Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Cell Mol Med ; 28(13): e18527, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38984969

RESUMO

Infected bone defects (IBDs) are the common condition in the clinical practice of orthopaedics. Although surgery and anti-infective medicine are the firstly chosen treatments, in many cases, patients experience a prolonged bone union process after anti-infective treatment. Epimedium-Curculigo herb pair (ECP) has been proved to be effective for bone repair. However, the mechanisms of ECP in IBDs are insufficiency. In this study, Effect of ECP in IBDs was verified by micro-CT and histological examination. Qualitative and quantitative analysis of the main components in ECP containing medicated serum (ECP-CS) were performed. The network pharmacological approaches were then applied to predict potential pathways for ECP associated with bone repair. In addition, the mechanism of ECP regulating LncRNA MALAT1/miRNA-34a-5p/SMAD2 signalling axis was evaluated by molecular biology experiments. In vivo experiments indicated that ECP could significantly promote bone repair. The results of the chemical components analysis and the pathway identification revealed that TGF-ß signalling pathway was related to ECP. The results of in vitro experiments indicated that ECP-CS could reverse the damage caused by LPS through inhibiting the expressions of LncRNA MALAT1 and SMAD2, and improving the expressions of miR-34a-5p, ALP, RUNX2 and Collagen type І in osteoblasts significantly. This research showed that ECP could regulate the TGF-ß/SMADs signalling pathway to promote bone repair. Meanwhile, ECP could alleviate LPS-induced bone loss by modulating the signalling axis of LncRNA MALAT1/miRNA-34a-5p/ SMAD2 in IBDs.


Assuntos
Epimedium , MicroRNAs , Osteoblastos , RNA Longo não Codificante , Transdução de Sinais , Proteína Smad2 , MicroRNAs/genética , MicroRNAs/metabolismo , Osteoblastos/metabolismo , Osteoblastos/efeitos dos fármacos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Animais , Proteína Smad2/metabolismo , Proteína Smad2/genética , Camundongos , Epimedium/química , Transdução de Sinais/efeitos dos fármacos , Masculino , Regeneração Óssea/efeitos dos fármacos , Humanos , Regulação da Expressão Gênica/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Osteogênese/genética
2.
Sci Rep ; 14(1): 13441, 2024 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862780

RESUMO

The present study aims to explore the etiology of Diabetic osteoporosis (DOP), a chronic complication associated with diabetes mellitus. Specifically, the research seeks to identify potential miRNA biomarkers of DOP and investigated role in regulating osteoblasts. To achieve this, an animal model of DOP was established through the administration of a high-sugar and high-fat diet, and then injection of streptozotocin. Bone microarchitecture and histopathology analysis were analyzed. Rat calvarial osteoblasts (ROBs) were stimulated with high glucose (HG). MiRNA profiles of the stimulated osteoblasts were compared to control osteoblasts using sequencing. Proliferation and mineralization abilities were assessed using MTT assay, alkaline phosphatase, and alizarin red staining. Expression levels of OGN, Runx2, and ALP were determined through qRT-PCR and Western blot. MiRNA-sequencing results revealed increased miRNA-702-5p levels. Luciferase reporter gene was utilized to study the correlation between miR-702-5p and OGN. High glucose impaired cell proliferation and mineralization in vitro by inhibiting OGN, Runx2, and ALP expressions. Interference with miR-702-5p decreased OGN, Runx2, and ALP levels, which were restored by OGN overexpression. Additionally, downregulation of OGN and Runx2 in DOP rat femurs was confirmed. Therefore, the miRNA-702-5p/OGN/Runx2 signaling axis may play a role in DOP, and could be diagnostic biomarker and therapeutic target for not only DOP but also other forms of osteoporosis.


Assuntos
Glucose , MicroRNAs , Osteoblastos , Osteoporose , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Osteoblastos/metabolismo , Osteoporose/genética , Osteoporose/metabolismo , Osteoporose/patologia , Osteoporose/etiologia , Ratos , Glucose/metabolismo , Glucose/farmacologia , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Proliferação de Células , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/genética , Masculino , Ratos Sprague-Dawley
3.
J Ethnopharmacol ; 319(Pt 3): 117329, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37879510

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Bone defects are difficult to treat and have a high incidence of nonunion. The Epimedii folium-Rhizoma drynariae herbal pair (EDP) is a traditional Chinese medicine (TCM) used for treating bone diseases. However, the mechanisms by which EDP promotes osteogenesis or bone formation remain largely unclear. AIM OF THE STUDY: This study aimed to investigate the mechanism of EDP promoted bone formation in bone defects using network pharmacology and experiments. MATERIALS AND METHODS: The chemical components of EDP were analyzed by UHPLC-MS. The hub target and pathway enrichment analysis was conducted using molecular docking or network pharmacology. The pharmacological actions of EDP were determined by µCT and histopathology examination using a bone defect rat model. The effects of EDP on the mRNA expression of Bmp2, Smad2/5, Runx2, and Alp genes were measured by RT-PCR, while changes in the protein expressions of BMP2, COL1A1, SPP1, ALP, and RUNX2in the tibia tissues of the rats in response to EDP were analyzed by immunohistochemical staining or Western blot. We also performed cell viability assays, Alizarin Red and ALP staining assays, and RT-PCR to better understand how EDP affected osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). RESULTS: Identified 14 key compounds and 47 hub targets of EDP that may be involved in promoting osteogenesis to repair bone defects. And the BMP/Smad/Runx2 pathway was likely the key pathway through which EDP promoted bone defects repairing. The results of in vivo rat experiments indicated that EDP effectively promoted tibia repair in the model rats and activated the BMP/Smad/Runx2 pathway in the tibia tissue, with upregulating Bmp2, Bmpr1α, Smad2/5, Runx2, and Alp genes, and increased the protein expression of BMP2, COL1A1, RUNX2, and ALP. In vitro, EDP was found to increase the proliferation, differentiation, and mineralization in BMSCs- and also up-regulated the expression of key genes in the BMP/Smad/Runx2 pathway. CONCLUSION: This study highlighted the ability of EDP to promote the osteogenic differentiation to enable bone repair by activating the BMP/Smad/Runx2 pathway.


Assuntos
Subunidade alfa 1 de Fator de Ligação ao Core , Osteogênese , Ratos , Animais , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Farmacologia em Rede , Simulação de Acoplamento Molecular , Células Cultivadas , Diferenciação Celular
4.
Cell Biol Int ; 46(12): 2220-2231, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36168858

RESUMO

Diabetic osteoporosis (DOP) is a disorder of bone metabolism induced by multiple mechanisms. Previous studies have revealed that microRNAs (miRNAs) play crucial roles in bone metabolism. MiRNA-144-5p has been proven to participate in the regulation of osteoblast activities; however, its specific mechanism in DOP has not been elucidated. This study investigated whether high glucose (HG) inhibited osteoblasts by regulating miRNA-144-5p. Our results showed that HG inhibited bone formation not only in vivo but also in vitro. We observed that HG severely hindered the migration, proliferation and mineralization of osteoblasts, while miRNA-144-5p was upregulated by way of the cell counting kit-8 assay, wound healing assay, alkaline phosphatase (ALP) activity assay and alizarin red staining. Double luciferase reporter experiments showed that miRNA-144-5p directly targeted insulin receptor substrate 1 (IRS1). The IRS1/AKT signaling pathway is closely related to osteoblasts' migration, proliferation, and mineralization. Silencing miRNA-144-5p promoted the mRNA, and protein expression of IRS1, thereby letting the expression of total AKT down, and then preventing phosphorylation of AKT into the nucleus to regulate migration, proliferation, and mineralization genes of osteoblasts. In conclusion, this study indicated that HG regulated the migration, proliferation, and mineralization of osteoblasts via the miRNA-144-5p/IRS1/AKT axis, which suggested a possible mechanism for DOP pathology.


Assuntos
Diabetes Mellitus , MicroRNAs , Osteoporose , Humanos , Proteínas Substratos do Receptor de Insulina/genética , Proteínas Substratos do Receptor de Insulina/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Diferenciação Celular/genética , Osteoblastos/metabolismo , Osteoporose/genética , Osteoporose/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Proliferação de Células/genética , Diabetes Mellitus/metabolismo
5.
Phytomedicine ; 96: 153852, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35026508

RESUMO

BACKGROUND: Sanghuangporus vaninii, a large precious medicinal fungus called Sanghuang in China, has significant antitumor activity. We previously reported that a Sanghuangporus vaninii extract could lead to apoptosis in HT-29 cells through the intrinsic apoptotic pathway. We further found that Inoscavin A exhibited anti-colon cancer activity, but its specific mechanisms have not been fully elucidated. METHODS: Inoscavin A was obtained from Sanghuangporus vaninii by the classic phytochemical separation technology. The male BALB/c nude mice were injected with HT-29 colon cancer cells as animal model. In order to observe the pathological changes of tumor section, the hematoxylin-eosin(H&E) staining was applied in the histological analysis. Metabolomics was utilized for the investigation of the overall changes of serum metabolites in animal model, and the potential targets of Inoscavin A were analyzed by Ingenuity Pathway Analysis (IPA). We further employed a molecular docking approach to predict the degree of combination of Inoscavin A and Smo. Then we further performed Western blotting and immunofluorescence analysis to investigate the expression of proteins involved in Hh-related pathways in tumor tissues. In addition, the colony formation assay, scratch-wound assay and transwell migration and invasion assay were conducted to evaluate the anti-colon-cancer activity of Inoscavin A. Concurrently, the mitochondrial membrane potential assay and TUNEL apoptosis assay were detected to demonstrate the effect of Inoscavin A on promoting HT-29 cells apoptosis. Western blot experiments verified the anti-tumor effects of Inoscavin A were modulated the protein expression of Shh, Ptch1, Smo and Gli1 in HT-29 cells. RESULTS: We showed that Inoscavin A, a pyrone compound isolated from the Sanghuangporus vaninii extract, exerted its antitumor activity in an HT-29 colon cancer cell xenograft mouse model. Subsequently, we first time prove that the antitumor effects of Inoscavin A were related to the hedgehog (Hh) signaling pathway. Furthermore, we demonstrated that Smo, the core receptor of the Hh pathway, was critical for the induction of apoptosis of Inoscavin A and that overexpression of this target could significantly rescue cell apoptosis induced by Inoscavin A treatment. CONCLUSION: Thus, our studies first propose that the natural outgrowth Inoscavin A exerted its anti-cancer effects by inhibiting Smo to suppress the activity of the Hh pathway though inhibiting cell proliferation and promoting apoptosis. These findings further indicate that Inoscavin A will be expected to be a prospective remedical compound for the treatment of colon cancer.


Assuntos
Neoplasias do Colo , Proteínas Hedgehog , Animais , Apoptose , Basidiomycota , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias do Colo/tratamento farmacológico , Masculino , Camundongos , Camundongos Nus , Simulação de Acoplamento Molecular , Extratos Vegetais/farmacologia , Estudos Prospectivos , Pironas , Transdução de Sinais , Proteína GLI1 em Dedos de Zinco/metabolismo
6.
Se Pu ; 40(2): 139-147, 2022 Feb 08.
Artigo em Chinês | MEDLINE | ID: mdl-35080160

RESUMO

Nowadays, anesthetics are widely used in fishery production processes, such as fish breeding, surgery, and fresh aquatic product transportation. Because of the widespread application of anesthetic drugs in aquatic products, there is an increasing demand for the rapid and sensitive detection of anesthetic drugs in aquatic products. The complex aquatic product matrix contains a variety of interfering substances, such as proteins, fats, and phospholipids, along with anesthetic drug residues at very low concentrations; therefore, it is necessary to adopt appropriate pretreatment methods for improving the sensitivity of detection. In this study, a dispersive solid-phase extraction (DSPE) method, combined with high-performance liquid chromatography, was established for the simultaneous detection of seven anesthetic drugs in aquatic products, viz. procaine, oxybuprocaine, tricaine, eugenol, methyl eugenol, isoeugenol, and methyl isoeugenol. For the DSPE step, pretreatment conditions, such as extraction solvent, extraction time, adsorbent amount, and DMSO dosage, were optimized. Sample pretreatment is a three-step process. First, in ultrasound-assisted extraction, 2.0 g samples were extracted using 10.0 mL 1.0% formic acid in acetonitrile under ultrasound conditions for 10 min. Then, DSPE was performed with mixed adsorbents: the solvent extracts were cleaned using 20 mg poly(styrene-glycidylmethacrylate) microspheres (PS-GMA), 50 mg primary secondary amines (PSA), and 10 mg C18, followed by separation by centrifugation. Finally, DMSO-assisted concentration was applied: the organic layer was collected and was dried at 40 ℃ in a N2 stream with 100 µL DMSO. Water was added to the residue to obtain a final volume of 1.0 mL for HPLC analysis. The seven anesthetic drugs were separated on a Welch welchrom C18 column (250 mm×4.6 mm, 5 µm) by gradient elution using methanol and 0.05% formic acid in 5 mmol/L ammonium acetate aqueous solution as mobile phases. The detection wavelengths were 235, 260, and 290 nm. Two matrix matching standard curves for fish and shrimp were applied for quantitative analysis. Under optimized conditions, the seven target anesthetics showed good linear relationships in their respective concentration ranges (R2>0.999), with the limit of detection (LOD) ranging from 0.011 to 0.043 mg/kg. In fish samples, the mean recoveries obtained at three concentration levels were between 79.7% and 109%, with relative standard deviations (RSDs) being less than 7.2%. In shrimp samples, mean recoveries were 78.0%-99.9%, with RSDs being less than 8.3%. This simple, rapid, accurate, and sensitive method can be applied to the detection of three kinds of aminobenzoic acid esters and four kinds of eugenol anesthetic drugs in aquatic products.


Assuntos
Anestésicos , Resíduos de Drogas , Animais , Cromatografia Líquida de Alta Pressão , Resíduos de Drogas/análise , Extração em Fase Sólida , Espectrometria de Massas em Tandem
7.
Phytomedicine ; 75: 153247, 2020 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-32502823

RESUMO

BACKGROUND: Advanced glycation end products (AGEs) deposition causes inflammatory injury in osteoblasts and contributes to diabetic osteoporosis. The receptor for advanced glycation end product/mitogen-activated protein kinase pathway (RAGE/MAPK) signaling pathway is closely linked to the pathogenesis of diabetic osteoporosis. Timosaponin AIII, a steroidal saponin isolated from Anemarrhena asphodeloides Bunge (Asparagaceae), shows anti-inflammatory and anti-osteoporosis effects. PURPOSE: The present study was aimed to investigate the therapeutic effects of timosaponin AIII on diabetic osteoporosis and whether its effect is dependent on protecting osteoblasts against AGEs-induced injury via RAGE/MAPK signaling suppression. METHODS: An alloxan-induced diabetic osteoporosis zebrafish model was applied to investigate the effects of timosaponin AIII in vivo, and alendronate was used as a positive control. Moreover, related mechanisms were explored in primary rat osteoblasts. Molecular docking was applied to investigate the interactions between timosaponin AIII and RAGE. RESULTS: Timosaponin AIII treatment reversed alloxan-induced reduction in the mineralized area of the larvae head skeleton, accompanied by a decreased level of triglyceride and total cholesterol in the zebrafish. Additionally, AGEs significantly influenced RAGE expression, alkaline phosphatase activity, interleukin 1ß expression, interleukin 6 expression, and tumor necrosis factor-α expression, and increased cell apoptosis. Timosaponin AIII significantly downregulated AGEs-induced interleukin 1ß, interleukin 6, and tumor necrosis factor-α levels, and upregulated alkaline phosphatase and osteocalcin levels. Timosaponin AIII also significantly reduced the expression of RAGE and had additive effects on downstream P38, extracellular signal-regulated kinase and c-Jun N-terminal kinase in AGEs-induced osteoblast. Molecular docking predicted that hydrogen and hydrophobic interactions occurred between timosaponin AIII and RAGE. CONCLUSION: These data clarified that timosaponin AIII attenuates diabetic osteoporosis via a novel mechanism involved suppressing the RAGE/MAPK signaling pathway. Our finding highlights the potential value of timosaponin AIII as an anti-diabetic osteoporosis agent.

8.
Front Pharmacol ; 10: 988, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31551787

RESUMO

Erxian decoction (EXD), a traditional Chinese medicine formula, has been used for treatment of osteoporosis for many years. The purpose of this study was to investigate the pharmacological effect of EXD in preventing osteoblast apoptosis and the underlying mechanism of prevention. Putative targets of EXD were predicted by network pharmacology, and functional and pathway enrichment analyses were also performed. Evaluations of bone mineral density, serum estradiol level, trabecular area fraction, serum calcium levels, and tumor necrosis factor (TNF)-α levels in ovariectomized rats, as well as cell proliferation assays, apoptosis assays, and western blotting in MC3T3-E1 osteoblasts were performed for further experimental validation. Ninety-three active ingredients in the EXD formula and 259 potential targets were identified. Functional and pathway enrichment analyses indicated that EXD significantly influenced the PI3K-Akt signaling pathway. In vivo experiments indicated that EXD treatment attenuated bone loss and decreased TNF-α levels in rats with osteoporosis. In vitro experiments showed that EXD treatment increased cell viability markedly and decreased levels of caspase-3 and the rate of apoptosis. It also promoted phosphorylation of Akt, nuclear translocation of transcription factor NF-erythroid 2-related factor (Nrf2), and hemeoxygenase-1 (HO-1) expression in TNF-α-induced MC3T3-E1 cells. Our results suggest that EXD exerted profound anti-osteoporosis effects, at least partially by reducing production of TNF-α and attenuating osteoblast apoptosis via Akt/Nrf2/HO-1 signaling pathway.

9.
Biomed Pharmacother ; 118: 109345, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31545266

RESUMO

Bone nonunion remains a challenge during the treatment of bone defect accompanied with infection. Epimedii herba is a widely used medicine in clinic to enhance bone healing. Epimedin C and icariin are the major flavonoid glycosides from Epimedii herba. Although the effects of these compounds have been reported, their different absorption and utilisation by osteoblasts remain unclear. In the present study, lipopolysaccharide (LPS)-induced osteoblast was adopted as the model cell to evaluate the effects of epimedin C and icariin. The intracellular and extracellular drug concentrations within 24 h were assayed by pipette tip solid-phase extraction and high-performance liquid chromatography, respectively. MTT, alkaline phosphatase (ALP) and calcified nodule staining were performed to identify and evaluate the effects of epimedin C and icariin on LPS-induced osteoblasts. The regulatory roles of epimedin C and icariin in the bone morphogenetic protein-2 (BMP-2)/Runt-related transcription factor 2 (Runx2) signalling pathway were investigated. The results revealed that epimedin C and icariin were not efficiently absorbed by LPS-induced osteoblasts. Nevertheless, they still had high utilisation efficiency after entering the cells. ALP activity, mineralisation and osteoblasts proliferation were enhanced by a high concentration of epimedin C and icariin. The suppressed expression of BMP-2 and Runx2 in LPS-induced osteoblasts was up-regulated significantly after treatment with epimedin C and icariin. These findings firstly illustrated the behavior of epimedin C and icariin from Epimedii herba on LPS-induced osteoblasts and the regulatory property on the expression of key genes and proteins of the BMP-2/Runx2 signalling pathway, which might be helpful for better understanding flavonoids' mechanism to enhance bone repair and improving their future application.


Assuntos
Proteína Morfogenética Óssea 2/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Flavonoides/metabolismo , Transdução de Sinais , Animais , Flavonoides/química , Flavonoides/farmacologia , Lipopolissacarídeos , Masculino , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Sprague-Dawley
10.
J Vis Exp ; (145)2019 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-30933056

RESUMO

Bone infection results from bacterial invasion, which is extremely difficult to treat in clinical, orthopedic, and traumatic surgery. The bone infection may result in sustained inflammation, osteomyelitis, and eventual bone non-union. Establishment of a feasible, reproducible animal model is important to bone infection research and antibiotic treatment. As an in vivo model, the rabbit model is widely used in bone infection research. However, previous studies on rabbit bone infection models showed that the infection status was inconsistent, as the amount of bacteria was variable. This study presents an improved surgical method for inducing bone infection on a rabbit, by blocking the bacteria in the bone marrow. Then, multi-level evaluations can be carried out to verify the modelling method. In general, debriding necrotic tissue and implantation of vancomycin-loaded calcium sulphate (VCS) are predominant in antibiotic treatment. Although calcium sulphate in VCS benefits osteocyte crawling and new bone growth, massive bone defects occur after debriding. Autogenous bone (AB) is an appealing strategy to overcome bone defects for the treatment of massive bone defects after debriding necrotic bone. In this study, we used the tail bone as an autogenous bone implanted in the bone defect. Bone repair was measured using micro-computed-tomography (micro-CT) and histological analysis after animal sacrifice. As a result, in the VCS group, bone non-union was consistently obtained. In contrast, the bone defect areas in the VCS-AB group were decreased significantly. The present modeling method described a reproducible, feasible, stable method to prepare a bone infection model. The VCS-AB treatment resulted in lower bone non-union rates after antibiotic treatment. The improved bone infection model and the combination treatment of VCS and autogenous bone could be helpful in studying the underlying mechanisms in bone infection and bone regeneration pertinent to traumatology orthopedic applications.


Assuntos
Doenças Ósseas/tratamento farmacológico , Osso e Ossos/patologia , Sulfato de Cálcio/uso terapêutico , Vancomicina/uso terapêutico , Animais , Doenças Ósseas/patologia , Osso e Ossos/efeitos dos fármacos , Sulfato de Cálcio/farmacologia , Modelos Animais de Doenças , Masculino , Coelhos , Vancomicina/farmacologia
11.
Front Pharmacol ; 10: 266, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30941044

RESUMO

Phellinus igniarius (P. igniarius) is a medicinal fungus that is widely used in East Asia for the adjuvant treatment of cancer. To elucidate the antitumor effective substances and mechanism of P. igniarius, we designed an approach incorporating cytotoxicity screening, phytochemical analysis, network pharmacology construction, and cellular and molecular experiments. The dichloromethane extract of P. igniarius (DCMPI) was identified as the active portion in HT-29 cells. Nineteen constituents were identified, and 5 were quantified by UPLC-ESI-Q/TOF-MS. Eight ingredients were obtained in the network pharmacology study. In total, 473 putative targets associated with DCMPI and 350 putative targets related to colon cancer were derived from online databases and target prediction tools. Protein-protein interaction networks of drug and disease putative targets were constructed, and 84 candidate targets were identified based on topological features. Pathway enrichment analysis showed that the candidate targets were mostly related to reactive oxygen species (ROS) metabolic processes and intrinsic apoptotic pathways. Then, a cellular experiment was used to validate the drug-target mechanisms predicted by the system pharmacology analysis. Experimental results showed that DCMPI increased intracellular ROS levels and induced HT-29 cell apoptosis. Molecular biology experiments indicated that DCMPI not only increased Bax and Bad protein expression and promoted PARP and caspase-3/9 cleavage but also down-regulated Bcl-2 and Bcl-xl protein levels to induce apoptosis in HT-29 cells. In conclusion, our study provides knowledge on the chemical composition and antitumor mechanism of P. igniarius, which may be exploited as a promising therapeutic option for colon cancer.

12.
Int J Biol Macromol ; 123: 157-166, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30439422

RESUMO

Polysaccharide from Phellinus igniarius (PPI) is known for its immune-regulating effect with low toxicity. Toll like receptor 4 (TLR4) is important in both innate and adaptive immune responses and considered to be a promising target for new immune adjuvants. In this study, PPI was investigated for its effect on activating TLR4 in RAW264.7 and peritoneal macrophages. The adjuvant potential of PPI was evaluated in OVA-immunized mice. The results showed PPI treatment significantly increased the secretion and the mRNA expression of both MyD88 dependent and TRIF dependent cytokines. IRAK-1, a key molecule on the downstream of MyD88, was polyubiquitinated while IRF-3, another key molecule on the downstream of TRIF, was phosphorylated obviously after the treatment of PPI. The phosphorylation of molecules involved in both NF-κB pathway and MAPK pathway were significantly up-regulated after PPI treatment. In addition, the effects of PPI on the macrophages almost completely disappeared after treating the cells with the TLR4 antagonist TAK-242. Further in vivo results showed PPI significantly increased the serum OVA-specific antibody and the OVA-specific spleen cell proliferation. Taken together, PPI can specifically stimulate TLR4 and activate both MyD88 and TRIF pathways. PPI has immune adjuvant activity and may become a new potential immune adjuvant.


Assuntos
Adjuvantes Imunológicos/farmacologia , Basidiomycota/metabolismo , Macrófagos/efeitos dos fármacos , Polissacarídeos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Animais , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Feminino , Fator Regulador 3 de Interferon/metabolismo , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fator 88 de Diferenciação Mieloide/metabolismo , NF-kappa B/metabolismo , Fosforilação/efeitos dos fármacos , Células RAW 264.7 , Sulfonamidas/farmacologia , Regulação para Cima/efeitos dos fármacos
13.
Artigo em Inglês | MEDLINE | ID: mdl-30448628

RESUMO

Cell membrane chromatography is a promising technique for screening active components from complex matrices. Unfortunately, the large consumption of cells and low resolutions of analytes limit the applications of this method. Herein, we report polyether ether ketone tube as a novel cellular membrane carrier for cell membrane chromatography. Its inner surface is firstly coated by polyvinyl alcohol and then cell membranes are physically adsorbed onto the polyvinyl alcohol layer. To verify this approach, osteoclast and osteoblast micro-column were prepared and characterized by calcitonin and verapamil, respectively. Comparing with common cell membrane chromatographic column, the micro-cell membrane chromatographic columns showed about 1000-fold decrease of cell consumption and satisfactory retention behavior. The developed column was applied to screen potential active components from Cortex Phellodendri Chinensis. A total of 18 components in Cortex Phellodendri Chinensis extract were observed as having retention property of osteoclast micro-cell membrane chromatographic column, while 10 components retained on osteoblast micro-cell membrane chromatographic column. The results of in vitro assay showed that berberine, obacunoic acid and phellodendrine had an obvious inhibitory effect on osteoclast differentiation and function. Berberine and tetrahydropalmatine increased the osteoblast proliferations and mineralized nodules density. This cell membrane/polyvinyl alcohol column can be applied to various biological chromatography models.


Assuntos
Membrana Celular/metabolismo , Cromatografia de Afinidade/métodos , Cetonas/química , Polietilenoglicóis/química , Álcool de Polivinil/química , Animais , Benzofenonas , Membrana Celular/química , Células Cultivadas , Avaliação Pré-Clínica de Medicamentos , Medicamentos de Ervas Chinesas/metabolismo , Camundongos , Osteoclastos/citologia , Polímeros , Células RAW 264.7
14.
Phytother Res ; 32(7): 1354-1363, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29575361

RESUMO

Chronic osteomyelitis is primarily caused by infection with Staphylococcus aureus (S. aureus). Antibiotics are commonly administered; however, it is a challenge to promote bone healing. The aim of this study was to investigate the in vitro effects of alkaloids from the herbal remedy Sophora flavescens (ASF) on rat calvarial osteoblasts (ROBs) infected with S. aureus and healthy osteoclasts. Cell proliferation and alkaline phosphatase, interleukin-6, and tumour necrosis factor-α activity was measured in infected ROBs; tartrate-resistant acid phosphatase was evaluated in osteoclasts via enzyme-linked immunosorbent assay. The mRNA and protein expression levels of bone morphogenetic protein 2, runt-related transcription factor 2, osteoprotegerin, and receptor activator of nuclear factor kappa-B ligand were assessed in infected ROBs through reverse transcription-polymerase chain reaction and western blotting analysis, respectively. Results indicated that ASF increased the viability of uninfected ROBs and infected ROBs treated with vancomycin via regulation of bone morphogenetic protein 2, runt-related transcription factor, osteoprotegerin, and receptor activator of nuclear factor kappa-B ligand mRNA and protein expression levels. In addition, the secretion of the inflammatory factor tumour necrosis factor-α was decreased and alkaline phosphatase activity was increased, inhibiting the viability of osteoclasts and tartrate-resistant acid phosphatase activity. Therefore, the herbal remedy ASF has potential as a new treatment for chronic osteomyelitis.


Assuntos
Alcaloides/uso terapêutico , Medicina Tradicional Chinesa/métodos , Osteoblastos/efeitos dos fármacos , Osteoclastos/efeitos dos fármacos , Osteomielite/diagnóstico , Sophora/metabolismo , Staphylococcus aureus/química , Alcaloides/farmacologia , Animais , Osteomielite/patologia , Ratos
15.
Med Sci Monit ; 23: 5113-5122, 2017 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-29074841

RESUMO

BACKGROUND Osteoporosis is a complex bone disorder with a genetic predisposition, and is a cause of health problems worldwide. In China, Curculigo orchioides (CO) has been widely used as a herbal medicine in the prevention and treatment of osteoporosis. However, research on the mechanism of action of CO is still lacking. The aim of this study was to identify the absorbable components, potential targets, and associated treatment pathways of CO using a network pharmacology approach. MATERIAL AND METHODS We explored the chemical components of CO and used the five main principles of drug absorption to identify absorbable components. Targets for the therapeutic actions of CO were obtained from the PharmMapper server database. Pathway enrichment analysis was performed using the Comparative Toxicogenomics Database (CTD). Cytoscape was used to visualize the multiple components-multiple target-multiple pathways-multiple disease network for CO. RESULTS We identified 77 chemical components of CO, of which 32 components could be absorbed in the blood. These potential active components of CO regulated 83 targets and affected 58 pathways. Data analysis showed that the genes for estrogen receptor alpha (ESR1) and beta (ESR2), and the gene for 11 beta-hydroxysteroid dehydrogenase type 1, or cortisone reductase (HSD11B1) were the main targets of CO. Endocrine regulatory factors and factors regulating calcium reabsorption, steroid hormone biosynthesis, and metabolic pathways were related to these main targets and to ten corresponding compounds. CONCLUSIONS The network pharmacology approach used in our study has attempted to explain the mechanisms for the effects of CO in the prevention and treatment of osteoporosis, and provides an alternative approach to the investigation of the effects of this complex compound.


Assuntos
Curculigo/química , Terapia de Alvo Molecular , Osteoporose/tratamento farmacológico , Compostos Fitoquímicos/uso terapêutico , Absorção Fisiológica , Humanos , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Fitoterapia , Reprodutibilidade dos Testes
16.
Mater Sci Eng C Mater Biol Appl ; 81: 206-212, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28887966

RESUMO

A core-shell structured nanocomposite of polypyrrole/mesoporous SiO2 (PPy/mSiO2) is rationally designed as the nanocarrier for methotrexate (MTX), a chemotherapeutic drug for cancer treatment. Graphene quantum dots (GQDs) are introduced to the outer surface of PPy/mSiO2, and it functions as a gatekeeper for the loaded MTX through the formation of H-bonds with the functionalized mSiO2. In the proposed nanocarrier for MTX, the mesopores in mSiO2 are beneficial for the accommodation of MTX, resulting in enhanced encapsulation capacity of the nanocarrier; on the other hand, PPy can effectively convert the near-infrared (NIR) light to heat. Under the irradiation of NIR light, the H-bonds between GQDs and mSiO2 are broken due to the gradually increased temperature, and therefore the GQDs cap is removed and consequently the encapsulated MTX is released from the nanocarrier. In this study, NIR irradiation-controlled drug delivery is achieved successfully owing to the synergistic effects of PPy, mSiO2 and GQDs, which opens a new window for the construction of smart drug delivery systems.


Assuntos
Nanocompostos , Antineoplásicos , Preparações de Ação Retardada , Grafite , Metotrexato , Polímeros , Pirróis , Pontos Quânticos , Dióxido de Silício
17.
Int J Biol Macromol ; 103: 248-253, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28526342

RESUMO

Hybrid aerogels of chitosan (CS), carboxymethyl cellulose (CMC) and graphene oxide (GO) are successfully prepared by using calcium ion (Ca2+) as the crosslinker. The resultant hybrid aerogels, CS/CMC/Ca2+/GO, are characterized by field emission scanning electron microscopy (FESEM) and Fourier transform infrared (FT-IR) spectroscopy. Due to the pH sensitivity of CS and CMC, pH-controlled drug delivery with CS/CMC/Ca2+/GO as the carrier is investigated using 5-fluorouracil (5-FU), an effective chemotherapeutic agent in the treatment of cancers, as the model drug. Finally, Higuchi model and Korsmeyer-Peppas model are used to study the release kinetics, and it reveals that the release of 5-FU from the hybrid aerogels is controlled by Fickian diffusion. Collectively, the findings demonstrate the CS/CMC/Ca2+/GO would be a potential material for the construction of pH-controlled drug delivery platform.


Assuntos
Carboximetilcelulose Sódica/química , Quitosana/química , Portadores de Fármacos/química , Grafite/química , Óxidos/química , Preparações de Ação Retardada , Fluoruracila/química , Géis , Concentração de Íons de Hidrogênio , Cinética
18.
Int J Nanomedicine ; 12: 1201-1214, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28243084

RESUMO

Surgery and the local placement of an antibiotic are the predominant therapies to treat chronic osteomyelitis. Vancomycin-loaded N-trimethyl chitosan nanoparticles (VCM/TMC NPs) as a potential drug delivery system have high intracellular penetration and effective intracellular antibacterial activity. This study investigated the effects of a biocompatible material, poly(trimethylene carbonate) (PTMC), to increase the sustained effectiveness of an intracellular antibiotic and its potential application in antibiotic delivery. VCM/TMC NP-PTMC was characterized using scanning electron microscopy and Fourier transform infrared spectroscopy to determine the morphology, stability and chemical interaction of the drug with the polymer. Further, the biodegradation, antibacterial activity, protein adsorption, cell proliferation and drug release characteristics were evaluated. In addition, a Staphylococcus aureus-induced osteomyelitis rabbit model was used to investigate the antibiotic activity and bone repair capability of VCM/TMC NP-PTMC. The results showed that the composite beads of VCM/TMC NPs followed a sustained and slow release pattern and had excellent antibacterial activity and a higher protein adsorption and cell proliferation rate than the VCM-PTMC in vitro. Furthermore, VCM/TMC NP-PTMC inhibits bacteria and promotes bone repair in vivo. Thus, VCM/TMC NP-PTMC might be beneficial in periodontal management to reduce the bacterial load at the infection site and promote bone repair.


Assuntos
Anti-Infecciosos/farmacologia , Dioxanos/química , Sistemas de Liberação de Medicamentos , Nanopartículas/química , Polímeros/química , Vancomicina/farmacologia , Adsorção , Animais , Antibacterianos/farmacologia , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/patologia , Proliferação de Células/efeitos dos fármacos , Liberação Controlada de Fármacos , Masculino , Testes de Sensibilidade Microbiana , Nanopartículas/ultraestrutura , Proteínas/química , Coelhos , Espectroscopia de Infravermelho com Transformada de Fourier , Staphylococcus aureus/efeitos dos fármacos , Vancomicina/química , Cicatrização/efeitos dos fármacos
19.
Int J Med Mushrooms ; 18(8): 699-711, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27910788

RESUMO

The medicinal willow bracket mushroom, Phellinus igniarius, is a species that has been reported to possess antibacterial, antioxidative, antitumor, antidiabetic, and antihyperlipidemia activities. The aim of this study was to elucidate the changes in endogenous metabolites after oral administration of a decoction of Ph. Igniarius. Ultraperformance liquid chromatography (UPLC)/electrospray ionization synapt high-definition mass spectrometry (ESI-HDMS) combined with pattern recognition approaches, including principal component analysis and orthogonal partial least squares discriminant analysis, were integrated to discover differentiating metabolites. The current metabolomics approach identified 16 ions (5 in the negative mode, 11 in the positive mode) as "differentiating metabolites". The results illustrated that Ph. Igniarius is likely to increase the biosynthesis and secretion of bile acids that provide hypolipidemic activity and showed that robust UPLC/ESI-HDMS techniques are promising for profiling analysis of medicinal mushroom metabolites.


Assuntos
Agaricales/química , Metaboloma/efeitos dos fármacos , Administração Oral , Animais , Cromatografia Líquida/métodos , Metabolismo dos Lipídeos , Masculino , Espectrometria de Massas/métodos , Ratos , Ratos Wistar
20.
Molecules ; 21(10)2016 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-27681718

RESUMO

Sanguis draconis, a resin known to improve blood circulation, relieve pain, stimulate tissue regeneration, and heal wounds, is widely used in clinical practice. In this study, we prepared an ethanol extract of sanguis draconis (EESD) containing 75.08 mg/g of dracorhodin. The experiment was carried out on 20 rats that were divided into two groups, a control group (n = 10) and an EESD group (n = 10). All the rats underwent a perforator flap surgery, after which post-operative abdominal compressions of EESD were given to the EESD group for seven days, while the control group received saline. Flap survival percentages were determined after seven days, and were found to be significantly higher in the EESD group than in the control group. Results of laser Doppler flowmetry (LDF) showed that perforator flaps in the EESD group had higher perfusion values than those of the control group. The flap tissues were stained with hematoxylin and eosin, followed by immunohistochemical evaluation. Superoxide dismutase (SOD) expression and micro-vessel development markedly increased in the EESD group, while malondialdehyde (MDA) levels decreased. This is the first study to investigate the effect of sanguis draconis on perforator flap survival. Our results demonstrate that sanguis draconis can improve perforator flap survival in rats by promoting microvessel regeneration and blood perfusion.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA