Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Viruses ; 15(4)2023 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-37112833

RESUMO

Epstein-Barr virus (EBV) causes lifelong infection in over 90% of the world's population. EBV infection leads to several types of B cell and epithelial cancers due to the viral reprogramming of host-cell growth and gene expression. EBV is associated with 10% of stomach/gastric adenocarcinomas (EBVaGCs), which have distinct molecular, pathological, and immunological characteristics compared to EBV-negative gastric adenocarcinomas (EBVnGCs). Publicly available datasets, such as The Cancer Genome Atlas (TCGA), contain comprehensive transcriptomic, genomic, and epigenomic data for thousands of primary human cancer samples, including EBVaGCs. Additionally, single-cell RNA-sequencing data are becoming available for EBVaGCs. These resources provide a unique opportunity to explore the role of EBV in human carcinogenesis, as well as differences between EBVaGCs and their EBVnGC counterparts. We have constructed a suite of web-based tools called the EBV Gastric Cancer Resource (EBV-GCR), which utilizes TCGA and single-cell RNA-seq data and can be used for research related to EBVaGCs. These web-based tools allow investigators to gain in-depth biological and clinical insights by exploring the effects of EBV on cellular gene expression, associations with patient outcomes, immune landscape features, and differential gene methylation, featuring both whole-tissue and single-cell analyses.


Assuntos
Adenocarcinoma , Infecções por Vírus Epstein-Barr , Neoplasias Gástricas , Humanos , Herpesvirus Humano 4/genética , Neoplasias Gástricas/genética , Carcinogênese
2.
Brief Bioinform ; 24(1)2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36585784

RESUMO

Single-cell RNA sequencing (scRNA-seq) clustering and labelling methods are used to determine precise cellular composition of tissue samples. Automated labelling methods rely on either unsupervised, cluster-based approaches or supervised, cell-based approaches to identify cell types. The high complexity of cancer poses a unique challenge, as tumor microenvironments are often composed of diverse cell subpopulations with unique functional effects that may lead to disease progression, metastasis and treatment resistance. Here, we assess 17 cell-based and 9 cluster-based scRNA-seq labelling algorithms using 8 cancer datasets, providing a comprehensive large-scale assessment of such methods in a cancer-specific context. Using several performance metrics, we show that cell-based methods generally achieved higher performance and were faster compared to cluster-based methods. Cluster-based methods more successfully labelled non-malignant cell types, likely because of a lack of gene signatures for relevant malignant cell subpopulations. Larger cell numbers present in some cell types in training data positively impacted prediction scores for cell-based methods. Finally, we examined which methods performed favorably when trained and tested on separate patient cohorts in scenarios similar to clinical applications, and which were able to accurately label particularly small or under-represented cell populations in the given datasets. We conclude that scPred and SVM show the best overall performances with cancer-specific data and provide further suggestions for algorithm selection. Our analysis pipeline for assessing the performance of cell type labelling algorithms is available in https://github.com/shooshtarilab/scRNAseq-Automated-Cell-Type-Labelling.


Assuntos
Neoplasias , Análise da Expressão Gênica de Célula Única , Humanos , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Algoritmos , Neoplasias/genética , Análise por Conglomerados , Perfilação da Expressão Gênica/métodos , Microambiente Tumoral
3.
Comput Struct Biotechnol J ; 20: 6375-6387, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36420149

RESUMO

Tumors are complex biological entities that comprise cell types of different origins, with different mutational profiles and different patterns of transcriptional dysregulation. The exploration of data related to cancer biology requires careful analytical methods to reflect the heterogeneity of cell populations in cancer samples. Single-cell techniques are now able to capture the transcriptional profiles of individual cells. However, the complexity of RNA-seq data, especially in cancer samples, makes it challenging to cluster single-cell profiles into groups that reflect the underlying cell types. We have developed a framework for a systematic examination of single-cell RNA-seq clustering algorithms for cancer data, which uses a range of well-established metrics to generate a unified quality score and algorithm ranking. To demonstrate this framework, we examined clustering performance of 15 different single-cell RNA-seq clustering algorithms on eight different cancer datasets. Our results suggest that the single-cell RNA-seq clustering algorithms fall into distinct groups by performance, with the highest clustering quality on non-malignant cells achieved by three algorithms: Seurat, bigSCale and Cell Ranger. However, for malignant cells, two additional algorithms often reach a better performance, namely Monocle and SC3. Their ability to detect known rare cell types was also among the best, along with Seurat. Our approach and results can be used by a broad audience of practitioners who analyze single-cell transcriptomic data in cancer research.

4.
PLoS One ; 17(9): e0272302, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36084081

RESUMO

MOTIVATION: The tumour microenvironment (TME) contains various cells including stromal fibroblasts, immune and malignant cells, and its composition can be elucidated using single-cell RNA sequencing (scRNA-seq). scRNA-seq datasets from several cancer types are available, yet we lack a comprehensive database to collect and present related TME data in an easily accessible format. RESULTS: We therefore built a TME scRNA-seq database, and created the R package TMExplorer to facilitate investigation of the TME. TMExplorer provides an interface to easily access all available datasets and their metadata. The users can search for datasets using a thorough range of characteristics. The TMExplorer allows for examination of the TME using scRNA-seq in a way that is streamlined and allows for easy integration into already existing scRNA-seq analysis pipelines.


Assuntos
Análise de Célula Única , Software , Perfilação da Expressão Gênica , Análise de Sequência de RNA , Microambiente Tumoral/genética
5.
Cancers (Basel) ; 13(8)2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33924498

RESUMO

Reactivation of the multi-subunit ribonucleoprotein telomerase is the primary telomere maintenance mechanism in cancer, but it is rate-limited by the enzymatic component, telomerase reverse transcriptase (TERT). While regulatory in nature, TERT alternative splice variant/isoform regulation and functions are not fully elucidated and are further complicated by their highly diverse expression and nature. Our primary objective was to characterize TERT isoform expression across 7887 neoplastic and 2099 normal tissue samples using The Cancer Genome Atlas (TCGA) and the Genotype-Tissue Expression Project (GTEx), respectively. We confirmed the global overexpression and splicing shift towards full-length TERT in neoplastic tissue. Stratifying by tissue type we found uncharacteristic TERT expression in normal brain tissue subtypes. Stratifying by tumor-specific subtypes, we detailed TERT expression differences potentially regulated by subtype-specific molecular characteristics. Focusing on ß-deletion splicing regulation, we found the NOVA1 trans-acting factor to mediate alternative splicing in a cancer-dependent manner. Of relevance to future tissue-specific studies, we clustered cancer cell lines with tumors from related origin based on TERT isoform expression patterns. Taken together, our work has reinforced the need for tissue and tumour-specific TERT investigations, provided avenues to do so, and brought to light the current technical limitations of bioinformatic analyses of TERT isoform expression.

6.
Front Immunol ; 11: 1691, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32849590

RESUMO

Mucosa-associated invariant T (MAIT) cells are unconventional, innate-like T lymphocytes that recognize vitamin B metabolites of microbial origin among other antigens displayed by the monomorphic molecule MHC class I-related protein 1 (MR1). Abundant in human tissues, reactive to local inflammatory cues, and endowed with immunomodulatory and cytolytic functions, MAIT cells are likely to play key roles in human malignancies. They accumulate in various tumor microenvironments (TMEs) where they often lose some of their functional capacities. However, the potential roles of MAIT cells in anticancer immunity or cancer progression and their significance in shaping clinical outcomes remain largely unknown. In this study, we analyzed publicly available bulk and single-cell tumor transcriptomic datasets to investigate the tissue distribution, phenotype, and prognostic significance of MAIT cells across several human cancers. We found that expanded MAIT cell clonotypes were often shared between the blood, tumor tissue and adjacent healthy tissue of patients with colorectal, hepatocellular, and non-small cell lung carcinomas. Gene expression comparisons between tumor-infiltrating and healthy tissue MAIT cells revealed the presence of activation and/or exhaustion programs within the TMEs of primary hepatocellular and colorectal carcinomas. Interestingly, in basal and squamous cell carcinomas of the skin, programmed cell death-1 (PD-1) blockade upregulated the expression of several effector genes in tumor-infiltrating MAIT cells. We derived a signature comprising stable and specific MAIT cell gene markers across several tissue compartments and cancer types. By applying this signature to estimate MAIT cell abundance in pan-cancer gene expression data, we demonstrate that a heavier intratumoral MAIT cell presence is positively correlated with a favorable prognosis in esophageal carcinoma but predicts poor overall survival in colorectal and squamous cell lung carcinomas. Finally, in colorectal carcinoma and four other cancer types, we found a positive correlation between MR1 expression and estimated MAIT cell abundance. Collectively, our findings indicate that MAIT cells serve important but diverse roles in human cancers. Our work provides useful models and resources that employ gene expression data platforms to enable future studies in the realm of MAIT cell biology.


Assuntos
Conjuntos de Dados como Assunto , Perfilação da Expressão Gênica/métodos , Células T Invariantes Associadas à Mucosa/imunologia , Neoplasias/imunologia , Transcriptoma/imunologia , Humanos , Fenótipo
7.
Nucleic Acids Res ; 48(W1): W372-W379, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32479601

RESUMO

CReSCENT: CanceR Single Cell ExpressioN Toolkit (https://crescent.cloud), is an intuitive and scalable web portal incorporating a containerized pipeline execution engine for standardized analysis of single-cell RNA sequencing (scRNA-seq) data. While scRNA-seq data for tumour specimens are readily generated, subsequent analysis requires high-performance computing infrastructure and user expertise to build analysis pipelines and tailor interpretation for cancer biology. CReSCENT uses public data sets and preconfigured pipelines that are accessible to computational biology non-experts and are user-editable to allow optimization, comparison, and reanalysis for specific experiments. Users can also upload their own scRNA-seq data for analysis and results can be kept private or shared with other users.


Assuntos
Neoplasias/genética , RNA-Seq/métodos , Análise de Célula Única/métodos , Software , Humanos , Neoplasias/imunologia , Linfócitos T/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA