence and prevalence, for an alternative treatment option which is more efficacious and has less adverse effects than the above-mentioned treatments. Immunotherapy has emerged as a potential treatment alternative in a few years and became one of the fastest developing therapeutic approaches. Different kinds of immunotherapies are FDA approved and available for treatment of various cancer types. In this review, we have summarized the major immunotherapy methods including checkpoint inhibitors, CAR T cell therapies and cancer vaccines. Furthermore, application of combination therapy, precision medicine, biomarker discovery, overcoming resistance and reduction of adverse effects are discussed in this study.


Assuntos
Imunoterapia , Neoplasias , Humanos , Neoplasias/terapia , Inibidores de Checkpoint Imunológico , Imunoterapia Adotiva , Vacinas Anticâncer , Medicina de Precisão
6.
Life Sci ; 329: 121940, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37451397

RESUMO

Pattern recognition receptors (PRRs) are specific sensors that directly recognize various molecules derived from viral or bacterial pathogens, senescent cells, damaged cells, and apoptotic cells. These sensors act as a bridge between nonspecific and specific immunity in humans. PRRs in human innate immunity were classified into six types: toll-like receptors (TLR), C-type lectin receptors (CLRs), nucleotide-binding and oligomerization domain (NOD)-like receptors (NLRs), absent in melanoma 2 (AIM2)-like receptors (ALRs), retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs), and cyclic GMP-AMP (cGAMP) synthase (cGAS). Numerous types of PRRs are responsible for recognizing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, which is immensely effective in prompting interferon responses. Detection of SARS-CoV-2 infection by PRRs causes the initiation of an intracellular signaling cascade and subsequently the activation of various transcription factors that stimulate the production of cytokines, chemokines, and other immune-related factors. Therefore, it seems that PRRs are a promising potential therapeutic approach for combating SARS-CoV-2 infection and other microbial infections. In this review, we have introduced the current knowledge of various PRRs and related signaling pathways in response to SARS-CoV-2.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Receptores de Reconhecimento de Padrão , Imunidade Inata , Receptores Toll-Like/metabolismo , Fatores Imunológicos
7.
Pathol Res Pract ; 248: 154585, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37302277

RESUMO

In the past fifteen years, it has been clear that tumor-associated p53 mutations can cause behaviors distinct from those brought on by a simple loss of p53's tumor-suppressive function in its wild-type form. Many of these mutant p53 proteins develop oncogenic characteristics that allow them to encourage cell survival, invasion, and metastasis. But it is now understood that the immune response is also significantly influenced by the cancer cell's p53 status. The recruitment and activity of myeloid and T cells can be impacted by p53 loss or mutation in malignancies, allowing immune evasion and accelerating cancer growth. Additionally, p53 can work in immune cells, which can have various effects that either hinder or assist the growth of tumors. In this review article, we examined different mutations of P53 in some significant cancers, such as liver, colorectal, and prostate, and reviewed some new therapeutic approaches.


Assuntos
Neoplasias , Proteína Supressora de Tumor p53 , Masculino , Humanos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Neoplasias/genética , Neoplasias/tratamento farmacológico , Mutação/genética
8.
Pathol Res Pract ; 247: 154539, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37257244

RESUMO

One of the most prevalent cancers impacting women worldwide is breast cancer. Although there are several risk factors for breast cancer, the p53 gene's function has recently received much attention. The "gatekeeper" gene, or p53, is sometimes referred to as such since it is crucial in controlling cell proliferation and preventing the development of malignant cells. By identifying DNA damage and initiating cellular repair processes, p53 usually functions as a tumor-suppressor. But p53 gene alterations can result in a lack of function, allowing cells to divide out of control and perhaps triggering the onset of cancer. Various factors, such as mutation genes, signaling pathways, and hormones, can dysregulate P53 proteins and cause breast cancer. A promising strategy for individualized cancer treatment involves focusing on p53 mutations in breast cancer. While numerous techniques, including gene therapy and small compounds, have shown promise, further study is required to create safe and efficient treatments to target p53 mutations in breast cancer successfully.


Assuntos
Neoplasias da Mama , Feminino , Humanos , Neoplasias da Mama/genética , Neoplasias da Mama/terapia , Genes p53 , Genes Supressores de Tumor , Mutação , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
9.
Biotechnol Prog ; 39(5): e3356, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37198722

RESUMO

Genetically modified immune cells, especially CAR-T cells, have captured the attention of scientists over the past 10 years. In the fight against cancer, these cells have a special place. Treatment for hematological cancers, autoimmune disorders, and cancers must include CAR-T cell therapy. Determining the therapeutic targets, side effects, and use of CAR-T cells in neurological disorders, including cancer and neurodegenerative diseases, is the goal of this study. Due to advancements in genetic engineering, CAR-T cells have become crucial in treating some neurological disorders. CAR-T cells have demonstrated a positive role in treating neurological cancers like Glioblastoma and Neuroblastoma due to their ability to cross the blood-brain barrier and use diverse targets. However, CAR-T cell therapy for MS diseases is being researched and could be a potential treatment option. This study aimed to access the most recent studies and scientific articles in the field of CAR-T cells in neurological diseases and/or disorders.

10.
Pathol Res Pract ; 243: 154369, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36812737

RESUMO

Sericin protein is a type of protein derived from silk cocoons. Sericin hydrogen bonds cause adhesion to the silk cocoon. This substance contains a large amount of serine amino acids in its structure. At first, the medicinal properties of this substance were unknown, but today many properties have been discovered for this substance. The unique properties of this substance have made it widely used in the pharmaceutical and cosmetic industries. The applications of Sericin in pharmacy are as follows. Sericin is used to repair wounds by producing collagen. Other uses for the drug include anti-diabetic, anti-cholesterol, metabolic modulator, anti-tumor, heart protection, antioxidant, antibacterial, wound healing, cell proliferation, UV protection, freezing, and skin moisturizing. The physicochemical properties of Sericin have attracted the attention of pharmacists and their widespread use in the production of drugs and treatment of diseases. One of the critical and unique properties of Sericin is its anti-inflammatory property. In this article, this property of Sericin is discussed in detail, and according to the experiments performed by pharmacists, this substance has shown a significant effect in eliminating inflammation. This study aimed to evaluate the impact of Sericin protein in relieving inflammation.


Assuntos
Sericinas , Humanos , Sericinas/farmacologia , Sericinas/química , Seda/química , Seda/farmacologia , Pele/patologia , Inflamação/tratamento farmacológico , Inflamação/patologia
11.
Stem Cell Res Ther ; 13(1): 423, 2022 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-35986375

RESUMO

Accumulating proofs signify that pleiotropic effects of mesenchymal stromal cells (MSCs) are not allied to their differentiation competencies but rather are mediated mainly by the releases of soluble paracrine mediators, making them a reasonable therapeutic option to enable damaged tissue repair. Due to their unique immunomodulatory and regenerative attributes, the MSC-derived exosomes hold great potential to treat neurodegeneration-associated neurological diseases. Exosome treatment circumvents drawbacks regarding the direct administration of MSCs, such as tumor formation or reduced infiltration and migration to brain tissue. Noteworthy, MSCs-derived exosomes can cross the blood-brain barrier (BBB) and then efficiently deliver their cargo (e.g., protein, miRNAs, lipid, and mRNA) to damaged brain tissue. These biomolecules influence various biological processes (e.g., survival, proliferation, migration, etc.) in neurons, oligodendrocytes, and astrocytes. Various studies have shown that the systemic or local administration of MSCs-derived exosome could lead to the favored outcome in animals with neurodegeneration-associated disease mainly by supporting BBB integrity, eliciting pro-angiogenic effects, attenuating neuroinflammation, and promoting neurogenesis in vivo. In the present review, we will deliver an overview of the therapeutic benefits of MSCs-derived exosome therapy to ameliorate the pathological symptoms of acute and chronic neurodegenerative disease. Also, the underlying mechanism behind these favored effects has been elucidated.


Assuntos
Exossomos , Células-Tronco Mesenquimais , Doenças Neurodegenerativas , Animais , Diferenciação Celular , Exossomos/metabolismo , Imunomodulação , Células-Tronco Mesenquimais/metabolismo , Doenças Neurodegenerativas/terapia
12.
Gene ; 844: 146829, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-35995118

RESUMO

Ankylosing spondylitis (AS) is progressive immune-mediated arthritis. Persistent autoreactivity of T cells with an up-regulated Survivin expression is strongly implicated in AS immunopathogenesis. Besides, Survivin can inhibit proapoptotic caspase 9 activations. Moreover, microRNAs are small non-coding RNAs that are dysregulated in various diseases, in which their altered expression could modulate Survivin expression. The primary goal of this study was to assess the role of Survivin and its-targeting microRNAs in the immunopathogenesis of AS disease. For this aim, peripheral blood mononuclear cells (PBMCs) were isolated from 15 patients with AS and healthy matched controls using Ficoll-Hypaque. T cells were obtained using the magnetic-activated cell sorting (MACS) method. After that, the expression levels of Survivin, Caspase 9, and specific miRNAs were determined using qT-qPCR. Also, the expression of Survivin and Caspase 9 at protein levels was determined by western blotting. Then, the isolated T cells were co-cultured with interleukin (IL)-2 and muromonab-CD3 (OKT-3) for active-induced cell death (AICD) induction, Survivin siRNA for inhibition of Survivin expression, and their combination to assess the implication of Survivin expression in autoreactive T lymphocytes' resistance to apoptosis by determining the rate of apoptosis by Flowcytometry assay. The results showed that Survivin was up-regulated while Caspase 9 was downregulated in patients with AS. It was also revealed that microRNAs that directly or indirectly target the Survivin mRNA were dysregulated in patients with AS. It was also revealed that T cells obtained from AS patients were more resistant to apoptosis induction than those obtained from healthy people. In summary, the results obtained from this study showed that dysregulation of Survivin and Survivin-targeting miRNAs in T lymphocytes obtained from AS patients contribute to their resistance to apoptosis, suggesting the future development of targeted therapies for AS.


Assuntos
MicroRNAs , Espondilite Anquilosante , Apoptose , Caspase 9/metabolismo , Linhagem Celular Tumoral , Humanos , Proteínas Inibidoras de Apoptose/genética , Proteínas Inibidoras de Apoptose/metabolismo , Leucócitos Mononucleares/metabolismo , MicroRNAs/metabolismo , Espondilite Anquilosante/genética , Espondilite Anquilosante/metabolismo , Survivina/genética , Survivina/metabolismo , Linfócitos T/metabolismo
13.
Cancer Cell Int ; 22(1): 269, 2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-35999569

RESUMO

A pharmacological class known as immune checkpoint inhibitors (ICIs) has been developed as a potential treatment option for various malignancies, including HCC. In HCC, ICIs have demonstrated clinically significant advantages as monotherapy or combination therapy. ICIs that target programmed cell death protein 1 (PD-1) and programmed cell death protein ligand 1 (PD-L1), as well as cytotoxic T lymphocyte antigen 4 (CTLA-4), have made significant advances in cancer treatment. In hepatocellular carcinoma (HCC), several ICIs are being tested in clinical trials, and the area is quickly developing. As immunotherapy-related adverse events (irAEs) linked with ICI therapy expands and gain worldwide access, up-to-date management guidelines become crucial to the safety profile of ICIs. This review aims to describe the evidence for ICIs in treating HCC, emphasizing the use of combination ICIs.

14.
Cell Mol Biol Lett ; 27(1): 56, 2022 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-35842587

RESUMO

Recently, mesenchymal stromal cell (MSC)-based therapy has become an appreciated therapeutic approach in the context of neurodegenerative disease therapy. Accordingly, a myriad of studies in animal models and also some clinical trials have evinced the safety, feasibility, and efficacy of MSC transplantation in neurodegenerative conditions, most importantly in Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and Huntington's disease (HD). The MSC-mediated desired effect is mainly a result of secretion of immunomodulatory factors in association with release of various neurotrophic factors (NTFs), such as glial cell line-derived neurotrophic factor (GDNF) and brain-derived neurotrophic factor (BDNF). Thanks to the secretion of protein-degrading molecules, MSC therapy mainly brings about the degradation of pathogenic protein aggregates, which is a typical appearance of chronic neurodegenerative disease. Such molecules, in turn, diminish neuroinflammation and simultaneously enable neuroprotection, thereby alleviating disease pathological symptoms and leading to cognitive and functional recovery. Also, MSC differentiation into neural-like cells in vivo has partially been evidenced. Herein, we focus on the therapeutic merits of MSCs and also their derivative exosome as an innovative cell-free approach in AD, HD, PD, and ALS conditions. Also, we give a brief glimpse into novel approaches to potentiate MSC-induced therapeutic merits in such disorders, most importantly, administration of preconditioned MSCs.


Assuntos
Esclerose Lateral Amiotrófica , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Doenças Neurodegenerativas , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/terapia , Animais , Células-Tronco Mesenquimais/metabolismo , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/terapia
15.
Genes Dis ; 9(4): 849-867, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35685482

RESUMO

Blood disorders include a wide spectrum of blood-associated malignancies resulting from inherited or acquired defects. The ineffectiveness of existing therapies against blood disorders arises from different reasons, one of which is drug resistance, so different types of leukemia may show different responses to treatment. Leukemia occurs for a variety of genetic and acquired reasons, leading to uncontrolled proliferation in one or more cell lines. Regarding the genetic defects, oncogene signal transducer and activator of transcription (STAT) family transcription factor, especially STAT3, play an essential role in hematological disorders onset and progress upon mutations, dysfunction, or hyperactivity. Besides, microRNAs, as biological molecules, has been shown to play a dual role in either tumorigenesis and tumor suppression in various cancers. Besides, a strong association between STAT3 and miRNA has been reported. For example, miRNAs can regulate STAT3 via targeting its upstream mediators such as IL6, IL9, and JAKs or directly binding to the STAT3 gene. On the other hand, STAT3 can regulate miRNAs. In this review study, we aimed to determine the role of either microRNAs and STAT3 along with their effect on one another's activity and function in hematological malignancies.

16.
Cell Commun Signal ; 20(1): 81, 2022 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-35659306

RESUMO

Balanced cell death and survival are among the most important cell development and homeostasis pathways that can play a critical role in the onset or progress of malignancy steps. Anastasis is a natural cell recovery pathway that rescues cells after removing the apoptosis-inducing agent or brink of death. The cells recuperate and recover to an active and stable state. So far, minimal knowledge is available about the molecular mechanisms of anastasis. Still, several involved pathways have been explained: recovery through mitochondrial outer membrane permeabilization, caspase cascade arrest, repairing DNA damage, apoptotic bodies formation, and phosphatidylserine. Anastasis can facilitate the survival of damaged or tumor cells, promote malignancy, and increase drug resistance and metastasis. Here, we noted recently known mechanisms of the anastasis process and underlying molecular mechanisms. Additionally, we summarize the consequences of anastatic mechanisms in the initiation and progress of malignancy, cancer cell metastasis, and drug resistance. Video Abstract.


Assuntos
Reversão da Morte Celular , Neoplasias , Apoptose , Morte Celular , Sobrevivência Celular , Dano ao DNA , Humanos , Neoplasias/metabolismo
18.
J Cell Mol Med ; 26(15): 4137-4156, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35762299

RESUMO

Despite substantial developments in conventional treatments such as surgery, chemotherapy, radiotherapy, endocrine therapy, and molecular-targeted therapy, breast cancer remains the leading cause of cancer mortality in women. Currently, chimeric antigen receptor (CAR)-redirected immune cell therapy has emerged as an innovative immunotherapeutic approach to ameliorate survival rates of breast cancer patients by eliciting cytotoxic activity against cognate tumour-associated antigens expressing tumour cells. As a crucial component of adaptive immunity, T cells and NK cells, as the central innate immune cells, are two types of pivotal candidates for CAR engineering in treating solid malignancies. However, the biological distinctions between NK cells- and T cells lead to differences in cancer immunotherapy outcomes. Likewise, optimal breast cancer removal via CAR-redirected immune cells requires detecting safe target antigens, improving CAR structure for ideal immune cell functions, promoting CAR-redirected immune cells filtration to the tumour microenvironment (TME), and increasing the ability of these engineered cells to persist and retain within the immunosuppressive TME. This review provides a concise overview of breast cancer pathogenesis and its hostile TME. We focus on the CAR-T and CAR-NK cells and discuss their significant differences. Finally, we deliver a summary based on recent advancements in the therapeutic capability of CAR-T and CAR-NK cells in treating breast cancer.


Assuntos
Neoplasias da Mama , Neoplasias , Receptores de Antígenos Quiméricos , Neoplasias da Mama/metabolismo , Feminino , Humanos , Imunoterapia Adotiva , Células Matadoras Naturais , Neoplasias/tratamento farmacológico , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T , Microambiente Tumoral
19.
Cell Mol Biol Lett ; 27(1): 35, 2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35508982

RESUMO

The progress of genetic engineering in the 1970s brought about a paradigm shift in genome editing technology. The clustered regularly interspaced short palindromic repeats/CRISPR associated protein 9 (CRISPR/Cas9) system is a flexible means to target and modify particular DNA sequences in the genome. Several applications of CRISPR/Cas9 are presently being studied in cancer biology and oncology to provide vigorous site-specific gene editing to enhance its biological and clinical uses. CRISPR's flexibility and ease of use have enabled the prompt achievement of almost any preferred alteration with greater efficiency and lower cost than preceding modalities. Also, CRISPR/Cas9 technology has recently been applied to improve the safety and efficacy of chimeric antigen receptor (CAR)-T cell therapies and defeat tumor cell resistance to conventional treatments such as chemotherapy and radiotherapy. The current review summarizes the application of CRISPR/Cas9 in cancer therapy. We also discuss the present obstacles and contemplate future possibilities in this context.


Assuntos
Edição de Genes , Neoplasias , Sistemas CRISPR-Cas/genética , Genoma , Humanos , Neoplasias/genética , Neoplasias/terapia
20.
Stem Cell Res Ther ; 13(1): 140, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35365241

RESUMO

Autologous T cells genetically engineered to express chimeric antigen receptor (CAR) have shown promising outcomes and emerged as a new curative option for hematological malignancy, especially malignant neoplasm of B cells. Notably, when T cells are transduced with CAR constructs, composed of the antigen recognition domain of monoclonal antibodies, they retain their cytotoxic properties in a major histocompatibility complex (MHC)-independent manner. Despite its beneficial effect, the current CAR T cell therapy approach faces myriad challenges in solid tumors, including immunosuppressive tumor microenvironment (TME), tumor antigen heterogeneity, stromal impediment, and tumor accessibility, as well as tribulations such as on-target/off-tumor toxicity and cytokine release syndrome (CRS). Herein, we highlight the complications that hamper the effectiveness of CAR T cells in solid tumors and the strategies that have been recommended to overcome these hurdles and improve infused T cell performance.


Assuntos
Neoplasias , Receptores de Antígenos Quiméricos , Humanos , Imunoterapia Adotiva , Neoplasias/terapia , Receptores de Antígenos Quiméricos/genética , Linfócitos T , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA