Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 277: 116330, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38636406

RESUMO

PIWI-interacting RNAs (piRNAs) is an emerging class of small non-coding RNAs that has been recently reported to have functions in infertility, tumorigenesis, and multiple diseases in humans. Previously, 5 toxicity pathways were proposed from hundreds of toxicological studies that underlie BaP-induced lung injuries, and a "Bottom-up" approach was established to identify small non-coding RNAs that drive BaP-induced pulmonary effects by investigating the activation of these pathways in vitro, and the expression of the candidate microRNAs were validated in tissues of patients with lung diseases from publications. Here in this study, we employed the "Bottom-up" approach to identifying the roles of piRNAs and further validated the mechanisms in vivo using mouse acute lung injury model. Specifically, by non-coding RNA profiling in in vitro BaP exposure, a total of 3 suppressed piRNAs that regulate 5 toxicity pathways were proposed, including piR-004153 targeting CYP1A1, FGFR1, ITGA5, IL6R, NGRF, and SDHA, piR-020326 targeting CDK6, and piR-020388 targeting RASD1. Animal experiments demonstrated that tail vein injection of respective formulated agomir-piRNAs prior to BaP exposure could all alleviate acute lung injury that was shown by histopathological and biochemical evidences. Immunohistochemical evaluation focusing on NF-kB and Bcl-2 levels showed that exogenous piRNAs protect against BaP-induced inflammation and apoptosis, which further support that the inhibition of the 3 piRNAs had an important impact on BaP-induced lung injuries. This mechanism-driven, endpoint-supported result once again confirmed the plausibility and efficiency of the approach integrating in silico, in vitro, and in vivo evidences for the purpose of identifying key molecules.


Assuntos
Benzo(a)pireno , RNA Interferente Pequeno , Animais , Camundongos , Benzo(a)pireno/toxicidade , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/patologia , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/patologia , Masculino , Camundongos Endogâmicos C57BL , Humanos , RNA de Interação com Piwi
2.
Food Chem Toxicol ; 182: 114199, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38000460

RESUMO

Benzo(a)Pyrene (BaP) is a well-known environmental carcinogen that poses a significant risk to human health. The pivotal genes and toxicity pathways have been identified as key events to construct the mode of action (MOA) of BaP. In this study, we focused on evaluating the association between genetic variants in BaP-disturbed toxicity pathways and the susceptibility of laryngeal squamous cell carcinoma (LSCC), based on the data of our previous genome-wide association analysis (GWAS). In addition, we investigated the biological roles of these significant polymorphisms by integrating bioinformatic annotation and experimental validation. Our findings revealed that 15 functional polymorphisms in AHR signaling, p53 signaling, NRF2 signaling, TGF-ß signaling, STAT3 signaling, and IL-8 signaling pathways were significantly associated with susceptibility to LSCC. Our study provides a novel approach for identifying novel risk genetic loci utilizing GWAS data, and suggests potential targets for early detection of LSCC in the future.


Assuntos
Benzo(a)pireno , Neoplasias de Cabeça e Pescoço , Humanos , Benzo(a)pireno/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço , Estudo de Associação Genômica Ampla , Polimorfismo Genético
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA