Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Cell Physiol ; 293(3): C885-96, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17553933

RESUMO

Plasma membrane Na(+)-K(+)-ATPase, which drives potassium into and sodium out of the cell, has important roles in numerous physiological processes. Cardiac steroids (CS), such as ouabain and bufalin, specifically interact with the pump and affect ionic homeostasis, signal transduction, and endocytosed membrane traffic. CS-like compounds are present in mammalian tissues, synthesized in the adrenal gland, and considered to be new family of steroid hormones. In this study, the mechanism of Na(+)-K(+)-ATPase involvement in the regulation of endocytosis is explored. We show that the effects of various CS on changes in endosomal pH are mediated by the pump and correspond to their effects on endosomal membrane traffic. In addition, it was found that CS-induced changes in endocytosed membrane traffic were dependent on alterations in [Na(+)] and [H(+)] in the endosome. Furthermore, we show that various CS differentially regulate endosomal pH and membrane traffic. The results suggest that these differences are due to specific binding characteristics. Based on our observations, we propose that Na(+)-K(+)-ATPase is a key player in the regulation of endosomal pH and endocytosed membrane traffic. Furthermore, our results raise the possibility that CS-like hormones regulate differentially intracellular membrane traffic.


Assuntos
Cardiotônicos/farmacologia , Endocitose/fisiologia , Ouabaína/farmacologia , ATPase Trocadora de Sódio-Potássio/metabolismo , Células-Tronco/enzimologia , Ácidos/metabolismo , Bufanolídeos/farmacologia , Cardiotônicos/metabolismo , Linhagem Celular , Membrana Celular/enzimologia , Digoxina/metabolismo , Digoxina/farmacologia , Endocitose/efeitos dos fármacos , Endossomos/enzimologia , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Humanos , Concentração de Íons de Hidrogênio/efeitos dos fármacos , Neurônios/citologia , Ouabaína/metabolismo , Potássio/metabolismo , Transporte Proteico/fisiologia , Sódio/metabolismo , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores , Células-Tronco/citologia , Transferrina/metabolismo , Trítio
2.
Life Sci ; 80(23): 2093-2107, 2007 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-17499813

RESUMO

Digitalis-like compounds (DLC) are a family of steroid hormones synthesized in and released from the adrenal gland. DLC, the structure of which resembles that of plant cardiac glycosides, bind to and inhibit the activity of the ubiquitous cell surface enzyme Na(+), K(+)-ATPase. However, there is a large body of evidence suggesting that the regulation of ion transport by Na(+), K(+)-ATPase is not the only physiological role of DLC. The binding of DLC to Na(+), K(+)-ATPase induces the activation of various signal transduction cascades that activate changes in intracellular Ca(++) homeostasis, and in specific gene expression. These, in turn, stimulate endocytosis and affect cell growth and proliferation. At the systemic level, DLC were shown to be involved in the regulation of major physiological parameters including water and salt homeostasis, cardiac contractility and rhythm, systemic blood pressure and behavior. Furthermore, the DLC system has been implicated in several pathological conditions, including cardiac arrhythmias, hypertension, cancer and depressive disorders. This review evaluates the evidence for the different aspects of DLC action and delineates open questions in the field.


Assuntos
Adenosina Trifosfatases/metabolismo , Digitalis/metabolismo , Potássio/química , Sódio/metabolismo , Esteroides/metabolismo , Animais , Transporte Biológico , Endocitose , Humanos , Íons , Modelos Biológicos , Natriuréticos/metabolismo , Ouabaína/farmacologia , Extratos Vegetais/farmacologia , ATPase Trocadora de Sódio-Potássio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA