Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 224
Filtrar
1.
Small ; : e2312141, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38801318

RESUMO

Reactive oxygen species (ROS)-mediated emerging treatments exhibit unique advantages in cancer therapy in recent years. While the efficacy of ROS-involved tumor therapy is greatly restricted by complex tumor microenvironment (TME). Herein, a dual-metal CaO2@CDs-Fe (CCF) nanosphere, with TME response and regulation capabilities, are proposed to improve ROS lethal power by a multiple cascade synergistic therapeutic strategy with domino effect. In response to weak acidic TME, CCF will decompose, accompanied with intracellular Ca2+ upregulated and abundant H2O2 and O2 produced to reverse antitherapeutic TME. Then the exposed CF cores can act as both Fenton agent and sonosensitizer to generate excessive ROS in the regulated TME for enhanced synergistic CDT/SDT. In combination with calcium overloading, the augmented ROS induced oxidative stress will cause more severe mitochondrial damage and cellular apoptosis. Furthermore, CCF can also reduce GPX4 expression and enlarge the lipid peroxidation, causing ferroptosis and apoptosis in parallel. These signals of damage will finally initiate damage-associated molecular patterns to activate immune response and to realize excellent antitumor effect. This outstanding domino ROS/calcium loading synergistic effect endows CCF with excellent anticancer effect to efficiently eliminate tumor by apoptosis/ferroptosis/ICD both in vitro and in vivo.

2.
Phytomedicine ; 128: 155385, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38569292

RESUMO

BACKGROUND: Xianlian Jiedu Decoction (XLJDD) has been used for the treatment of colorectal cancer (CRC) for several decades because of the prominent efficacy of the prescription. Despite the clear clinical efficacy of XLJDD, the anti-CRC mechanism of action is still unclear. PURPOSE: The inhibitory effect and mechanism of XLJDD on CRC were investigated in the azoxymethane/dextran sulfate sodium (AOM/DSS)-induced mice. METHODS: The AOM/DSS-induced mice model was adopted to evaluate the efficacy after administering the different doses of XLJDD. The therapeutic effects of XLJDD in treating AOM/DSS-induced CRC were investigated through histopathology, immunofluorescence and ELISA analysis methods. In addition, metabolomics profile and 16S rRNA analysis were used to explore the effective mechanisms of XLJDD on CRC. RESULTS: The results stated that the XLJDD reduced the number of tumor growth on the inner wall of the colon and the colorectal weight/length ratio, and suppressed the disease activity index (DAI) score, meanwhile XLJDD also increased body weight, colorectal length, and overall survival rate. The treatment of XLJDD also exhibited the ability to lower the level of inflammatory cytokines in serum and reduce the expression levels of ß-catenin, COX-2, and iNOS protein in colorectal tissue. The findings suggested that XLJDD has anti-inflammatory properties and may provide relief for those suffering from inflammation-related conditions. Mechanistically, XLJDD improved gut microbiota dysbiosis and associated metabolic levels of short chain fatty acids (SCFAs), sphingolipid, and glycerophospholipid. This was achieved by reducing the abundance of Turicibacter, Clostridium_sensu_stricto_1, and the levels of sphinganine, LPCs, and PCs. Additionally, XLJDD increased the abundance of Enterorhabdus and Alistipes probiotics, as well as the content of butyric acid and isovaleric acid. CONCLUSION: The data presented in this article demonstrated that XLJDD can effectively inhibit the occurrence of colon inner wall tumors by reducing the level of inflammation and alleviating intestinal microbial flora imbalance and metabolic disorders. It provides a scientific basis for clinical prevention and treatment of CRC.


Assuntos
Azoximetano , Neoplasias Colorretais , Sulfato de Dextrana , Medicamentos de Ervas Chinesas , Microbioma Gastrointestinal , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Camundongos , Masculino , Modelos Animais de Doenças , Metaboloma/efeitos dos fármacos , Colo/efeitos dos fármacos , Colo/patologia , Colo/microbiologia
3.
ACS Nano ; 18(11): 7769-7795, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38420949

RESUMO

Tumor-associated macrophages (TAMs) play pivotal roles in tumor development. As primary contents of tumor environment (TME), TAMs secrete inflammation-related substances to regulate tumoral occurrence and development. There are two kinds of TAMs: the tumoricidal M1-like TAMs and protumoral M2-like TAMs. Reprogramming TAMs from immunosuppressive M2 to immunocompetent M1 phenotype is considered a feasible way to improve immunotherapeutic efficiency. Notably, nanomaterials show great potential for biomedical fields due to their controllable structures and properties. There are many types of nanomaterials that exhibit great regulatory activities for TAMs' reprogramming. In this review, the recent progress of nanomaterials-involved TAMs' reprogramming is comprehensively discussed. The various nanomaterials for TAMs' reprogramming and the reprogramming strategies are summarized and introduced. Additionally, the challenges and perspectives of TAMs' reprogramming for efficient therapy are discussed, aiming to provide inspiration for TAMs' regulator design and promote the development of TAMs-mediated immunotherapy.


Assuntos
Nanoestruturas , Neoplasias , Humanos , Macrófagos Associados a Tumor , Imunoterapia , Imunossupressores , Inflamação , Nanoestruturas/uso terapêutico , Microambiente Tumoral , Neoplasias/terapia
4.
Int J Mol Sci ; 25(4)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38396774

RESUMO

Platelets assume a pivotal role in the pathogenesis of cardiovascular diseases (CVDs), emphasizing their significance in disease progression. Consequently, addressing CVDs necessitates a targeted approach focused on mitigating platelet activation. Eugenol, predominantly derived from clove oil, is recognized for its antibacterial, anticancer, and anti-inflammatory properties, rendering it a valuable medicinal agent. This investigation delves into the intricate mechanisms through which eugenol influences human platelets. At a low concentration of 2 µM, eugenol demonstrates inhibition of collagen and arachidonic acid (AA)-induced platelet aggregation. Notably, thrombin and U46619 remain unaffected by eugenol. Its modulatory effects extend to ATP release, P-selectin expression, and intracellular calcium levels ([Ca2+]i). Eugenol significantly inhibits various signaling cascades, including phospholipase Cγ2 (PLCγ2)/protein kinase C (PKC), phosphoinositide 3-kinase/Akt/glycogen synthase kinase-3ß, mitogen-activated protein kinases, and cytosolic phospholipase A2 (cPLA2)/thromboxane A2 (TxA2) formation induced by collagen. Eugenol selectively inhibited cPLA2/TxA2 phosphorylation induced by AA, not affecting p38 MAPK. In ADP-treated mice, eugenol reduced occluded lung vessels by platelet thrombi without extending bleeding time. In conclusion, eugenol exerts a potent inhibitory effect on platelet activation, achieved through the inhibition of the PLCγ2-PKC and cPLA2-TxA2 cascade, consequently suppressing platelet aggregation. These findings underscore the potential therapeutic applications of eugenol in CVDs.


Assuntos
Eugenol , Embolia Pulmonar , Humanos , Camundongos , Animais , Eugenol/farmacologia , Eugenol/uso terapêutico , Eugenol/metabolismo , Fosfolipase C gama/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Modelos Animais de Doenças , Ativação Plaquetária , Agregação Plaquetária , Plaquetas/metabolismo , Fosforilação , Proteína Quinase C/metabolismo , Tromboxano A2/metabolismo , Colágeno/metabolismo , Embolia Pulmonar/tratamento farmacológico , Embolia Pulmonar/metabolismo , Fosfolipases A2 Citosólicas/metabolismo
5.
Small ; : e2400254, 2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38402432

RESUMO

Pyroptosis, a new mode of regulatory cell death, holds a promising prospect in tumor therapy. The occurrence of pyroptosis can trigger the release of damage-associated molecular patterns (DAMPs) and activate the antitumor immune response. Moreover, enhancing intracellular reactive oxygen species (ROS) generation can effectively induce pyroptosis. Herein, an integrated nanoplatform (hCZAG) based on zeolitic imidazolate framework-8 (ZIF-8) with Cu2+ and Zn2+ as active nodes and glucose oxidase (GOx) loading is constructed to evoke pyroptosis. GOx can effectively elevate intracellular hydrogen peroxide (H2 O2 ) levels to regulate the unfavorable tumor microenvironment (TME). Cu2+ can be reduced to Cu+ by endogenous overexpressed GSH and both Cu2+ and Cu+ can exert Fenton-like activity to promote ROS generation and amplify oxidative stress. In addition, the accumulation of Cu2+ leads to the aggregation of lipoylated dihydrolipoamide S-acetyltransferase (DLAT), thus resulting in cuproptosis. Notably, the outburst of ROS induced by hCZAG activates Caspase-1 proteins, leads to the cleavage of gasdermin D (GSDMD), and induces pyroptosis. Pyroptosis further elicits an adaptive immune response, leading to immunogenic cell death (ICD). This study provides effective strategies for triggering pyroptosis-mediated immunotherapy and achieving improved therapeutic effects.

6.
J Cell Mol Med ; 28(4): e18139, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38334198

RESUMO

Platelets assume a pivotal role in the cardiovascular diseases (CVDs). Thus, targeting platelet activation is imperative for mitigating CVDs. Ginkgetin (GK), from Ginkgo biloba L, renowned for its anticancer and neuroprotective properties, remains unexplored concerning its impact on platelet activation, particularly in humans. In this investigation, we delved into the intricate mechanisms through which GK influences human platelets. At low concentrations (0.5-1 µM), GK exhibited robust inhibition of collagen and arachidonic acid (AA)-induced platelet aggregation. Intriguingly, thrombin and U46619 remained impervious to GK's influence. GK's modulatory effect extended to ATP release, P-selectin expression, intracellular calcium ([Ca2+ ]i) levels and thromboxane A2 formation. It significantly curtailed the activation of various signaling cascades, encompassing phospholipase Cγ2 (PLCγ2)/protein kinase C (PKC), phosphoinositide 3-kinase/Akt/glycogen synthase kinase-3ß and mitogen-activated protein kinases. GK's antiplatelet effect was not reversed by SQ22536 (an adenylate cyclase inhibitor) or ODQ (a guanylate cyclase inhibitor), and GK had no effect on the phosphorylation of vasodilator-stimulated phosphoproteinSer157 or Ser239 . Moreover, neither cyclic AMP nor cyclic GMP levels were significantly increased after GK treatment. In mouse studies, GK notably extended occlusion time in mesenteric vessels, while sparing bleeding time. In conclusion, GK's profound impact on platelet activation, achieved through inhibiting PLCγ2-PKC cascade, culminates in the suppression of downstream signaling and, ultimately, the inhibition of platelet aggregation. These findings underscore the promising therapeutic potential of GK in the CVDs.


Assuntos
Biflavonoides , Nucleotídeos Cíclicos , Fosfolipases , Humanos , Animais , Camundongos , Nucleotídeos Cíclicos/metabolismo , Nucleotídeos Cíclicos/farmacologia , Fosfolipase C gama/metabolismo , Ácido Araquidônico/farmacologia , Ácido Araquidônico/metabolismo , Fosfolipases/metabolismo , Fosfolipases/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores da Agregação Plaquetária/farmacologia , Ativação Plaquetária , Plaquetas/metabolismo , Agregação Plaquetária , Proteína Quinase C/metabolismo , Fosforilação , Colágeno/metabolismo
7.
J Ethnopharmacol ; 319(Pt 3): 117356, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37890803

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Diabetic nephropathy (DN) is one of the most common and serious complications of diabetes, which lacks effective treatment. Salviae Miltiorrhizae Radix Et Rhizoma is one of the key compatible traditional Chinese medicine in the prescription for the treatment of DN. Salvianolic acid B and tanshinone IIA are two monomer active components with high content and clear structure in Salvia miltiorrhiza, which can effectively improve early (DN), respectively. AIM OF THE STUDY: To evaluate the compatible effect of salvianolic acid B and tanshinone IIA on early DN rats and elucidate the mechanism. METHODS: Early DN rats were induced by streptozotocin combined with high glucose and high fat diet, and intervened by salvianolic acid B, tanshinone IIA and their combinations. The pathological sections of kidney, liver and biochemical indexes were analyzed. Network pharmacology method was used to predict the possible mechanism. The mechanisms were elucidated by metabolomics, Elisa, and Western blot. RESULTS: Given our analysis, salvianolic acid B and tanshinone IIA can synergistically regulate 24 h UTP, Urea and Scr and improve kidney damage in early DN rats. The metabolic abnormalities of early DN rats were improved by regulating the biosynthesis of saturated fatty acids, glycerol phospholipid metabolism, steroid biosynthesis, alanine, and arachidonic acid. Salvianolic acid B combined with tanshinone IIA at a mass ratio of 13.4:1 can significantly reduce kidney inflammation, up-regulate p-PI3K/PI3K and p-Akt/Akt and down-regulate p-NF-κB/NF-κB, which better than the single-used group and can be reversed by PI3K inhibitor LY294002. CONCLUSION: Salvianolic acid B and tanshinone IIA can synergistically improve glucose and lipid disorders, liver and kidney damage, and resist kidney inflammation in early DN rats, and the mechanism may be related to regulating PI3K/Akt/NF-κB signaling pathway.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Nefrite , Animais , Ratos , NF-kappa B , Nefropatias Diabéticas/tratamento farmacológico , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Glucose , Inflamação
8.
Anal Chem ; 95(37): 14025-14035, 2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37694580

RESUMO

Nanocatalytic therapy (NCT) has made great achievements in tumor treatments due to its remarkable enzyme-like activities and high specificity. Nevertheless, the limited types of nanozymes and undesirable tumor microenvironments (TME) greatly weaken the therapeutic efficiency. Developing a combination therapy integrating NCT and other strategies is of great significance for optimal treatment outcomes. Herein, a AuPt-loaded Cu-doped polydopamine nanocomposite (AuPt@Cu-PDA) with multiple enzyme-like activities was rationally designed, which integrated photothermal therapy (PTT) and NCT. The peroxidase (POD)-like activity of AuPt@Cu-PDA can catalyze hydrogen peroxide (H2O2) into ·OH, and the catalase (CAT)-mimic activity can decompose H2O2 into O2 to alleviate hypoxia of TME, and O2 can be further converted into toxic ·O2- by its oxidase (OXD)-mimic activity. In addition, Cu2+ in AuPt@Cu-PDA can effectively consume GSH overexpressed in tumor cells. The boosting of reactive oxygen species (ROS) and glutathione (GSH) depletion can lead to severe oxidative stress, which can be enhanced by its excellent photothermal performance. Most importantly, the accumulation of Cu2+ can disrupt copper homeostasis, promote the aggregation of lipoylated dihydrolipoamide S-acetyltransferase (DLAT), disrupt the mitochondrial tricarboxylic acid (TCA) cycle, and finally result in cuproptosis. Collectively, photothermal and photoacoustic imaging (PTI/PAI)-guided cuproptosis-enhanced NCT/PTT can be achieved. This work may expand the application of nanozymes in synergistic therapy and provide new insights into cuproptosis-related therapeutic strategies.


Assuntos
Apoptose , Cobre , Peróxido de Hidrogênio , Diagnóstico por Imagem , Glutationa , Terapia Fototérmica , Microambiente Tumoral , Linhagem Celular Tumoral
9.
PLoS One ; 18(9): e0291462, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37699022

RESUMO

Both quercetin and leucine have been shown to exert moderately beneficial effects in preventing muscle atrophy induced by cancers or chemotherapy. However, the combined effects of quercetin and leucine, as well as the possible underlying mechanisms against cisplatin (CDDP)-induced muscle atrophy and cancer-related fatigue (CRF) remain unclear. To investigate the issues, male BALB/c mice were randomly assigned to the following groups for 9 weeks: Control, CDDP (3 mg/kg/week), CDDP+Q (quercetin 200 mg/kg/day administrated by gavage), CDDP+LL (a diet containing 0.8% leucine), CDDP+Q+LL, CDDP+HL (a diet containing 1.6% leucine), and CDDP+Q+HL. The results showed that quercetin in combination with LL or HL synergistically or additively attenuated CDDP-induced decreases in maximum grip strength, fat and muscle mass, muscle fiber size and MyHC level in muscle tissues. However, the combined effects on locomotor activity were less than additive. The combined treatments decreased the activation of the Akt/FoxO1/atrogin-1/MuRF1 signaling pathway (associated with muscle protein degradation), increased the activation of the mTOR and E2F-1 signaling pathways (associated with muscle protein synthesis and cell cycle/growth, respectively). The combined effects on signaling molecules present in muscle tissues were only additive or less. In addition, only Q+HL significantly increased glycogen levels compared to the CDDP group, while the combined treatments considerably decreased CDDP-induced proinflammatory cytokine and MCP-1 levels in the triceps muscle. Using tumor-bearing mice, we demonstrated that the combined treatments did not decrease the anticancer effect of CDDP. In conclusion, this study suggests that the combination of quercetin and leucine enhanced the suppressed effects on CDDP-induced muscle weakness and CRF through downregulating muscle atrophy and upregulating the glycogen level in muscle tissues without compromising the anticancer effect of CDDP. Multiple mechanisms, including regulation of several signaling pathways and decrease in proinflammatory mediator levels in muscles may contributed to the enhanced protective effect of the combined treatments on muscle atrophy.


Assuntos
Cisplatino , Quercetina , Masculino , Animais , Camundongos , Quercetina/farmacologia , Quercetina/uso terapêutico , Cisplatino/efeitos adversos , Leucina/farmacologia , Atrofia Muscular/induzido quimicamente , Atrofia Muscular/tratamento farmacológico , Fadiga , Glicogênio
10.
J Mater Chem B ; 11(38): 9128-9154, 2023 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-37698045

RESUMO

Nanomaterial-based cancer therapy has recently emerged as a new therapeutic modality with the advantages of minimal invasiveness and negligible normal tissue toxicity over traditional cancer treatments. However, the complex microenvironment and self-protective mechanisms of tumors have suppressed the therapeutic effect of emerging antitumor modalities, which seriously hindered the transformation of these modalities to clinical settings. Due to the excellent biocompatibility, unique physicochemical properties and easy surface modification, carbon dots, as promising nanomaterials in the biomedical field, can effectively improve the therapeutic effect of emerging antitumor modalities as multifunctional nanoplatforms. In this review, the mechanism and limitations of emerging therapeutic modalities are described. Further, the recent advances related to carbon dot-based nanoplatforms in overcoming the therapeutic barriers of various emerging therapies are systematically summarized. Finally, the prospects and potential obstacles for the clinical translation of carbon dot-based nanoplatforms in tumor therapy are also discussed. This review is expected to provide a reference for nanomaterial design and its development for the efficacy enhancement of emerging therapeutic modalities.


Assuntos
Nanopartículas , Nanoestruturas , Neoplasias , Humanos , Carbono/química , Nanoestruturas/química , Nanomedicina Teranóstica , Neoplasias/terapia , Nanopartículas/uso terapêutico , Nanopartículas/química , Microambiente Tumoral
11.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 31(4): 980-984, 2023 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-37551465

RESUMO

OBJECTIVE: To analyze 43 leukemia genes in children with acute lymphoblastic leukemia (ALL) in Yunnan province, and provide the basis for the diagnosis and treatment of children with ALL in this area. METHODS: The clinical data of 428 children with newly diagnosed ALL in Yunnan area from January 2015 to December 2020 were retrospectively analyzed. Multiple nested PCR technology was used to detect 43 common leukemia genes. RESULTS: Among the 428 children with ALL, 159 were positive for leukemia genes, with a positive rate of 37.15% (159/428), and a total of 15 leukemia genes were detected. Among the 159 leukemia gene-positive children, ETV6-RUNX1+ accounted for 25.79% (41/159), followed by E2A-PBX1+ and BCR-ABL+, accounting for 24.53% (39/159) and 23.27% (37/159) respectively. MLL+ accounted for 6.29% (10/159), WT1+ accounted for 4.40% (7/159), IKZF1 gene deletion and CRLF2+ accounted for 3.77% (6/159) respectively. The positive rate of MLL (46.15%) was the highest in <1-year old group, the positive rate of ETV6-RUNX1 (10.56%) was the highest in 1-10-year old group, and BCR-ABL+ rate (23.65%) was the highest in >10-year old group. The distribution of leukemia genes in different age groups was statistically significant (P <0.05). CONCLUSION: The most common fusion gene of children with ALL in Yunnan is ETV6-RUNX1, followed by E2A-PBX1 and BCR-ABL.


Assuntos
Proteínas de Fusão Oncogênica , Leucemia-Linfoma Linfoblástico de Células Precursoras , Criança , Humanos , Lactente , Pré-Escolar , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão bcr-abl/genética , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Estudos Retrospectivos , China , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Genótipo
12.
Immun Inflamm Dis ; 11(7): e939, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37506144

RESUMO

OBJECTIVE: Kawasaki disease (KD) can lead to permanent damage to coronary structures, the pathogenesis of which remains unknown. This experiment was designed to investigate whether miR-223-3p secreted in the serum of KD patients affects the proliferation and apoptosis of HCAECs in KD by regulating FOXP3. METHODS: Blood samples were collected in acute febrile phase of KD, after IVIG treatment, and from healthy controls. Transfected into HCAECs cells by synthetic FOXP3 siRNA/NC. A co-culture system was established between HCAECs cells transfected with FOXP3 siRNA/NC and THP1 cells added with three sera. RESULTS: Compared with the control group, the expressions of miR-223-3p, RORγt, and Th17 in serum of KD patients were significantly upregulated, and the expressions of TGF-ß1, FOXP3 and Treg were significantly downregulated. At the same time, the levels of IL-6, IL-17, and IL-23 were significantly increased, and the levels of IL-10 and FOXP3 were significantly decreased. After IVIG treatment, the patient's above results were reversed. The serum of KD patients increased the expression of miR-223-3p and inhibited the expression of FOXP3 in HCAECs cells. IVIG serum is the opposite. Overexpression of miR-223-3p also promoted the apoptosis of HCAECs. In addition, serum from KD patients promoted apoptosis, whereas serum after IVIG treatment inhibited apoptosis. KD patient serum downregulated the expression of FOXP3, Bcl2, TGF-ß1 and IL-10 in cells, and upregulated the expression of caspase3, Bax, IL-17, IL-6, and IL-23. The opposite results were obtained with IVIG-treated sera. CONCLUSION: miR-223-3p secreted in serum of KD patients can regulate the expression of FOXP3 and affect the proliferation, apoptosis, and inflammation of cells.


Assuntos
MicroRNAs , Síndrome de Linfonodos Mucocutâneos , Humanos , Interleucina-10 , Síndrome de Linfonodos Mucocutâneos/genética , Síndrome de Linfonodos Mucocutâneos/metabolismo , Síndrome de Linfonodos Mucocutâneos/patologia , Fator de Crescimento Transformador beta1 , Interleucina-17 , Interleucina-6 , Imunoglobulinas Intravenosas , MicroRNAs/genética , Apoptose , RNA Interferente Pequeno , Proliferação de Células , Fatores de Transcrição Forkhead/genética , Interleucina-23
13.
Cell Death Discov ; 9(1): 194, 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37369660

RESUMO

SOX1, a well-known tumor suppressor, delays malignant progression in most cancer types. However, high expression of SOX1 in late-stage head and neck squamous cell carcinoma leads to poor prognosis. In this study, we show that SOX1 induces nasopharyngeal carcinoma (NPC) cells to enter a quiescent state. Using a model that mimics therapeutic resistance and tumor recurrence, a subpopulation of SOX1-induced NPC cells is refractory to paclitaxel, a cell cycle-specific chemotherapy drug. These cells maintain a quiescent state with decreased translational activity and down-regulated cell growth potential. However, once SOX1 expression is decreased, the NPC cells recover and enter a proliferative state. The chemotherapy resistance induced by SOX1 can not pass to next generation, as the cells that undergo re-proliferation become sensitive to paclitaxel again. Moreover, SOX1 directly binds to the promoter region of the MYC gene, leading to transcriptional suppression. When switching to a paclitaxel-free culture environment, the cells with decreased levels of SOX1 re-express MYC, resulting in increased abundance of proliferative cancer cells. Our study presents an evolutionary trade-off between tumor growth and chemoresistance orchestrated by SOX1-MYC in NPC. Basing on the dynamic role of SOX1 in different stages of cancer development, SOX1 would be regarded as a "tumor hypnotist".

15.
Cancer Biother Radiopharm ; 38(8): 512-520, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33493417

RESUMO

Background: To investigate morphology, physical property, loadability, stability, and release profiles of a novel drug-eluting microsphere, CalliSpheres, in vitro and to explore its embolic efficacy and safety in vivo. Materials and Methods: CalliSpheres (50-150 µm, 100-300 µm, and 300-500 µm) and doxorubicin in different amounts (20, 40, 80, and 100 mg) and concentrations (5 and 10 mg/mL) were prepared for experiments. Dynamic light scattering and an Agilent 1260 high-performance liquid chromatography system were used to quantify bead diameters and the efficiency of drug loading and release, respectively. Twelve New Zealand rabbits were treated with catheter-aided hepatic embolization using CalliSpheres. Results: CalliSpheres displayed a red color after loading with doxorubicin, and the mean diameters decreased by 20.7-25.8%. Almost 100% of the drug was incorporated with CalliSpheres in different sizes immersed with doxorubicin 20 mg, while loading efficiency ranged from 75.8% to 100.0% with doxorubicin at 40, 80, and 100 mg dependent on CalliSpheres sizes (smaller sizes, higher loading efficiency). Elevated loading efficiency was observed at higher concentration of doxorubicin solutions. Regarding release profiles, doxorubicin was released from CalliSpheres quickly at the very beginning, and doxorubicin release percentage was increased in the 50-150 µm group (39.2% ± 1.2%) compared with the 100-300 µm group (31.3% ± 1.3%) and 300-500 µm group (31.7% ± 2.5%). Digital subtraction angiography, computed tomography, and histopathologic emanation results proved in vivo safety and embolic efficacy of CalliSpheres. Conclusions: CalliSpheres present with good physical characteristics and satisfactory loading and releasing profiles in vitro and are well tolerated and efficient in embolization in vivo.


Assuntos
Quimioembolização Terapêutica , Embolização Terapêutica , Neoplasias Hepáticas , Animais , Coelhos , Microesferas , Doxorrubicina/farmacologia , Doxorrubicina/química , Quimioembolização Terapêutica/métodos , Neoplasias Hepáticas/terapia
16.
Cancers (Basel) ; 14(17)2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36077795

RESUMO

Background: Human epidermal growth factor receptor 2 (HER2)-low tumor is a new entity defined as HER2 immunohistochemistry (IHC) 1+ or 2+/fluorescence in situ hybridization (FISH)-negative. We aimed to evaluate whether HER2 mRNA levels tested by quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) could better define HER2-low tumors. Patients and methods: Consecutive breast cancer patients with hormonal receptor-positive, HER2-negative diseases, and HER2 mRNA results were included. Clinicopathologic features, HER2 mRNA expression level, and prognosis were compared among HER2 0, 1+ and 2+/FISH− groups. Concordance of the HER2 category between qRT-PCR and IHC/FISH was analyzed for each group. Results: 2296 patients were included: 368 (16.0%) HER2 0, 911 (39.7%) 1+, and 1017 (44.3%) 2+/FISH− tumors. HER2 1+ cases shared similarities with HER2 0 tumors in terms of clinicopathologic features (all p > 0.05), whereas IHC 2+/FISH− cases were less often non-IDC (p = 0.045), node-negative (p = 0.044), and Ki-67 < 14% (p <0.001). The mRNA expression was similar between HER2 0 and 1+ cases (p = 0.063), and both were lower than 2+/FISH− cases (p < 0.001). A poor concordance rate was found between IHC/FISH and qRT-PCR for HER2 0 and HER2-low cases (Cohen's kappa 0.126, p < 0.001). No survival difference was observed among these groups, whether stratified by HER2 IHC/FISH status or mRNA level (all p > 0.05). Conclusions: HER2 1+ cases had similar clinicopathological features to HER2 0 breast cancers, and both were different from HER2 2+/FISH− cases. HER2 mRNA levels were comparable between HER2 0 and 1+ tumors, and both were significantly lower than IHC 2+/FISH− tumors. Neither IHC nor qRT-PCR may be optimal to quantify HER2-low expression, especially for HER2 1+ patients.

17.
J Nutr Biochem ; 110: 109149, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36049669

RESUMO

The present study investigated the effects of quercetin on cisplatin (CDDP)-induced common side effect, myelosuppression, and the possible mechanisms in Balb/c mice. The mice were randomly treated with CDDP alone or in combination with quercetin for 14 days. Quercetin was given by intraperitoneal injection (10 mg/kg, 3 times a week; IQ) or by a diet containing 0.1% or 1% quercetin (LQ and HQ, respectively). We found that quercetin supplementation especially HQ and IQ, significantly restored the decrease in number of bone marrow cells, total white blood cells, red blood cells and platelets, and the body weight in mice exposed to CDDP (P≤.05). Similar trends were observed in the number of neutrophils, lymphocytes and monocytes in the plasma. HQ and IQ also increased the levels of hematopoietic growth factors (HGFs), especially in granulocyte-macrophage-colony stimulating factor and IL-9 (P<.05), but decreased the levels of hematopoietic inhibitory factors (HIFs) and oxidative stress in the plasma and the bone marrow in CDDP-exposed mice. Furthermore, both quercetin and quercetin-3-O-glucuronide (Q3G) significantly increase cell viability and inhibited apoptosis at 48 or 72 h (P≤.05), accompanied by increasing HGF levels and decreasing HIF levels in the cultured medium in 32D cells exposed to CDDP. IL-9 siRNA transfection suppressed the effects of quercetin and Q3G on cell viability (P≤.05) in32D cells. In conclusion, our results indicate that quercetin attenuates CDDP-induced myelosuppression through the mechanisms associated with regulation of HGFs and HIFs.


Assuntos
Cisplatino , Quercetina , Animais , Camundongos , Cisplatino/toxicidade , Suplementos Nutricionais , Interleucina-9 , Camundongos Endogâmicos BALB C , Quercetina/farmacologia
18.
World J Clin Cases ; 10(16): 5463-5469, 2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-35812660

RESUMO

BACKGROUND: Visceral leishmaniasis related-hemophagocytic lymphohistiocytosis (VL-HLH) is a hemophagocytic syndrome caused by Leishmania infection. VL-HLH is rare, especially in nonendemic areas where the disease is severe, and mortality rates are high. The key to diagnosing VL-HLH is to find the pathogen; therefore, the Leishmania must be accurately identified for timely clinical treatment. CASE SUMMARY: We retrospectively analyzed the clinical data, laboratory examination results, and bone marrow cell morphology of two children with VL-HLH diagnosed via bone marrow cell morphology at Kunming Children's Hospital of Yunnan, China. Both cases suspected of having malignant tumors at other hospitals and who were unresponsive to treatment were transferred to Kunming Children's Hospital. They are Han Chinese girls, one was 2 years old and the other one is 9 mo old. They had repeated fevers, pancytopenia, hepatosplenomegaly, hypertriglyceridemia, and hypofibrinogenemia over a long period and met the HLH-2004 criteria. Their HLH genetic test results were negative. Both children underwent chemotherapy as per the HLH-2004 chemotherapy regimen, but it was ineffective and accompanied by serious infections. We found Leishmania amastigotes in their bone marrow via morphological examination of their bone marrow cells, which showed hemophagocytic cells; thus, the children were diagnosed with VL-HLH. After being transferred to a specialty hospital for treatment, the condition was well-controlled. CONCLUSION: Morphological examination of bone marrow cells plays an important role in diagnosing VL-HLH. When clinically diagnosing secondary HLH, VL-HLH should be considered in addition to common pathogens, especially in patients for whom HLH-2004 chemotherapy regimens are ineffective. For infants and young children, bone marrow cytology examinations should be performed several times and as early as possible to find the pathogens to reduce potential misdiagnoses.

19.
Int J Mol Sci ; 23(5)2022 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-35269987

RESUMO

The overall five-year survival rate for patients with esophageal cancer is low (15 to 25%) because of the poor prognosis at earlier stages. Rutaecarpine (RTP) is a bioalkaloid found in the traditional Chinese herb Evodia rutaecarpa and has been shown to exhibit anti-proliferative effect on tumor cells. However, the mechanisms by which RTP confer these effects and its importance in esophageal squamous cell carcinoma treatment remain unclear. Thus, in the present study, we first incubated human esophageal squamous cell carcinoma cell line, CE81T/VGH, with RTP to evaluate RTP's effects on tumor cell growth and apoptosis. We also performed a xenograft study to confirm the in vitro findings. Furthermore, we determined the expression of p53, Bax, bcl-2, caspase-3, caspase-9, and PCNA in CE81T/VGH cells or the tumor tissues to investigate the possible mechanisms. All the effects of TRP were compared with that of cisplatin. The results showed that RTP significantly inhibits CE81T/VGH cell growth, promotes arrest of cells in the G2/M phase, and induces apoptosis. Consistently, the in vivo study showed that tumor size, tumor weight, and proliferating cell nuclear antigen protein expression in tumor tissue are significantly reduced in the high-dose RTP treatment group. Furthermore, the in vitro and in vivo studies showed that RTP increases the expression of p53 and Bax proteins, while inhibiting the expression of Bcl-2 in cancer cells. In addition, RTP significantly increases the expression of cleaved caspase-9 and cleaved caspase-3 proteins in tumor tissues in mice. These results suggest that RTP may trigger the apoptosis and inhibit growth in CE81T/VGH cells by the mechanisms associated with the regulation of the expression of p53, Bax, Bcl-2, as well as caspase-9 and caspase-3.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Animais , Apoptose , Caspase 3/metabolismo , Caspase 9/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Humanos , Alcaloides Indólicos , Camundongos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Quinazolinas , Proteína Supressora de Tumor p53 , Proteína X Associada a bcl-2/metabolismo
20.
Brain Behav ; 12(4): e2530, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35234352

RESUMO

BACKGROUND: Whether the circadian rhythms of blood pressure (BP) contribute to the presence of cerebral microbleeds (CMBs) remains unknown. This study aimed to assess the relationship between nocturnal BP and CMBs in hypertensive patients. METHODS: This prospective case-control study recruited 51 hypertensive patients with CMBs and 51 hypertensive patients without CMBs, matched with age and gender, serving as controls. A 24-h ambulatory BP monitoring was conducted in all subjects. Differences in ambulatory BP parameters between the two groups were compared. Logistic regression analyzes were conducted to investigate the relationship between the ambulatory BP parameters and presence of CMBs. RESULTS: Patients with CMBs had a significant higher nocturnal mean SBP and lower relative nocturnal SBP dipping rate. Two logistic models were constructed to explore the association between ABPM indices and the presence of CMBs, adjusted with history of ischemic stroke and smoking. In model 1, higher nocturnal mean SBP positively correlated with presence of CMBs [standardized ß = 0.254, odds ratio (OR) = 1.029, p = .041]. In model 2, the relative nocturnal SBP dipping rate was negatively correlated with CMBs (standardized ß = -.363, OR = 0.918, p = .007). Only patients with deep CMBs had significant higher nocturnal mean SBP and lower relative nocturnal SBP dipping rate in comparison with those without CMBs. CONCLUSIONS: Higher nocturnal SBP and lower relative nocturnal SBP dipping rate may be associated with CMBs in hypertensive patients.


Assuntos
Ritmo Circadiano , Hipertensão , Pressão Sanguínea/fisiologia , Monitorização Ambulatorial da Pressão Arterial , Estudos de Casos e Controles , Hemorragia Cerebral/complicações , Hemorragia Cerebral/diagnóstico por imagem , Humanos , Hipertensão/complicações
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA