Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 18(12): 8811-8826, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38466366

RESUMO

Immunotherapy is the most promising systemic therapy for hepatocellular carcinoma. However, the outcome remains poor. Proprotein convertase subtilisin/kexin type 9 (PCSK9) plays a role in altering cell-surface protein levels, potentially undermining the efficacy of immunotherapy against tumors. This highlights its potential as a target for antitumor therapy. Herein, CaCO3-based nanoparticles coencapsulated with DOX, an immunogenic cell death (ICD) inducer, and evolocumab was developed to enhanced the efficacy of immunotherapy. The obtained DOX/evolocumab-loaded CaCO3 nanoparticle (named DECP) exhibits a good capacity of acid neutralization and causes ICD of cancer cells. In addition, DECP is able to evaluate the cell-surface level of MHC-I, a biomarker that correlates positively with patients' overall survival. Upon intravenous injection, DECP accumulates within the tumor site, leading to growth inhibition of hepa1-6 bearing subcutaneous tumors. Specifically, DECP treatment causes augmented ratios of matured dendritic cells, tumor-infiltrating CD8+ T cells and natural killing cells, while concurrently depleting Foxp3+ regulatory T cells. Peritumoral delivery of DECP enhances the immune response of distant tumors and exhibits antitumor effects when combined with intravenous αPD-L1 therapy in a bilateral tumor model. This study presents CaCO3-based nanoparticles with multiple immunomodulatory strategies against hepatocellular carcinoma by targeting PCSK9 inhibition and modulating immune homeostasis in the unfavorable TME.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Pró-Proteína Convertase 9/metabolismo , Carcinoma Hepatocelular/tratamento farmacológico , Linfócitos T CD8-Positivos , Neoplasias Hepáticas/tratamento farmacológico , Homeostase , Subtilisinas
2.
Mil Med Res ; 10(1): 36, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37587531

RESUMO

Skin wounds are characterized by injury to the skin due to trauma, tearing, cuts, or contusions. As such injuries are common to all human groups, they may at times represent a serious socioeconomic burden. Currently, increasing numbers of studies have focused on the role of mesenchymal stem cell (MSC)-derived extracellular vesicles (EVs) in skin wound repair. As a cell-free therapy, MSC-derived EVs have shown significant application potential in the field of wound repair as a more stable and safer option than conventional cell therapy. Treatment based on MSC-derived EVs can significantly promote the repair of damaged substructures, including the regeneration of vessels, nerves, and hair follicles. In addition, MSC-derived EVs can inhibit scar formation by affecting angiogenesis-related and antifibrotic pathways in promoting macrophage polarization, wound angiogenesis, cell proliferation, and cell migration, and by inhibiting excessive extracellular matrix production. Additionally, these structures can serve as a scaffold for components used in wound repair, and they can be developed into bioengineered EVs to support trauma repair. Through the formulation of standardized culture, isolation, purification, and drug delivery strategies, exploration of the detailed mechanism of EVs will allow them to be used as clinical treatments for wound repair. In conclusion, MSC-derived EVs-based therapies have important application prospects in wound repair. Here we provide a comprehensive overview of their current status, application potential, and associated drawbacks.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , Lesões dos Tecidos Moles , Humanos , Pele , Cicatrização
3.
ACS Nano ; 15(12): 19394-19408, 2021 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-34806870

RESUMO

The dense extracellular matrix (ECM) in tumor tissues resists drug diffusion into tumors and leads to a poor prognosis. To address this problem, glucose oxidase (GOx)-modified ferritin loaded with luminol-curcumin was fabricated. Once delivered to the tumor, this luminol-based self-illuminating nanocage could actively convert glucose to reactive oxygen species (ROS) to achieve starvation therapy. Then, excessive ROS were transmitted to luminol, thereby emitting 425 nm blue-violet light. Momentarily, light was further absorbed by curcumin and ROS production was amplified. Abundant ROS helps break down the ECM network to penetrate deep into tumors. In addition, ROS produced after cell internalization can induce apoptosis of tumor cells by decreasing the mitochondrial membrane potential and can promote ferroptosis by consuming reduced glutathione. Effective penetration and multiple pathways inducing tumor cell death contributed to the efficient antitumor effect (tumor inhibition rate of GOx-modified ferritin loaded with luminol-curcumin: 71.73%). This study developed a glucose-driven self-illuminating nanocage for active tumor penetration via ROS-mediated destruction of the ECM and provided the synergetic mechanism of apoptosis and ferroptosis.


Assuntos
Ferroptose , Neoplasias , Glucose Oxidase , Humanos , Luminol , Neoplasias/tratamento farmacológico , Espécies Reativas de Oxigênio
4.
J Nanobiotechnology ; 19(1): 132, 2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-33971910

RESUMO

Molecular imaging technology enables us to observe the physiological or pathological processes in living tissue at the molecular level to accurately diagnose diseases at an early stage. Optical imaging can be employed to achieve the dynamic monitoring of tissue and pathological processes and has promising applications in biomedicine. The traditional first near-infrared (NIR-I) window (NIR-I, range from 700 to 900 nm) imaging technique has been available for more than two decades and has been extensively utilized in clinical diagnosis, treatment and scientific research. Compared with NIR-I, the second NIR window optical imaging (NIR-II, range from 1000 to 1700 nm) technology has low autofluorescence, a high signal-to-noise ratio, a high tissue penetration depth and a large Stokes shift. Recently, this technology has attracted significant attention and has also become a heavily researched topic in biomedicine. In this study, the optical characteristics of different fluorescence nanoprobes and the latest reports regarding the application of NIR-II nanoprobes in different biological tissues will be described. Furthermore, the existing problems and future application perspectives of NIR-II optical imaging probes will also be discussed.


Assuntos
Raios Infravermelhos , Imagem Molecular/métodos , Imagem Óptica/métodos , Animais , Tecnologia Biomédica , Liberação Controlada de Fármacos , Fluorescência , Humanos , Neoplasias/diagnóstico por imagem , Razão Sinal-Ruído , Células-Tronco , Cirurgia Assistida por Computador/métodos
5.
World J Clin Cases ; 9(35): 10979-10993, 2021 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-35047608

RESUMO

BACKGROUND: Malignant obstructive jaundice (MOJ) is a common pathologic manifestation of malignant biliary obstruction. Recently, several clinical trials have explored the clinical effectiveness of intraluminal 125I seed-based brachytherapy for MOJ patients, and various outcomes have been reported. AIM: To assess the efficacy and safety of percutaneous biliary stents with 125I seeds compared to conventional metal stents in patients with unresectable MOJ. METHODS: A systematic search of English-language databases (PubMed, Embase, Cochrane Library, and Web of Science) was performed to identify studies published prior to June 2020 that compared stents with or without 125I seeds in the treatment of unresectable MOJ. The outcomes analyzed included primary outcomes (stent patency and overall survival) and secondary outcomes (complications and liver function parameters). RESULTS: Six randomized controlled trials and four retrospective studies involving 875 patients were eligible for the analysis. Of the 875 included patients, 404 were treated with 125I seed stents, while 471 were treated with conventional stents. Unadjusted pooled analysis demonstrated that compared to conventional stents, 125I seed stents extended the stent patency time [hazard ratio (HR) = 0.36, 95% confidence interval (CI) = 0.28-0.45, P < 0.0001] and overall survival period (HR = 0.52, 95%CI = 0.42-0.64, P < 0.00001). Subgroup analyses based on the type of 125I seed stent and type of study design showed consistent results. However, there were no significant differences in the occurrence of total complications [odds ratio (OR) = 1.12, 95%CI = 0.75-1.67, P = 0.57], hemobilia (OR = 1.02, 95%CI = 0.45-2.3, P = 0.96), pancreatitis (OR = 1.79, 95%CI = 0.42-7.53, P = 0.43), cholangitis (OR = 1.13, 95%CI = 0.60-2.13, P = 0.71), or pain (OR = 0.67, 95%CI = 0.22-2, P = 0.47). In addition, there were no reductions in the levels of serum indices, including total bilirubin [mean difference (MD) = 10.96, 95%CI = -3.56-25.49, P = 0.14], direct bilirubin (MD = 7.37, 95%CI = -9.76-24.5, P = 0.4), alanine aminotransferase (MD = 7.52, 95%CI = -0.71-15.74, P = 0.07), and aspartate aminotransferase (MD = -4.77, 95%CI = -19.98-10.44, P = 0.54), after treatment. Publication bias was detected regarding the outcome overall survival; however, the conclusions were not changed after the adjustment. CONCLUSION: Placement of stents combined with brachytherapy using 125I seeds contributes to a longer stent patency and higher overall survival than placement of conventional stents without extra complications or severe liver damage. Thus, it can be considered an effective and safe treatment for unresectable MOJ.

6.
Biomater Sci ; 8(7): 1961-1972, 2020 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-32064471

RESUMO

The development of magnetic resonance imaging (MRI) contrast agents with high sensitivity and good biocompatibility is of great value for the diagnosis of primary hepatocellular carcinoma (HCC). Here, a novel MRI contrast agent based on calcium phosphate (CaP) nanoparticles modified with a liver cancer cell targeting peptide A54 (A54-CaP) was fabricated. The T1-positive contrast agent Gd-DTPA was encapsulated inside the nanoparticles (A54-CaPNPs), with a mean diameter of 30 nm and a high encapsulation efficiency of 92.73%. The A54-CaPNP solution exhibited higher longitudinal relaxivity (6.07 mM-1 s-1) than that of the clinically used MRI contrast agent Gd-DTPA (3.56 mM-1 s-1). A much higher accumulation of the nanoparticles in the liver cells was observed, which was directed by the A54 targeting peptide. Furthermore, the MRI diagnostic efficiency of A54-CaPNPs was systematically investigated in an orthotopic liver cancer model and primary HCC model. In vivo MRI experiments showed that A54-CaPNPs had higher sensitivity in the BEL-7402 orthotopic liver cancer model with a more remarkable contrast enhancement and a longer imaging time compared to those without A54 modification. Moreover, the experiments on primary HCC models suggested that A54-CaPNPs showed greatly enhanced MR imaging performance in comparison with Gd-DTPA. These results suggest that A54-CaPNPs possess great potential to enable the non-invasive early diagnosis of primary HCC for timely surgical resection.


Assuntos
Fosfatos de Cálcio/química , Carcinoma Hepatocelular/diagnóstico por imagem , Peptídeos Penetradores de Células/administração & dosagem , Meios de Contraste/administração & dosagem , Gadolínio/química , Neoplasias Hepáticas/diagnóstico por imagem , Animais , Linhagem Celular Tumoral , Peptídeos Penetradores de Células/química , Meios de Contraste/química , Detecção Precoce de Câncer , Feminino , Células Hep G2 , Humanos , Imageamento por Ressonância Magnética , Masculino , Camundongos , Nanopartículas , Transplante de Neoplasias , Tamanho da Partícula
7.
Mol Pharm ; 16(8): 3694-3702, 2019 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-31268329

RESUMO

Therapeutic goals for metastatic breast cancer, including shrinkage of established metastasis and suppression of movement of tumor cells, are often hard to achieve and remain the main obstacles restricting the antimetastatic efficacy of targeted drug delivery systems (TDDSs). Herein, we proposed an E-selectin-targeting nanoplatform for the systemic treatment of metastatic breast cancer. Versatile functions, including killing the circulating tumor cells, shrinking the established lesions, as well as inhibiting the movement of tumor cells, were integrated into doxorubicin-loaded sialic acid-dextran-octadecanoic acid (SDO) micelles (SDD). The prepared SDD micelles could not only inhibit lung and liver metastasis in the orthotopic 4T1 tumors model, but also decrease the metastatic lesions in the metastatic 4T1 cell model, resulting in 27.33% reduced number of metastatic nodules when compared to those without sialic acid modification. It was found that the good antimetastatic effect of SDD was only partially attributed to its ability on removing metastatic cells and metastases. Most importantly, the blank SDO micelles left in the lesion could further inhibit the cell migration and cell-cell binding. These results suggest that SA-driven TDDS has the potential for specific targeting and effective treatment of cancer metastasis.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Doxorrubicina/administração & dosagem , Portadores de Fármacos/química , Selectina E/metabolismo , Nanoconjugados/química , Animais , Neoplasias da Mama/sangue , Neoplasias da Mama/patologia , Linhagem Celular Tumoral/transplante , Movimento Celular/efeitos dos fármacos , Dextranos/química , Modelos Animais de Doenças , Doxorrubicina/farmacocinética , Composição de Medicamentos/métodos , Liberação Controlada de Fármacos , Feminino , Humanos , Ligantes , Camundongos , Micelas , Ácido N-Acetilneuramínico/química , Células Neoplásicas Circulantes/efeitos dos fármacos , Ácidos Esteáricos/química
8.
Nano Lett ; 19(2): 829-838, 2019 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-30605619

RESUMO

Spinal cord injury (SCI) routinely causes the immediate loss and disruption of neurons followed by complicated secondary injuries, including inflammation, oxidative stress, and dense glial scar formation. Inhibitory factors in the lesion scar and poor intrinsic neural regeneration capacity restrict functional recovery after injury. Minocycline, which has neuroprotective activity, can alleviate secondary injury, but the long-term administration of this drug may cause toxicity. Polysialic acid (PSA) is a large cell-surface carbohydrate that is critical for central nervous system development and is capable of promoting precursor cell migration, axon path finding, and synaptic remodeling; thus, PSA plays a vital role in tissue repair and regeneration. Here, we developed a PSA-based minocycline-loaded nanodrug delivery system (PSM) for the synergistic therapy of spinal cord injury. The prepared PSM exerted marked anti-inflammatory and neuroprotective activities both in vitro and in vivo. The administration of PSM could significantly protect neurons and myelin sheaths from damage, reduce the formation of glial scar, recruit endogenous neural stem cells to the lesion site, and promote the regeneration of neurons and the extension of long axons throughout the glial scar, thereby largely improving the locomotor function of SCI rats and exerting a superior therapeutic effect. The findings might provide a novel strategy for SCI synergistic therapy and the utilization of PSA in other central nervous system diseases.


Assuntos
Antibacterianos/uso terapêutico , Portadores de Fármacos/uso terapêutico , Minociclina/uso terapêutico , Regeneração Nervosa/efeitos dos fármacos , Fármacos Neuroprotetores/uso terapêutico , Ácidos Siálicos/uso terapêutico , Traumatismos da Medula Espinal/tratamento farmacológico , Animais , Anti-Inflamatórios/uso terapêutico , Micelas , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/patologia , Ratos , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA