Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 8(30): 26762-26774, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37546605

RESUMO

In humans, melanin plays an esthetic role, dictating hair and skin color and traits, while keratin is the protein that comprises most of the epidermis layer. Eumelanin and pheomelanin are types of melanin synthesized from the same building blocks via enzymatic oxidation. Pheomelanin has an additional building block, cysteine amino acid, which affects its final structure. Keratin contains high cysteine content, and by exploiting free thiols in hydrolyzed keratin, we demonstrate the formation of keratin-melanin (KerMel) chromophoric submicron particles. Cryo-TEM analyses found KerMel particle sizes to be 100-300 nm and arranged in the form of a central keratin particle with polymerized l-dopa chains. Attenuated total reflection (ATR)-FTIR, UV-vis, and fluorescence measurements identified new chemical bonds, indicating the formation of KerMel particles. Finally, KerMel replicated natural skin tones and proved cytocompatibility for human epidermal keratinocytes at concentrations below 0.1 mg/mL. Taken together, KerMel is a novel, tunable material that has the potential to integrate into the cosmetic industry.

2.
Plants (Basel) ; 11(5)2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35270100

RESUMO

Grapevines are susceptible and responsive to their surrounding environment. Factors such as climate region and terroir are known to affect polyphenolic compounds in wine and therefore, its quality. The uniqueness of the terroir in Israel is the variety of soil types and the climatic conditions, ranging from Mediterranean to arid climates. Thus, understanding the effects of climate on grapevine performance in Israel may be a test case for the effect of climate change on grapevine at other areas in the future. First, we present a preliminary survey (2012-2014) in different climate zones and terroirs, which showed that trans-resveratrol concentrations in Merlot and Shiraz were high, while those of Cabernet Sauvignon were significantly lower. A further comprehensive countrywide survey (2016) of Merlot wines from 62 vineyards (53 wineries) compared several phenolic compounds' concentrations between five areas of different climate and terroir. Results show a connection between trans-resveratrol concentrations, variety, and terroir properties. Furthermore, we show that trans-resveratrol concentrations are strongly correlated to humidity levels at springtime, precipitation, and soil permeability. This work can be considered a glimpse into the possible alterations of wine composition in currently moderate-climate wine-growing areas.

3.
J Tissue Eng Regen Med ; 16(2): 140-150, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34808035

RESUMO

Polyvinyl alcohol (PVA)-based hydrogels are promising biomaterials for tissue engineering printing applications. However, one of their main disadvantages is their inability to support cell attachment, which is a critical feature for the preparation of biological scaffolds. The goal of this study was to develop a printable, cell-supportive PVA-based bioink with tunable mechanical properties, without using animal-derived polymers which potentially harbor human pathogens. An ultraviolet light (UV) curable PVA-methacrylate (PVA-MA) polymer mixed with Cys-Arg-Gly-Asp (CRGD) peptide was developed. This peptide holds the integrin receptor binding sequence - RGD, that can enhance cell attachment. The additional cysteine was designed to enable its thiol binding under UV to methacrylate groups of the UV curable PVA-MA. Vero cell, as an adherent cell model was used to assess the hydrogel's cell adhesion. It was found that the PVA-MA-CRGD formula enables the preparation of hydrogels with excellent cell attachment and had even shown superior cell attachment properties relative to added gelatin. Adding hyaluronic acid (HA) as a rheologic modulator enabled the printing of this new formula. Our overall data demonstrates the applicability of this mixture as a bioink for soft tissue engineering such as skin, adipose, liver or kidney tissue.


Assuntos
Hidrogéis , Álcool de Polivinil , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Humanos , Hidrogéis/química , Hidrogéis/farmacologia , Metacrilatos/química , Metacrilatos/farmacologia , Peptídeos Cíclicos , Álcool de Polivinil/química , Álcool de Polivinil/farmacologia , Engenharia Tecidual
4.
J Orthop Res ; 39(7): 1540-1547, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-32410235

RESUMO

Lateral ligament tears, also known as high-grade ankle sprains, are common, debilitating, and usually heal slowly. Ten to thirty percent of patients continue to suffer from chronic pain and ankle instability even after 3 to 9 months. Previously, we showed that the recombinant human amelogenin (rHAM+ ) induced regeneration of fully transected rat medial collateral ligament, a common proof-of-concept model. Our aim was to evaluate whether rHAM+ can regenerate torn ankle calcaneofibular ligament (CFL), an important component of the lateral ankle stabilizers. Right CFLs of Sabra rats were transected and treated with 0, 0.5, or 1 µg/µL rHAM+ dissolved in propylene glycol alginate (PGA). Results were compared with the normal group, without surgery. Healing was evaluated 12 weeks after treatment by mechanical testing (ratio between the right and left, untransected ligaments of the same rat), and histology including immunohistochemical staining of collagen I and S100. The mechanical properties, structure, and composition of transected ligaments treated with 0.5 µg/µL rHAM+ (experimental) were similar to untransected ligaments. PGA (control) treated ligaments were much weaker, lax, and unorganized compared with untransected ligaments. Treatment with 1 µg/µL rHAM+ was not as efficient as 0.5 µg/µL rHAM+ . Normal arrangement of collagen I fibers and of proprioceptive nerve endings, parallel to the direction of the force, was detected in ligaments treated with 0.5 µg/µL rHAM+ , and scattered arrangement, resembling scar tissue, in control ligaments. In conclusion, we showed that rHAM+ induced significant mechanical and structural regeneration of torn rat CFLs, which might be translated into treatment for grades 2 and 3 ankle sprain injuries.


Assuntos
Amelogenina/uso terapêutico , Traumatismos do Tornozelo/tratamento farmacológico , Ligamentos Laterais do Tornozelo/efeitos dos fármacos , Regeneração/efeitos dos fármacos , Amelogenina/farmacologia , Animais , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Feminino , Terminações Nervosas/efeitos dos fármacos , Ratos , Proteínas Recombinantes/farmacologia , Proteínas Recombinantes/uso terapêutico
5.
Sensors (Basel) ; 20(18)2020 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32937986

RESUMO

A protease is an enzyme that catalyzes proteolysis of proteins into smaller polypeptides or single amino acids. As crucial elements in many biological processes, proteases have been shown to be informative biomarkers for several pathological conditions in humans, animals, and plants. Therefore, fast, reliable, and cost-effective protease biosensors suitable for point-of-care (POC) sensing may aid in diagnostics, treatment, and drug discovery for various diseases. This work presents an affordable and simple paper-based dipstick biosensor that utilizes peptide-encapsulated single-wall carbon nanotubes (SWCNTs) for protease detection. Upon enzymatic digestion of the peptide, a significant drop in the photoluminescence (PL) of the SWCNTs was detected. As the emitted PL is in the near-infrared region, the developed biosensor has a good signal to noise ratio in biological fluids. One of the diseases associated with abnormal protease activity is pancreatitis. In acute pancreatitis, trypsin concentration could reach up to 84 µg/mL in the urine. For proof of concept, we demonstrate the feasibility of the proposed biosensor for the detection of the abnormal levels of trypsin activity in urine samples.


Assuntos
Técnicas Biossensoriais , Nanotubos de Carbono , Nanotubos de Peptídeos , Pancreatite/diagnóstico , Peptídeo Hidrolases/análise , Doença Aguda , Animais , Humanos , Pancreatite/enzimologia , Proteólise , Tripsina/urina
6.
Mol Biotechnol ; 60(6): 387-395, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29616400

RESUMO

Production of monoclonal antibodies and pharmaceutical proteins in transgenic plants has been the focus of many research efforts for close to 30 years. Use of plants as bioreactors reduces large-scale production costs and minimizes risk for human pathogens contamination. Stable nuclear transformation of the plant genome offers a clear advantage in agricultural protein production platforms, limited only by the number of hectares that can be cultivated. We report here, for the first time, successful and stable expression of adalimumab in transgenic Nicotiana tabacum plants. The plant-derived adalimumab proved fully active and was shown to rescue L929 cells from the in vitro lethal effect of rhTNFα just as effectively as commercially available CHO-derived adalimumab (Humira). These results indicate that agricultural biopharming is an efficient alternative to mammalian cell-based expression platforms for the large-scale production of recombinant antibodies.


Assuntos
Adalimumab/genética , Nicotiana/genética , Adalimumab/biossíntese , Adalimumab/isolamento & purificação , Adalimumab/metabolismo , Reatores Biológicos , Engenharia Genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Nicotiana/metabolismo
7.
Oncoscience ; 3(2): 71-84, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27014725

RESUMO

The roles of cell motility and angiogenetic processes in metastatic spread and tumor aggressiveness are well established and must be simultaneously targeted to maximize antitumor drug potency. This work evaluated the antitumorigenic capacities of human recombinant RNASET2 (hrRNASET2), a homologue of the Aspergillus niger T2RNase ACTIBIND, which has been shown to display both antitumorigenic and antiangiogenic activities. hrRNASET2 disrupted intracellular actin filament and actin-rich extracellular extrusion organization in both CT29 colon cancer and A375SM melanoma cells and induced a significant dose-dependent inhibition of A375SM cell migration. hrRNASET2 also induced full arrest of angiogenin-induced tube formation and brought to a three-fold lower relative HT29 colorectal and A375SM melanoma tumor volume, when compared to Avastin-treated animals. In parallel, mean blood vessel counts were 36.9% lower in hrRNASET2-vs. Avastin-treated mice and survival rates of hrRNASET2-treated mice were 50% at 73 days post-treatment, while the median survival time for untreated animals was 22 days. Moreover, a 60-day hrRNASET2 treatment period reduced mean A375SM lung metastasis foci counts by three-fold when compared to untreated animals. Taken together, the combined antiangiogenic and antitumorigenic capacities of hrRNASET2, seemingly arising from its direct interaction with intercellular and extracellular matrices, render it an attractive anticancer therapy candidate.

8.
J Biomed Mater Res B Appl Biomater ; 104(5): 914-22, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-25952265

RESUMO

Various chemical, natural, or synthetic in origin, crosslinking methods have been proposed over the years to stabilise collagen fibers. However, an optimal method has yet to be identified. Herein, we ventured to assess the potential of 4-star poly(ethylene glycol) ether tetrasuccinimidyl glutarate, as opposed to glutaraldehyde (GTA), genipin and carbodiimide, on the structural, physical and biological properties of collagen fibers. The 4-star poly(ethylene glycol) ether tetrasuccinimidyl glutarate induced an intermedium surface smoothness, denaturation temperature and swelling. The 4-star poly(ethylene glycol) ether tetrasuccinimidyl glutarate fibers had significantly higher stress at break values than the carbodiimide fibers, but significantly lower than the GTA and genipin fibers. With respect to strain at break, no significant difference was observed among the crosslinking treatments. The 4-star poly(ethylene glycol) ether tetrasuccinimidyl glutarate fibers exhibited significantly higher cell metabolic activity and DNA concentration that all other crosslinking treatments, promoted consistently cellular elongation along the longitudinal fiber axis and by day 7 they were completely covered by cells. Collectively, this work clearly demonstrates the potential of 4-star poly(ethylene glycol) ether tetrasuccinimidyl glutarate as collagen crosslinker. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 914-922, 2016.


Assuntos
Colágeno , Reagentes de Ligações Cruzadas/química , Fibroblastos/metabolismo , Glutaratos/química , Teste de Materiais , Polietilenoglicóis/química , Células Cultivadas , Colágeno/química , Colágeno/farmacologia , Fibroblastos/citologia , Humanos
9.
Oncoscience ; 2(1): 31-43, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25815360

RESUMO

Human RNASET2 (hRNASET2) has been demonstrated to exert antiangiogenic and antitumorigenic effects independent of its ribonuclease capacity. We suggested that RNASET2 exerts its antiangiogenic and antitumorigenic activities via binding to actin and consequently inhibits cell motility. We focused herein on the identification of the actin binding site of hRNASET2 using defined sequences encountered within the whole hRNASET2 protein. For that purpose we designed 29 different hRNASET2-derived peptides. The 29 peptides were examined for their ability to bind immobilized actin. Two selected peptides-A103-Q159 consisting of 57 amino acids and peptide K108-K133 consisting of 26 amino acids were demonstrated to have the highest actin binding ability and concomitantly the most potent anti-angiogenic activity. Further analyses on the putative mechanisms associated with angiogenesis inhibition exerted by peptide K108-K133 involved its location during treatment within the HUVE cells. Peptide K108-K133 readily penetrates the cell membrane within 10 min of incubation. In addition, supplementation with angiogenin delays the entrance of peptide K108-K133 to the cell suggesting competition on the same cell internalization route. The peptide was demonstrated to co-localize with angiogenin, suggesting that both molecules bind analogous cellular epitopes, similar to our previously reported data for ACTIBIND and trT2-50.

10.
Oncotarget ; 5(22): 11464-78, 2014 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-25426551

RESUMO

Human RNASET2 has been implicated in antitumorigenic and antiangiogenic activities, independent of its ribonuclease capacities. We constructed a truncated version of human RNASET2, starting at E50 (trT2-50) and devoid of ribonuclease activity. trT2-50 maintained its ability to bind actin and to inhibit angiogenesis and tumorigenesis. trT2-50 binds to cell surface actin and formed a complex with actin in vitro. The antiangiogenic effect of this protein was demonstrated in human umbilical vein endothelial cells (HUVECs) by its ability to arrest tube formation on Matrigel, induced by angiogenic factors. Immunofluorescence staining of HUVECs showed nuclear and cytosolic RNASET2 protein that was no longer detectable inside the cell following trT2-50 treatment. This effect was associated with disruption of the intracellular actin network. trT2-50 co-localized with angiogenin, suggesting that both molecules bind (or compete) for similar cellular epitopes. Moreover, trT2-50 led to a significant inhibition of tumor development. Histological analysis demonstrated abundant necrotic tissue and a substantial loss of endothelial structure in trT2-50-treated tumors. Collectively, the present results indicate that trT2-50, a molecule engineered to be deficient of its catalytic activity, still maintained its actin binding and anticancer-related biological activities. We therefore suggest that trT2-50 may serve as a potential cancer therapeutic agent.


Assuntos
Antineoplásicos/química , Proteínas Recombinantes/metabolismo , Ribonucleases/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Actinas/metabolismo , Sequência de Aminoácidos , Animais , Carcinogênese , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Núcleo Celular/metabolismo , Cromatografia de Afinidade , Citosol/metabolismo , Epitopos/metabolismo , Feminino , Glicosilação , Heparitina Sulfato/química , Células Endoteliais da Veia Umbilical Humana , Humanos , Camundongos , Camundongos Nus , Dados de Sequência Molecular , Transplante de Neoplasias , Neoplasias/imunologia , Neoplasias/patologia , Neovascularização Patológica , Desnaturação Proteica , Dobramento de Proteína , Ribonuclease Pancreático/metabolismo
11.
Bioengineered ; 5(1): 49-52, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-23941988

RESUMO

Consequential to its essential role as a mechanical support and affinity regulator in extracellular matrices, collagen constitutes a highly sought after scaffolding material for regeneration and healing applications. However, substantiated concerns have been raised with regard to quality and safety of animal tissue-extracted collagen, particularly in relation to its immunogenicity, risk of disease transmission and overall quality and consistency. In parallel, contamination with undesirable cellular factors can significantly impair its bioactivity, vis-a-vis its impact on cell recruitment, proliferation and differentiation. High-scale production of recombinant human collagen Type I (rhCOL1) in the tobacco plant provides a source of an homogenic, heterotrimeric, thermally stable "virgin" collagen which self assembles to fine homogenous fibrils displaying intact binding sites and has been applied to form numerous functional scaffolds for tissue engineering and regenerative medicine. In addition, rhCOL1 can form liquid crystal structures, yielding a well-organized and mechanically strong membrane, two properties indispensable to extracellular matrix (ECM) mimicry. Overall, the shortcomings of animal- and cadaver-derived collagens arising from their source diversity and recycled nature are fully overcome in the plant setting, constituting a collagen source ideal for tissue engineering and regenerative medicine applications.


Assuntos
Colágeno Tipo I/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Plantas/metabolismo , Proteínas Recombinantes/metabolismo , Humanos
12.
Tissue Eng Part A ; 19(13-14): 1502-6, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23368756

RESUMO

Collagen is a key component of the extracellular matrix, and by far the most prominent constituent of all load-bearing tissues. Its abundance and self-assembly capacities render it a practical scaffold material for tissue repair and regeneration applications. However, some difficulties exist in artificially regenerating functional collagen structures to match native tissues and their respective performances. There are two major limitations of existing collagen-based scaffolds: The first one is poor mechanical performance, and the second one is the failure to closely mimic natural tissues as to provide the necessary topographic and mechanical cues required for cell propagation and differentiation. The complexity of inducing sufficient order and alignment stands at the base of the impediments to successful formation of artificial collagen scaffolds, which closely match native tissue strength and morphology. Recombinant human collagen produced in transgenic tobacco plants has the capacity of forming highly concentrated liquid crystalline dope that can be aligned by application of shear force. Leveraging shear alignment of liquid crystalline recombinant human collagen opens new possibilities toward obtaining scaffolds that may be able to provide the necessary mechanical support, while closely mimicking the molecular signals and mechanical cues displayed to natural cell milieu. Such scaffolds may prove advantageous in the development of improved medical devices in fields, such as ophthalmology, neurology, and orthopedics.


Assuntos
Colágeno/metabolismo , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Colágeno/química , Colágeno/genética , Matriz Extracelular/química , Humanos , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
13.
Tissue Eng Part A ; 19(13-14): 1527-33, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23252967

RESUMO

As a central element of the extracellular matrix, collagen is intimately involved in tissue development, remodeling, and repair and confers high tensile strength to tissues. Numerous medical applications, particularly, wound healing, cell therapy, bone reconstruction, and cosmetic technologies, rely on its supportive and healing qualities. Its synthesis and assembly require a multitude of genes and post-translational modifications, where even minor deviations can be deleterious or even fatal. Historically, collagen was always extracted from animal and human cadaver sources, but bare risk of contamination and allergenicity and was subjected to harsh purification conditions resulting in irreversible modifications impeding its biofunctionality. In parallel, the highly complex and stringent post-translational processing of collagen, prerequisite of its viability and proper functioning, sets significant limitations on recombinant expression systems. A tobacco plant expression platform has been recruited to effectively express human collagen, along with three modifying enzymes, critical to collagen maturation. The plant extracted recombinant human collagen type I forms thermally stable helical structures, fibrillates, and demonstrates bioactivity resembling that of native collagen. Deployment of the highly versatile plant-based biofactory can be leveraged toward mass, rapid, and low-cost production of a wide variety of recombinant proteins. As in the case of collagen, proper planning can bypass plant-related limitations, to yield products structurally and functionally identical to their native counterparts.


Assuntos
Colágeno Tipo I/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Plantas/metabolismo , Proteínas Recombinantes/metabolismo , Colágeno Tipo I/genética , Humanos , Plantas/genética , Plantas Geneticamente Modificadas/genética , Proteínas Recombinantes/genética , Nicotiana/genética , Nicotiana/metabolismo
14.
Tissue Eng Part A ; 19(13-14): 1519-26, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23259631

RESUMO

Chronic wounds, particularly diabetic ulcers, represent a main public health concern with significant costs. Ulcers often harbor an additional obstacle in the form of tunneled or undermined wounds, requiring treatments that can reach the entire wound tunnel, because bioengineered grafts are typically available only in a sheet form. While collagen is considered a suitable biodegradable scaffold material, it is usually extracted from animal and human cadaveric sources, and accompanied by potential allergic and infectious risks. The purpose of this study was to test the performance of a flowable gel made of human recombinant type I collagen (rhCollagen) produced in transgenic tobacco plants, indicated for the treatment of acute, chronic, and tunneled wounds. The performance of the rhCollagen flowable gel was tested in an acute full-thickness cutaneous wound-healing rat model and compared to saline treatment and two commercial flowable gel control products made of bovine collagen and cadaver human skin collagen. When compared to the three control groups, the rhCollagen-based gel accelerated wound closure and triggered a significant jumpstart to the healing process, accompanied by enhanced re-epithelialization. In a cutaneous full-thickness wound pig model, the rhCollagen-based flowable gel induced accelerated wound healing compared to a commercial product made of bovine tendon collagen. By day 21 post-treatment, 95% wound closure was observed with the rhCollagen product compared to 68% closure in wounds treated with the reference product. Moreover, rhCollagen treatment induced an early angiogenic response and induced a significantly lower inflammatory response than in the control group. In summary, rhCollagen flowable gel proved to be efficacious in animal wound models and is expected to be capable of reducing the healing time of human wounds.


Assuntos
Colágeno/metabolismo , Plantas/química , Cicatrização/fisiologia , Animais , Bovinos , Colágeno/química , Colágeno/genética , Humanos , Ratos , Proteínas Recombinantes , Pele , Suínos
15.
J Med Chem ; 55(3): 1013-20, 2012 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-22216760

RESUMO

ACTIBIND and its human homologue RNASET2 are T2 ribonucleases (RNases). RNases are ubiquitous and efficient enzymes that hydrolyze RNA to 3' mononucleotides and also possess antitumorigenic and antiangiogenic activities. Previously, we have shown that ACTIBIND and RNASET2 bind actin and interfere with the cytoskeletal network structure, thereby inhibiting cell motility and invasiveness in cancer and in endothelial cells. We also showed that ACTIBIND binds actin in a molar ratio of 1:2. Here, we further characterize ACTIBIND and determine its crystal structure at 1.8 Å resolution, which enables us to propose two structural elements that create binding sites to actin. We suggest that each of these binding sites is composed of one cysteine residue and one conserved amino acid region. These binding sites possibly interfere with the cytoskeleton network structure and as such may be responsible for the antitumorigenic and antiangiogenic activities of ACTIBIND and its human analogue RNASET2.


Assuntos
Inibidores da Angiogênese/química , Aspergillus niger/química , Proteínas de Bactérias/química , Glicoproteínas/química , Modelos Moleculares , Ribonucleases/química , Actinas/química , Sequência de Aminoácidos , Inibidores da Angiogênese/isolamento & purificação , Inibidores da Angiogênese/farmacologia , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/farmacologia , Sítios de Ligação , Cristalografia por Raios X , Glicoproteínas/isolamento & purificação , Glicoproteínas/farmacologia , Glicosilação , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Dados de Sequência Molecular , Conformação Proteica , Ribonucleases/isolamento & purificação , Ribonucleases/farmacologia , Alinhamento de Sequência , Proteínas Supressoras de Tumor/química
16.
J Immunol ; 186(2): 1240-7, 2011 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-21169552

RESUMO

Grass and mite allergens are of the main causes of allergy and asthma. A carbohydrate-binding module (CBM) represents a common motif to groups I (ß-expansin) and II/III (expansin-like) grass allergens and is suggested to mediate allergen-IgE binding. House dust mite group II allergen (Der p 2 and Der f 2) structures bear strong similarity to expansin's CBM, suggesting their ability to bind carbohydrates. Thus, this study proposes the design of a carbohydrate-based treatment in which allergen binding to carbohydrate particles will promote allergen airway clearance and prevent allergic reactions. The aim of the study was to identify a polysaccharide with high allergen-binding capacities and to explore its ability to prevent allergy. Oxidized cellulose (OC) demonstrated allergen-binding capacities toward grass and mite allergens that surpassed those of any other polysaccharide examined in this study. Furthermore, inhalant preparations of OC microparticles attenuated allergic lung inflammation in rye grass-sensitized Brown Norway rats and OVA-sensitized BALB/c mice. Fluorescently labeled OC efficiently cleared from the mouse airways and body organs. Moreover, long-term administration of OC inhalant to Wistar rats did not result in toxicity. In conclusion, many allergens, such as grass and dust mite, contain a common CBM motif. OC demonstrates a strong and relatively specific allergen-binding capacity to CBM-containing allergens. OC's ability to attenuate allergic inflammation, together with its documented safety record, forms a firm basis for its application as an alternative treatment for prevention and relief of allergy and asthma.


Assuntos
Alérgenos/metabolismo , Metabolismo dos Carboidratos/imunologia , Celulose/metabolismo , Pólen/metabolismo , Hipersensibilidade Respiratória/imunologia , Hipersensibilidade Respiratória/metabolismo , Alérgenos/imunologia , Animais , Antígenos de Dermatophagoides/imunologia , Antígenos de Dermatophagoides/metabolismo , Proteínas de Artrópodes , Celulose/administração & dosagem , Celulose/imunologia , Cisteína Endopeptidases , Feminino , Lolium/imunologia , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Oxirredução , Pólen/imunologia , Ligação Proteica/imunologia , Pyroglyphidae/imunologia , Pyroglyphidae/metabolismo , Ratos , Ratos Endogâmicos BN , Ratos Wistar , Hipersensibilidade Respiratória/patologia
17.
Planta ; 232(1): 179-86, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20390295

RESUMO

Sprouting of potatoes during storage, due to tuber dormancy release, is associated with weight loss and softening. Sprout-preventing chemicals, such as chlorpropham (CIPC), can negatively impact the environment and human health. Monthly thermal fogging with mint (Mentha spicata L.) essential oil (MEO) inhibited sprouting in eight potato cultivars during large-volume 6-month storage: the tubers remained firm with 38% lower weight loss after 140 days of storage. The sprout-inhibitory action may be nullified: treated tubers washed with water resumed sprouting within days, with reduced apical dominance. MEO application caused local necrosis of the bud meristem, and a few weeks later, axillary bud (AX) growth was induced in the same sprouting eye. MEO components analysis showed that 73% of its content is the monoterpene R-carvone. Tubers treated with synthetic R-carvone in equivalent dose, 4.5 microl l(-1), showed an inhibitory effect similar to that of MEO. Surprisingly, 0.5 microl l(-1) of MEO or synthetic R-carvone catalyzed AX sprouting in the tuber. To the best of our knowledge, this is the first report of an essential oil vapor inducing early sprouting of potato tubers. R-carvone caused visible damage to the meristem membrane at sprout-inhibiting, but not sprout-inducing doses, suggesting different underlying mechanisms. After 5 days' exposure to R-carvone, its derivatives transcarveol and neo-dihydrocarveol were found in buds of tubers treated with the inhibitory dose, suggesting biodegradation. These experiments demonstrate the potential of MEO vapor as an environmentally friendly alternative to CIPC in stored potatoes and as a research tool for the control of sprouting in plants.


Assuntos
Mentha spicata/química , Meristema/efeitos dos fármacos , Óleos Voláteis/farmacologia , Solanum tuberosum/efeitos dos fármacos , Solanum tuberosum/crescimento & desenvolvimento , Volatilização
18.
Mol Plant ; 2(5): 893-903, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19825666

RESUMO

In response to environmental variation, angiosperm trees bend their stems by forming tension wood, which consists of a cellulose-rich G (gelatinous)-layer in the walls of fiber cells and generates abnormal tensile stress in the secondary xylem. We produced transgenic poplar plants overexpressing several endoglycanases to reduce each specific polysaccharide in the cell wall, as the secondary xylem consists of primary and secondary wall layers. When placed horizontally, the basal regions of stems of transgenic poplars overexpressing xyloglucanase alone could not bend upward due to low strain in the tension side of the xylem. In the wild-type plants, xyloglucan was found in the inner surface of G-layers during multiple layering. In situ xyloglucan endotransglucosylase (XET) activity showed that the incorporation of whole xyloglucan, potentially for wall tightening, began at the inner surface layers S1 and S2 and was retained throughout G-layer development, while the incorporation of xyloglucan heptasaccharide (XXXG) for wall loosening occurred in the primary wall of the expanding zone. We propose that the xyloglucan network is reinforced by XET to form a further connection between wall-bound and secreted xyloglucans in order to withstand the tensile stress created within the cellulose G-layer microfibrils.


Assuntos
Glucanos/metabolismo , Caules de Planta/metabolismo , Populus/metabolismo , Populus/fisiologia , Resistência à Tração/fisiologia , Árvores/metabolismo , Árvores/fisiologia , Xilanos/metabolismo , Parede Celular/metabolismo , Glicosiltransferases/metabolismo , Programas de Rastreamento , Microscopia de Polarização , Caules de Planta/fisiologia , Plantas Geneticamente Modificadas/metabolismo , Plantas Geneticamente Modificadas/fisiologia , Xilema/metabolismo
19.
Biomacromolecules ; 10(9): 2640-5, 2009 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-19678700

RESUMO

Collagen's biocompatibility, biodegradability and low immunogenicity render it advantageous for extensive application in pharmaceutical or biotechnological disciplines. However, typical collagen extraction from animal or cadaver sources harbors risks including allergenicity and potential sample contamination with pathogens. In this work, two human genes encoding recombinant heterotrimeric collagen type I (rhCOL1) were successfully coexpressed in tobacco plants with the human prolyl-4-hydroxylase (P4H) and lysyl hydroxylase 3 (LH3) enzymes, responsible for key posttranslational modifications of collagen. Plants coexpressing all five vacuole-targeted proteins generated intact procollagen yields of approximately 2% of the extracted total soluble proteins. Plant-extracted rhCOL1 formed thermally stable triple helical structures and demonstrated biofunctionality similar to human tissue-derived collagen supporting binding and proliferation of adult peripheral blood-derived endothelial progenitor-like cells. Through a simple, safe and scalable method of rhCOL1 production and purification from tobacco plants, this work broadens the potential applications of human recombinant collagen in regenerative medicine.


Assuntos
Colágeno Tipo I/genética , Colágeno Tipo I/biossíntese , Colágeno Tipo I/metabolismo , Humanos , Plantas Geneticamente Modificadas , Pró-Colágeno-Lisina 2-Oxoglutarato 5-Dioxigenase/biossíntese , Pró-Colágeno-Lisina 2-Oxoglutarato 5-Dioxigenase/genética , Pró-Colágeno-Lisina 2-Oxoglutarato 5-Dioxigenase/metabolismo , Pró-Colágeno-Prolina Dioxigenase/biossíntese , Pró-Colágeno-Prolina Dioxigenase/genética , Pró-Colágeno-Prolina Dioxigenase/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas Recombinantes , Nicotiana/genética
20.
Artigo em Inglês | MEDLINE | ID: mdl-17671376

RESUMO

ACTIBIND is a T2 RNase extracellular glycoprotein produced by the mould Aspergillus niger B1 (CMI CC 324626) that possesses anticarcinogenic and antiangiogenic activities. ACTIBIND was found to be an actin-binding protein that interacts with rabbit muscle actin in a 1:2 molar ratio (ACTIBIND:actin) with a binding constant of 16.17 x 10(4) M(-1). Autoclave-treated ACTIBIND (EI-ACTIBIND) lost its RNase activity, but its actin-binding ability was conserved. ACTIBIND crystals were grown using 20% PEG 3350, 0.2 M ammonium dihydrogen phosphate solution at room temperature (293 K). One to four single crystals appeared in each droplet within a few days and grew to approximate dimensions of 0.5 x 0.5 x 0.5 mm after about two weeks. Diffraction studies of these crystals at low temperature (100 K) indicated that they belong to the P3(1)21 space group, with unit-cell parameters a = 78, b = 78, c = 104 A.


Assuntos
Inibidores da Angiogênese/química , Inibidores da Angiogênese/metabolismo , Anticarcinógenos/química , Anticarcinógenos/metabolismo , Endorribonucleases/química , Endorribonucleases/metabolismo , Cristalografia por Raios X , Ligação Proteica/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA