Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Prostate ; 79(2): 140-150, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30280407

RESUMO

BACKGROUND: Prostate cancer (PCa) is diagnosed at the highest rate of all non-cutaneous male cancers in the United States. The androgen-dependent (AD) transcription factor, androgen receptor (AR), drives PCa-but inhibiting AR or androgen biosynthesis induces remission for only a short time. At which point, patients acquire more aggressive castration-resistant (CR) disease with re-activated AR-dependent signaling. To combat treatment resistance, down-regulating AR protein expression has been considered as a potential treatment strategy for CR-PCa. METHODS: AD- and CR-PCa cell lines were treated with the well-tolerated FDA-approved oral medicine, riluzole. Expression of full-length or wild-type AR (AR-FL) and constitutively active AR-splice variant 7 (AR-V7) was assessed by immunoblotting. AR-FL/AR-V7 activity was measured using qRT-PCR of AR-target genes. Cytoplasmic [Ca2+ ] levels were measured using a fluorescent Ca2+ indicator microplate assay. Markers of the endoplasmic reticulum stress (ERS) pathway and autophagy were assessed by immunoblotting. Direct interaction between AR and selective autophagy receptor p62 was demonstrated by co-immunoprecipitation. RESULTS: We demonstrate that riluzole downregulates AR-FL, mutant ARs, and AR-V7 proteins expression by protein degradation through ERS pathway and selective autophagy. Riluzole also significantly inhibited AR transcription activity by decreasing its target genes expression (PSA, TMPRSS2, and KLK2). CONCLUSIONS: We provide key mechanistic insights by which riluzole exerts its anti-tumorigenic effects and induces AR protein degradation via ERS pathways. Our findings support the potential utility of riluzole for treatment of PCa.


Assuntos
Androgênios/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias da Próstata/tratamento farmacológico , Receptores Androgênicos/metabolismo , Riluzol/farmacologia , Fator 6 Ativador da Transcrição/metabolismo , Autofagia/efeitos dos fármacos , Linhagem Celular Tumoral , Interações Medicamentosas , Endorribonucleases/antagonistas & inibidores , Endorribonucleases/metabolismo , Humanos , Masculino , Neoplasias da Próstata/metabolismo , Neoplasias de Próstata Resistentes à Castração/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Receptores Androgênicos/biossíntese , Proteína Sequestossoma-1/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sulfonamidas/farmacologia , Tiofenos/farmacologia
3.
Elife ; 62017 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-28826481

RESUMO

Standard treatment for metastatic prostate cancer (CaP) prevents ligand-activation of androgen receptor (AR). Despite initial remission, CaP progresses while relying on AR. AR transcriptional output controls CaP behavior and is an alternative therapeutic target, but its molecular regulation is poorly understood. Here, we show that action of activated AR partitions into fractions that are controlled preferentially by different coregulators. In a 452-AR-target gene panel, each of 18 clinically relevant coregulators mediates androgen-responsiveness of 0-57% genes and acts as a coactivator or corepressor in a gene-specific manner. Selectivity in coregulator-dependent AR action is reflected in differential AR binding site composition and involvement with CaP biology and progression. Isolation of a novel transcriptional mechanism in which WDR77 unites the actions of AR and p53, the major genomic drivers of lethal CaP, to control cell cycle progression provides proof-of-principle for treatment via selective interference with AR action by exploiting AR dependence on coregulators.


Assuntos
Regulação da Expressão Gênica , Neoplasias da Próstata/patologia , Receptores Androgênicos/metabolismo , Linhagem Celular Tumoral , Humanos , Masculino , Fatores de Transcrição/metabolismo , Transcrição Gênica , Proteína Supressora de Tumor p53/metabolismo
4.
Clin Cancer Res ; 2016 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-27458247

RESUMO

PURPOSE: We recently demonstrated that glutamate receptor GRM1 was expressed at high levels in castration-resistant prostate cancer (CR-PCa) tissues and cells. Herein, we determined the relationship between GRM1 and AR, PSA, and tumor growth, remission, and recurrence in preclinical PCa models. The effect of alterations in GRM1 expression was also investigated on PCa cell growth, migration and invasion. EXPERIMENTAL DESIGN: We used quantitative gene expression and immunohistochemistry to define the temporal association between GRM1 expression and AR, PSA, and tumor growth during CR progression in CWR22 (n = 59) and LuCaP 35 (n = 12) PCa xenografts. The effect of alterations in GRM1 expression levels on growth, migration, and invasion was investigated in GRM1-overexpressed or -silenced PCa cell lines. The effect of DHT on GRM1 expression was determined in the presence or absence of the antiandrogen bicalutamide. RESULTS: We found that GRM1 transcript and tissue expression directly correlated with growth and AR and PSA expression in hormone-sensitive (HS), castrated, and CR tumor xenografts. GRM1 overexpression or silencing directly correlated with PCa cell proliferation, migration, and invasion. DHT increased GRM1 expression via an AR-dependent manner in HS- and CR-PCa cell lines. CONCLUSIONS: This is a first report of GRM1 as an androgen and AR-target gene. GRM1 expression directly correlated with tumor growth, regression, and recurrence and may contribute to CR-progression of PCa in preclinical models. Further studies are needed to define the utility of GRM1 as a druggable target or biomarker for PCa.

5.
Prostate ; 76(12): 1067-77, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27271795

RESUMO

BACKGROUND: The previously established CWR-R1 cell line has been used as an in vitro model representing castration-recurrent prostate cancer. Microscopic observation of subconfluent cells demonstrated two distinct cellular morphologies: polygonal closely aggregated epithelial cells surrounded by bipolar fibroblastic cells with long processes. This study sought to establish and characterize a fibroblast-free derivative of the CWR-R1 cell line. METHODS: The CWR-R1ca cell line was established from CWR-R1 cells by removing fibroblasts using multiple cycles of short-term trypsinization, cloning, and pooling single-cell colonies. Authentication of fibroblast-free CWR-R1ca cells was demonstrated by analyzing the expression of cytodifferentiation and prostate-associated markers, DNA and cytogenetic profiling, and growth pattern in the absence or presence of androgen. RESULTS: CWR-R1ca is an androgen-sensitive cell line that expresses the androgen receptor (AR) and its splice variant 7 and the luminal epithelia markers, CK-8, CK-18, and c-Met. CWR-R1fb fibroblasts isolated from CWR-R1 cells express AR, hepatocyte growth factor-α, and mouse ß-actin but not AR-V7 or epithelial markers. Cytogenetic analysis of CWR-R1ca cells revealed a hyperdiploid male with numerical gains in chromosomes 1, 7, 8, 10, 11, and 12, deletion of one chromosome 2 allele, structural abnormalities that include der(1)t(1:4), der(4)t(2:4), der(10)t(4:10), and an unbalanced reciprocal translocation between chromosome 6 and 14. DNA-profiling revealed that CWR-R1ca cells had significant short-tandem repeat marker homology with CWR22Pc and CWR22Rv1 cell lines, which indicated lineage derivation from CWR22 prostate cancer xenografts. CWR-R1ca cells were responsive to the growth stimulatory effects of dihydrotestosterone (DHT) in the femtomolar range. CONCLUSION: This study establishes CWR-R1ca cells as a fibroblast-free derivative of the castration-recurrent CWR-R1 cell line. Prostate 76:1067-1077, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Fibroblastos/citologia , Neoplasias de Próstata Resistentes à Castração/patologia , Actinas/análise , Animais , Biomarcadores/análise , Linhagem Celular Tumoral , Separação Celular/métodos , Aberrações Cromossômicas , Deleção Cromossômica , Impressões Digitais de DNA , Expressão Gênica , Fator de Crescimento de Hepatócito/análise , Xenoenxertos , Humanos , Cariotipagem , Masculino , Camundongos , Células NIH 3T3 , Transplante de Neoplasias , Próstata/química , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Neoplasias de Próstata Resistentes à Castração/genética , Isoformas de Proteínas/análise , Receptores Androgênicos/análise , Receptores Androgênicos/genética
6.
Br J Cancer ; 114(10): 1090-100, 2016 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-27115471

RESUMO

BACKGROUND: African-American (AA) patients with prostate cancer (PCa) respond poorly to current therapy compared with Caucasian American (CA) PCa patients. Although underlying mechanisms are not defined, mitochondrial dysfunction is a key reason for this disparity. METHODS: Cell death, cell cycle, and mitochondrial function/stress were analysed by flow cytometry or by Seahorse XF24 analyzer. Expression of cellular proteins was determined using immunoblotting and real-time PCR analyses. Cell survival/motility was evaluated by clonogenic, cell migration, and gelatin zymography assays. RESULTS: Glycolytic pathway inhibitor dichloroacetate (DCA) inhibited cell proliferation in both AA PCa cells (AA cells) and CA PCa cells (CA cells). AA cells possess reduced endogenous reactive oxygen species, mitochondrial membrane potential (mtMP), and mitochondrial mass compared with CA cells. DCA upregulated mtMP in both cell types, whereas mitochondrial mass was significantly increased in CA cells. DCA enhanced taxol-induced cell death in CA cells while sensitising AA cells to doxorubicin. Reduced expression of heat shock proteins (HSPs) was observed in AA cells, whereas DCA induced expression of CHOP, C/EBP, HSP60, and HSP90 in CA cells. AA cells are more aggressive and metastatic than CA cells. CONCLUSIONS: Restoration of mitochondrial function may provide new option for reducing PCa health disparity among American men.


Assuntos
Ácido Dicloroacético/farmacologia , Proteínas de Choque Térmico/metabolismo , Mitocôndrias/efeitos dos fármacos , Neoplasias da Próstata/etnologia , Neoplasias da Próstata/metabolismo , Negro ou Afro-Americano , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Estados Unidos
7.
Int J Biol Sci ; 10(8): 834-45, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25076860

RESUMO

Genuine racial differences in prostate cancer (PCa) biology have been considered among the potential reasons to explain PCa disparities. There is no animal model to represent all aspects of human PCa and, more specifically, to be used for PCa disparity research. The lack of a spontaneously transformed in vitro cell-based model system has been a significant impediment to investigating and understanding potential molecular mechanisms, and the hormonal, genetic, and epigenetic factors underlying the biological and clinical aggressiveness of PCa in African American (AA) men. In this study, we established and characterized the E006AA-hT cell line as a highly tumorigenic subline of the previously characterized primary AA-PCa cell line, E006AA. Extensive characterization of the E006AA-hT cell line was accomplished using cytodifferentiation and prostate-specific markers, spectral karyotyping, cell line authentication assays, cell proliferation and migration assays, and in vitro tumorigenesis assays. Spectral karyotyping of E006AA-hT showed a hypertriploid chromosome complement and shared cytogenetic changes similar to its parental cells such as diploid X, absence of Y-chromosomes, numerical gains in chromosomes 5,6,8,10,17,20,21, and marker chromosomes of unknown origin. In addition, E006AA-hT also presented numerous clonal and structural aberrations such as insertion, deletion, duplication, and translocations in chromosomes 1-5, 8, 9, 11, 13, 14, 17, and 18. The E006AA-hT cell line was shown to be highly tumorigenic and produced tumors at an accelerated growth rate in both athymic nude and triple-deficient SCID mice. Silencing the mutated androgen receptor (AR-599 Ser>Gly) did not affect proliferation (loss-of-function), but decreased migration (gain-of-function) in E006AA-hT and its parental cell type. These data support that AR-point mutations may lead simultaneously to different "loss-of-function" and "gain-of-function" phenotypes in PCa cells. E006AA-Par and its subline as the only available spontaneously transformed low- and highly-tumorigenic primary AA-PCa cell lines could be used for basic and translational research aimed in supporting prostate cancer disparity research.


Assuntos
Neoplasias da Próstata/metabolismo , Negro ou Afro-Americano , Linhagem Celular Tumoral , Humanos , Masculino , Receptores Androgênicos/metabolismo
8.
PLoS One ; 9(7): e103204, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25062106

RESUMO

Metabotropic glutamate receptor 1 (GRM1) signaling has been implicated in benign and malignant disorders including prostate cancer (PCa). To further explore the role of genetic alterations of GRM1 in PCa, we screened the entire human GRM1 gene including coding sequence, exon-intron junctions, and flanking untranslated regions (UTRs) for the presence of mutations and single nucleotide polymorphisms (SNPs) in several PCa cell lines and matched tumor-normal tissues from Caucasian Americans (CAs) and African Americans (AAs). We used bidirectional sequencing, allele-specific PCR, and bioinformatics to identify the genetic changes in GRM1 and to predict their functional role. A novel missense mutation identified at C1744T (582 Pro > Ser) position of GRM1 gene in a primary AA-PCa cell line (E006AA) was predicted to affect the protein stability and functions. Another novel mutation identified at exon-intron junction of exon-8 in C4-2B cell line resulted in alteration of the GRM1 splicing donor site. In addition, we found missense SNP at T2977C (993 Ser > Pro) position and multiple non-coding mutations and SNPs in 3'-UTR of GRM1 gene in PCa cell lines and tissues. These novel mutations may contribute to the disease by alterations in GRM1 gene splicing, receptor activation, and post-receptor downstream signaling.


Assuntos
Polimorfismo de Nucleotídeo Único/genética , Neoplasias da Próstata/genética , Receptores de Glutamato Metabotrópico/genética , Negro ou Afro-Americano/genética , Alelos , Linhagem Celular Tumoral , Células Epiteliais/metabolismo , Éxons/genética , Genótipo , Humanos , Íntrons/genética , Masculino , Mutação de Sentido Incorreto/genética , Neoplasias da Próstata/patologia , Regiões não Traduzidas/genética , População Branca/genética
9.
Int J Biol Sci ; 10(6): 643-51, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24948877

RESUMO

The Androgen receptor (AR) plays a central role in the normal development of the prostate gland, in prostate carcinogenesis, and in the progression of prostate cancer (PCa) to advanced metastatic disease. African American (AA) men with PCa present with higher tumor volume, more advanced tumor stage, and higher Gleason score. This could be in part related to the AR expression or activity in the prostate tissue of AA men, or to unique mutations or polymorphisms of the AR. In Caucasian Americans (CAs), AR mutations are rare or infrequent in organ-confined tumors, but occur at a higher rate in advanced, metastatic, or castrate-recurrent disease. In AAs, the prevalence, clinical, and biological significance of AR mutations in PCa are unknown. In this study, we investigated the occurrence of somatic and germline AR mutations in patients with primary PCa in AAs compared with CAs. Due to very limited data available on allelic distribution of E213 (G/A) single nucleotide polymorphism (SNP), we also assessed this in patients with sporadic PCa and in unrelated healthy individuals from both ethnic populations. Somatic missense AR mutations were detected at a higher rate in AAs (17 out of 200 cases) than in CAs (2 out of 100 cases). In AAs, the majority of these mutations (41.1%) were from Gleason 7 tumors, a small portion (23.5%) from Gleason 8 tumors, and the rest (35.2%) from Gleason 6 tumors. Analysis of genomic DNAs extracted from white blood cells of patients with sporadic PCa revealed that the rate of germline AR mutations were also higher (~4 times) in AAs than in CAs. With respect to E213 (G/A) SNP, the E213 A-allele expression was 5.85 times higher in healthy unrelated AA men than in CA men. However, in AAs with somatic AR mutation, the E213 G-allele distribution was almost equal to the A-allele. Silencing of one of the somatic AR mutations (i.e., 597 Ser>Gly) in a primary AA-PCa cell line (e.g., E006AA) revealed that similar AR mutation can be associated simultaneously with both "gain-of-function" phenotype (cell migration and invasion) and a "loss-of-function" phenotype (proliferation). Our data demonstrated a higher susceptibility for genetic alterations in the AR in the form of somatic mutations in sporadic PCa or in the form of germline mutations in AAs as compared with CAs. These data may support the idea that AR-specific hypermutator phenotype in combination with other genes, might serve as a contributing factor to ethnic differences in PCa and potentially different clinical outcome in AAs as a high-risk population.


Assuntos
Neoplasias da Próstata/genética , Receptores Androgênicos/genética , Negro ou Afro-Americano/genética , Humanos , Masculino , Mutação , Polimorfismo Genético/genética , Células Tumorais Cultivadas
10.
Clin Cancer Res ; 18(21): 5888-901, 2012 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-23072969

RESUMO

PURPOSE: During glutaminolysis, glutamine is catabolized to glutamate and incorporated into citric acid cycle and lipogenesis. Serum glutamate levels were measured in patients with primary prostate cancer or metastatic castrate-resistant prostate cancer (mCRPCa) to establish clinical relevance. The effect of glutamate deprivation or blockade by metabotropic glutamate receptor 1 (GRM1) antagonists was investigated on prostate cancer cells' growth, migration, and invasion to establish biologic relevance. EXPERIMENTAL DESIGN: Serum glutamate levels were measured in normal men (n = 60) and patients with primary prostate cancer (n = 197) or mCRPCa (n = 109). GRM1 expression in prostatic tissues was examined using immunohistochemistry (IHC). Cell growth, migration, and invasion were determined using cell cytotoxicity and modified Boyden chamber assays, respectively. Apoptosis was detected using immunoblotting against cleaved caspases, PARP, and γ-H2AX. RESULTS: Univariate and multivariate analyses showed significantly higher serum glutamate levels in Gleason score ≥ 8 than in the Gleason score ≤ 7 and in African Americans than in the Caucasian Americans. African Americans with mCRPCa had significantly higher serum glutamate levels than those with primary prostate cancer or benign prostate. However, in Caucasian Americans, serum glutamate levels were similar in normal research subjects and patients with mCRPC. IHC showed weak or no expression of GRM1 in luminal acinar epithelial cells of normal or hyperplastic glands but high expression in primary or metastatic prostate cancer tissues. Glutamate deprivation or blockade decreased prostate cancer cells' proliferation, migration, and invasion and led to apoptotic cell death. CONCLUSIONS: Glutamate expression is mechanistically associated with and may provide a biomarker of prostate cancer aggressiveness.


Assuntos
Ácido Glutâmico/sangue , Neoplasias da Próstata/sangue , Neoplasias da Próstata/patologia , Adulto , Negro ou Afro-Americano , Apoptose/efeitos dos fármacos , Estudos de Casos e Controles , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Humanos , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Próstata/metabolismo , Neoplasias da Próstata/metabolismo , Receptores de Glutamato Metabotrópico/antagonistas & inibidores , Receptores de Glutamato Metabotrópico/metabolismo , Riluzol/farmacologia , População Branca
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA