Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Nat Aging ; 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38834882

RESUMO

Clonal hematopoiesis of indeterminate potential (CHIP), whereby somatic mutations in hematopoietic stem cells confer a selective advantage and drive clonal expansion, not only correlates with age but also confers increased risk of morbidity and mortality. Here, we leverage genetically predicted traits to identify factors that determine CHIP clonal expansion rate. We used the passenger-approximated clonal expansion rate method to quantify the clonal expansion rate for 4,370 individuals in the National Heart, Lung, and Blood Institute (NHLBI) Trans-Omics for Precision Medicine (TOPMed) cohort and calculated polygenic risk scores for DNA methylation aging, inflammation-related measures and circulating protein levels. Clonal expansion rate was significantly associated with both genetically predicted and measured epigenetic clocks. No associations were identified with inflammation-related lab values or diseases and CHIP expansion rate overall. A proteome-wide search identified predicted circulating levels of myeloid zinc finger 1 and anti-Müllerian hormone as associated with an increased CHIP clonal expansion rate and tissue inhibitor of metalloproteinase 1 and glycine N-methyltransferase as associated with decreased CHIP clonal expansion rate. Together, our findings identify epigenetic and proteomic patterns associated with the rate of hematopoietic clonal expansion.

2.
Hum Mol Genet ; 32(20): 2981-2995, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37531237

RESUMO

Protein phosphatase 1 regulatory subunit 3F (PPP1R3F) is a member of the glycogen targeting subunits (GTSs), which belong to the large group of regulatory subunits of protein phosphatase 1 (PP1), a major eukaryotic serine/threonine protein phosphatase that regulates diverse cellular processes. Here, we describe the identification of hemizygous variants in PPP1R3F associated with a novel X-linked recessive neurodevelopmental disorder in 13 unrelated individuals. This disorder is characterized by developmental delay, mild intellectual disability, neurobehavioral issues such as autism spectrum disorder, seizures and other neurological findings including tone, gait and cerebellar abnormalities. PPP1R3F variants segregated with disease in affected hemizygous males that inherited the variants from their heterozygous carrier mothers. We show that PPP1R3F is predominantly expressed in brain astrocytes and localizes to the endoplasmic reticulum in cells. Glycogen content in PPP1R3F knockout astrocytoma cells appears to be more sensitive to fluxes in extracellular glucose levels than in wild-type cells, suggesting that PPP1R3F functions in maintaining steady brain glycogen levels under changing glucose conditions. We performed functional studies on nine of the identified variants and observed defects in PP1 binding, protein stability, subcellular localization and regulation of glycogen metabolism in most of them. Collectively, the genetic and molecular data indicate that deleterious variants in PPP1R3F are associated with a new X-linked disorder of glycogen metabolism, highlighting the critical role of GTSs in neurological development. This research expands our understanding of neurodevelopmental disorders and the role of PP1 in brain development and proper function.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Masculino , Humanos , Deficiência Intelectual/genética , Deficiência Intelectual/complicações , Proteína Fosfatase 1/genética , Transtorno do Espectro Autista/genética , Transtorno Autístico/genética , Glucose , Glicogênio , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/complicações
3.
Nat Genet ; 55(7): 1138-1148, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37308787

RESUMO

Human genetic studies of smoking behavior have been thus far largely limited to common variants. Studying rare coding variants has the potential to identify drug targets. We performed an exome-wide association study of smoking phenotypes in up to 749,459 individuals and discovered a protective association in CHRNB2, encoding the ß2 subunit of the α4ß2 nicotine acetylcholine receptor. Rare predicted loss-of-function and likely deleterious missense variants in CHRNB2 in aggregate were associated with a 35% decreased odds for smoking heavily (odds ratio (OR) = 0.65, confidence interval (CI) = 0.56-0.76, P = 1.9 × 10-8). An independent common variant association in the protective direction ( rs2072659 ; OR = 0.96; CI = 0.94-0.98; P = 5.3 × 10-6) was also evident, suggesting an allelic series. Our findings in humans align with decades-old experimental observations in mice that ß2 loss abolishes nicotine-mediated neuronal responses and attenuates nicotine self-administration. Our genetic discovery will inspire future drug designs targeting CHRNB2 in the brain for the treatment of nicotine addiction.


Assuntos
Nicotina , Tabagismo , Humanos , Animais , Camundongos , Fumar/genética , Tabagismo/genética , Fenótipo , Razão de Chances
4.
Diabetes Obes Metab ; 25(9): 2586-2594, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37264484

RESUMO

AIM: Glucagon-like peptide-1 receptor agonists provide multiple benefits to patients with type 2 diabetes, including improved glycaemic control, weight loss and decreased risk of major adverse cardiovascular events. Because drug responses vary among individuals, we initiated investigations to identify genetic variants associated with the magnitude of drug responses. METHODS: Exenatide (5 µg, subcutaneously) or saline (0.2 ml, subcutaneously) was administered to 62 healthy volunteers. Frequently sampled intravenous glucose tolerance tests were conducted to assess the impact of exenatide on insulin secretion and insulin action. This pilot study was a crossover design in which participants received exenatide and saline in random order. RESULTS: Exenatide increased first phase insulin secretion 1.9-fold (p = 1.9 × 10-9 ) and accelerated the rate of glucose disappearance 2.4-fold (p = 2 × 10-10 ). Minimal model analysis showed that exenatide increased glucose effectiveness (Sg ) by 32% (p = .0008) but did not significantly affect insulin sensitivity (Si ). The exenatide-induced increase in insulin secretion made the largest contribution to interindividual variation in exenatide-induced acceleration of glucose disappearance while interindividual variation in the drug effect on Sg contributed to a lesser extent (ß = 0.58 or 0.27, respectively). CONCLUSIONS: This pilot study provides validation for the value of a frequently sampled intravenous glucose tolerance test (including minimal model analysis) to provide primary data for our ongoing pharmacogenomic study of pharmacodynamic effects of semaglutide (NCT05071898). Three endpoints provide quantitative assessments of the effects of glucagon-like peptide-1 receptor agonists on glucose metabolism: first phase insulin secretion, glucose disappearance rates and glucose effectiveness.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Exenatida/uso terapêutico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Glucose/uso terapêutico , Secreção de Insulina , Hipoglicemiantes/efeitos adversos , Receptor do Peptídeo Semelhante ao Glucagon 1/uso terapêutico , Projetos Piloto , Peptídeo 1 Semelhante ao Glucagon/uso terapêutico , Insulina/uso terapêutico , Peptídeos/farmacologia , Peptídeos/uso terapêutico , Peçonhas/efeitos adversos , Glicemia
5.
Nature ; 616(7958): 755-763, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37046083

RESUMO

Mutations in a diverse set of driver genes increase the fitness of haematopoietic stem cells (HSCs), leading to clonal haematopoiesis1. These lesions are precursors for blood cancers2-6, but the basis of their fitness advantage remains largely unknown, partly owing to a paucity of large cohorts in which the clonal expansion rate has been assessed by longitudinal sampling. Here, to circumvent this limitation, we developed a method to infer the expansion rate from data from a single time point. We applied this method to 5,071 people with clonal haematopoiesis. A genome-wide association study revealed that a common inherited polymorphism in the TCL1A promoter was associated with a slower expansion rate in clonal haematopoiesis overall, but the effect varied by driver gene. Those carrying this protective allele exhibited markedly reduced growth rates or prevalence of clones with driver mutations in TET2, ASXL1, SF3B1 and SRSF2, but this effect was not seen in clones with driver mutations in DNMT3A. TCL1A was not expressed in normal or DNMT3A-mutated HSCs, but the introduction of mutations in TET2 or ASXL1 led to the expression of TCL1A protein and the expansion of HSCs in vitro. The protective allele restricted TCL1A expression and expansion of mutant HSCs, as did experimental knockdown of TCL1A expression. Forced expression of TCL1A promoted the expansion of human HSCs in vitro and mouse HSCs in vivo. Our results indicate that the fitness advantage of several commonly mutated driver genes in clonal haematopoiesis may be mediated by TCL1A activation.


Assuntos
Hematopoiese Clonal , Células-Tronco Hematopoéticas , Animais , Humanos , Camundongos , Alelos , Hematopoiese Clonal/genética , Estudo de Associação Genômica Ampla , Hematopoese/genética , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Mutação , Regiões Promotoras Genéticas
6.
Eur J Hum Genet ; 31(5): 588-595, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36927983

RESUMO

We multiply ascertained the BRCA1 pathogenic missense variant c.5207T > C; p.Val1736Ala (V1736A) in clinical investigation of breast and ovarian cancer families from Orkney in the Northern Isles of Scotland, UK. We sought to investigate the frequency and clinical relevance of this variant in those of Orcadian ancestry as an exemplar of the value of population cohorts in clinical care, especially in isolated populations. Oral history and birth, marriage and death registrations indicated genealogical linkage of the clinical cases to ancestors from the Isle of Westray, Orkney. Further clinical cases were identified through targeted testing for V1736A in women of Orcadian ancestry attending National Health Service (NHS) genetic clinics for breast and ovarian cancer family risk assessments. The variant segregates with female breast and ovarian cancer in clinically ascertained cases. Separately, exome sequence data from 2088 volunteer participants with three or more Orcadian grandparents, in the ORCADES research cohort, was interrogated to estimate the population prevalence of V1736A in Orcadians. The effects of the variant were assessed using Electronic Health Record (EHR) linkage. Twenty out of 2088 ORCADES research volunteers (~1%) carry V1736A, with a common haplotype around the variant. This allele frequency is ~480-fold higher than in UK Biobank participants. Cost-effectiveness of population screening for BRCA1 founder pathogenic variants has been demonstrated at a carrier frequency below the ~1% observed here. Thus we suggest that Orcadian women should be offered testing for the BRCA1 V1736A founder pathogenic variant, starting with those with known Westray ancestry.


Assuntos
Neoplasias da Mama , Neoplasias Ovarianas , Humanos , Feminino , Medicina Estatal , Proteína BRCA1/genética , Neoplasias Ovarianas/epidemiologia , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Frequência do Gene , Haplótipos , Escócia/epidemiologia , Neoplasias da Mama/genética , Predisposição Genética para Doença , Proteína BRCA2/genética , Testes Genéticos
7.
Nature ; 612(7939): 301-309, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36450978

RESUMO

Clonal haematopoiesis involves the expansion of certain blood cell lineages and has been associated with ageing and adverse health outcomes1-5. Here we use exome sequence data on 628,388 individuals to identify 40,208 carriers of clonal haematopoiesis of indeterminate potential (CHIP). Using genome-wide and exome-wide association analyses, we identify 24 loci (21 of which are novel) where germline genetic variation influences predisposition to CHIP, including missense variants in the lymphocytic antigen coding gene LY75, which are associated with reduced incidence of CHIP. We also identify novel rare variant associations with clonal haematopoiesis and telomere length. Analysis of 5,041 health traits from the UK Biobank (UKB) found relationships between CHIP and severe COVID-19 outcomes, cardiovascular disease, haematologic traits, malignancy, smoking, obesity, infection and all-cause mortality. Longitudinal and Mendelian randomization analyses revealed that CHIP is associated with solid cancers, including non-melanoma skin cancer and lung cancer, and that CHIP linked to DNMT3A is associated with the subsequent development of myeloid but not lymphoid leukaemias. Additionally, contrary to previous findings from the initial 50,000 UKB exomes6, our results in the full sample do not support a role for IL-6 inhibition in reducing the risk of cardiovascular disease among CHIP carriers. Our findings demonstrate that CHIP represents a complex set of heterogeneous phenotypes with shared and unique germline genetic causes and varied clinical implications.


Assuntos
COVID-19 , Doenças Cardiovasculares , Humanos , Hematopoiese Clonal/genética , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/genética
8.
Nat Commun ; 13(1): 4844, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35999217

RESUMO

Body fat distribution is a major, heritable risk factor for cardiometabolic disease, independent of overall adiposity. Using exome-sequencing in 618,375 individuals (including 160,058 non-Europeans) from the UK, Sweden and Mexico, we identify 16 genes associated with fat distribution at exome-wide significance. We show 6-fold larger effect for fat-distribution associated rare coding variants compared with fine-mapped common alleles, enrichment for genes expressed in adipose tissue and causal genes for partial lipodystrophies, and evidence of sex-dimorphism. We describe an association with favorable fat distribution (p = 1.8 × 10-09), favorable metabolic profile and protection from type 2 diabetes (~28% lower odds; p = 0.004) for heterozygous protein-truncating mutations in INHBE, which encodes a circulating growth factor of the activin family, highly and specifically expressed in hepatocytes. Our results suggest that inhibin ßE is a liver-expressed negative regulator of adipose storage whose blockade may be beneficial in fat distribution-associated metabolic disease.


Assuntos
Diabetes Mellitus Tipo 2 , Subunidades beta de Inibinas/genética , Tecido Adiposo , Adiposidade/genética , Diabetes Mellitus Tipo 2/genética , Exoma/genética , Humanos , Mutação
9.
N Engl J Med ; 387(4): 332-344, 2022 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-35939579

RESUMO

BACKGROUND: Exome sequencing in hundreds of thousands of persons may enable the identification of rare protein-coding genetic variants associated with protection from human diseases like liver cirrhosis, providing a strategy for the discovery of new therapeutic targets. METHODS: We performed a multistage exome sequencing and genetic association analysis to identify genes in which rare protein-coding variants were associated with liver phenotypes. We conducted in vitro experiments to further characterize associations. RESULTS: The multistage analysis involved 542,904 persons with available data on liver aminotransferase levels, 24,944 patients with various types of liver disease, and 490,636 controls without liver disease. We found that rare coding variants in APOB, ABCB4, SLC30A10, and TM6SF2 were associated with increased aminotransferase levels and an increased risk of liver disease. We also found that variants in CIDEB, which encodes a structural protein found in hepatic lipid droplets, had a protective effect. The burden of rare predicted loss-of-function variants plus missense variants in CIDEB (combined carrier frequency, 0.7%) was associated with decreased alanine aminotransferase levels (beta per allele, -1.24 U per liter; 95% confidence interval [CI], -1.66 to -0.83; P = 4.8×10-9) and with 33% lower odds of liver disease of any cause (odds ratio per allele, 0.67; 95% CI, 0.57 to 0.79; P = 9.9×10-7). Rare coding variants in CIDEB were associated with a decreased risk of liver disease across different underlying causes and different degrees of severity, including cirrhosis of any cause (odds ratio per allele, 0.50; 95% CI, 0.36 to 0.70). Among 3599 patients who had undergone bariatric surgery, rare coding variants in CIDEB were associated with a decreased nonalcoholic fatty liver disease activity score (beta per allele in score units, -0.98; 95% CI, -1.54 to -0.41 [scores range from 0 to 8, with higher scores indicating more severe disease]). In human hepatoma cell lines challenged with oleate, CIDEB small interfering RNA knockdown prevented the buildup of large lipid droplets. CONCLUSIONS: Rare germline mutations in CIDEB conferred substantial protection from liver disease. (Funded by Regeneron Pharmaceuticals.).


Assuntos
Proteínas Reguladoras de Apoptose , Mutação em Linhagem Germinativa , Hepatopatias , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Predisposição Genética para Doença/genética , Predisposição Genética para Doença/prevenção & controle , Humanos , Fígado/metabolismo , Hepatopatias/genética , Hepatopatias/metabolismo , Hepatopatias/prevenção & controle , Transaminases/genética , Sequenciamento do Exoma
10.
Front Aging ; 3: 841796, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35821803

RESUMO

Aging is characterized by increased mortality, functional decline, and exponential increases in the incidence of diseases such as cancer, stroke, cardiovascular disease, neurological disease, respiratory disease, etc. Though the role of aging in these diseases is widely accepted and considered to be a common denominator, the underlying mechanisms are largely unknown. A significant age-related feature observed in many population cohorts is somatic mosaicism, the detectable accumulation of somatic mutations in multiple cell types and tissues, particularly those with high rates of cell turnover (e.g., skin, liver, and hematopoietic cells). Somatic mosaicism can lead to the development of cellular clones that expand with age in otherwise normal tissues. In the hematopoietic system, this phenomenon has generally been referred to as "clonal hematopoiesis of indeterminate potential" (CHIP) when it applies to a subset of clones in which mutations in driver genes of hematologic malignancies are found. Other mechanisms of clonal hematopoiesis, including large chromosomal alterations, can also give rise to clonal expansion in the absence of conventional CHIP driver gene mutations. Both types of clonal hematopoiesis (CH) have been observed in studies of animal models and humans in association with altered immune responses, increased mortality, and disease risk. Studies in murine models have found that some of these clonal events are involved in abnormal inflammatory and metabolic changes, altered DNA damage repair and epigenetic changes. Studies in long-lived individuals also show the accumulation of somatic mutations, yet at this advanced age, carriership of somatic mutations is no longer associated with an increased risk of mortality. While it remains to be elucidated what factors modify this genotype-phenotype association, i.e., compensatory germline genetics, cellular context of the mutations, protective effects to diseases at exceptional age, it points out that the exceptionally long-lived are key to understand the phenotypic consequences of CHIP mutations. Assessment of the clinical significance of somatic mutations occurring in blood cell types for age-related outcomes in human populations of varied life and health span, environmental exposures, and germline genetic risk factors will be valuable in the development of personalized strategies tailored to specific somatic mutations for healthy aging.

11.
Eur J Hum Genet ; 30(10): 1159-1166, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35688891

RESUMO

Insulin-like growth factor binding protein 4 (IGFBP4) is involved in adipogenesis, and IGFBP4 null mice have decreased body fat through decreased PPAR-γ expression. In the current study, we assessed whether variation in the IGFBP4 coding region influences body mass index (BMI) in American Indians who are disproportionately affected by obesity. Whole exome sequence data from a population-based sample of 6779 American Indians with longitudinal measures of BMI were used to identify variation in IGFBP4 that associated with BMI. A novel variant that predicts a p.Ser76Thr in IGFBP4 (Thr-allele frequency = 0.02) was identified which associated with the maximum BMI measured during adulthood (BMI 39.8 kg/m2 for Thr-allele homozygotes combined with heterozygotes vs. 36.2 kg/m2 for Ser-allele homozygotes, ß = 6.7% per Thr-allele, p = 8.0 × 10-5, adjusted for age, sex, birth-year and the first five genetic principal components) and the maximum age- and sex-adjusted BMI z-score measured during childhood/adolescence (z-score 0.70 SD for Thr-allele heterozygotes vs. 0.32 SD for Ser-allele homozygotes, ß = 0.37 SD per Thr-allele, p = 8.8 × 10-6). In vitro functional studies showed that IGFBP4 with the Thr-allele (BMI-increasing) had a 55% decrease (p = 0.0007) in FOXO-induced transcriptional activity, reflecting increased activation of the PI3K/AKT pathway mediated through increased IGF signaling. Over-expression and knock-down of IGFBP4 in OP9 cells during differentiation showed that IGFBP4 upregulates adipogenesis through PPARγ, CEBPα, AGPAT2 and SREBP1 expression. We propose that this American Indian specific variant in IGFBP4 affects obesity via an increase of IGF signaling.


Assuntos
Indígenas Norte-Americanos , Proteína 4 de Ligação a Fator de Crescimento Semelhante à Insulina , Animais , Índice de Massa Corporal , Humanos , Indígenas Norte-Americanos/genética , Proteína 4 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Camundongos , Obesidade/genética , PPAR gama/genética , Fosfatidilinositol 3-Quinases/genética , Polimorfismo de Nucleotídeo Único , Proteínas Proto-Oncogênicas c-akt/genética , Indígena Americano ou Nativo do Alasca
12.
BMC Cardiovasc Disord ; 22(1): 109, 2022 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-35300601

RESUMO

BACKGROUND: Familial hypercholesterolemia (FH) due to a founder variant in Apolipoprotein B (ApoBR3500Q) is reported in 12% of the Pennsylvania Amish community. By studying a cohort of ApoBR3500Q heterozygotes and homozygotes, we aimed to characterize the biochemical and cardiac imaging features in children and young adults with a common genetic background and similar lifestyle. METHODS: We employed advanced lipid profile testing, carotid intima media thickness (CIMT), pulse wave velocity (PWV), and peripheral artery tonometry (PAT) to assess atherosclerosis in a cohort of Amish ApoBR3500Q heterozygotes (n = 13), homozygotes (n = 3), and their unaffected, age-matched siblings (n = 9). ApoBR3500Q homozygotes were not included in statistical comparisons. RESULTS: LDL cholesterol (LDL-C) was significantly elevated among ApoBR3500Q heterozygotes compared to sibling controls, though several ApoBR3500Q heterozygotes had LDL-C levels in the normal range. LDL particles (LDL-P), small, dense LDL particles, and ApoB were also significantly elevated among subjects with ApoBR3500Q. Despite these differences in serum lipids and particles, CIMT and PWV were not significantly different between ApoBR3500Q heterozygotes and controls in age-adjusted analysis. CONCLUSIONS: We provide a detailed description of the serum lipids, atherosclerotic plaque burden, vascular stiffness, and endothelial function among children and young adults with FH due to heterozygous ApoBR3500Q. Fasting LDL-C was lower than what is seen with other forms of FH, and even normal in several ApoBR3500Q heterozygotes, emphasizing the importance of cascade genetic testing among related individuals for diagnosis. We found increased number of LDL particles among ApoBR3500Q heterozygotes but an absence of detectable atherosclerosis.


Assuntos
Aterosclerose , Hiperlipoproteinemia Tipo II , Amish/genética , Apolipoproteínas B/genética , Espessura Intima-Media Carotídea , Criança , LDL-Colesterol , Humanos , Hiperlipoproteinemia Tipo II/diagnóstico , Hiperlipoproteinemia Tipo II/genética , Mutação , Análise de Onda de Pulso , Receptores de LDL/genética , Adulto Jovem
13.
Nature ; 599(7886): 628-634, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34662886

RESUMO

A major goal in human genetics is to use natural variation to understand the phenotypic consequences of altering each protein-coding gene in the genome. Here we used exome sequencing1 to explore protein-altering variants and their consequences in 454,787 participants in the UK Biobank study2. We identified 12 million coding variants, including around 1 million loss-of-function and around 1.8 million deleterious missense variants. When these were tested for association with 3,994 health-related traits, we found 564 genes with trait associations at P ≤ 2.18 × 10-11. Rare variant associations were enriched in loci from genome-wide association studies (GWAS), but most (91%) were independent of common variant signals. We discovered several risk-increasing associations with traits related to liver disease, eye disease and cancer, among others, as well as risk-lowering associations for hypertension (SLC9A3R2), diabetes (MAP3K15, FAM234A) and asthma (SLC27A3). Six genes were associated with brain imaging phenotypes, including two involved in neural development (GBE1, PLD1). Of the signals available and powered for replication in an independent cohort, 81% were confirmed; furthermore, association signals were generally consistent across individuals of European, Asian and African ancestry. We illustrate the ability of exome sequencing to identify gene-trait associations, elucidate gene function and pinpoint effector genes that underlie GWAS signals at scale.


Assuntos
Bancos de Espécimes Biológicos , Bases de Dados Genéticas , Sequenciamento do Exoma , Exoma/genética , África/etnologia , Ásia/etnologia , Asma/genética , Diabetes Mellitus/genética , Europa (Continente)/etnologia , Oftalmopatias/genética , Feminino , Predisposição Genética para Doença/genética , Variação Genética , Estudo de Associação Genômica Ampla , Humanos , Hipertensão/genética , Hepatopatias/genética , Masculino , Mutação , Neoplasias/genética , Característica Quantitativa Herdável , Reino Unido
14.
Sci Rep ; 11(1): 5595, 2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33692434

RESUMO

Inflammatory bowel disease (IBD), clinically defined as Crohn's disease (CD), ulcerative colitis (UC), or IBD-unclassified, results in chronic inflammation of the gastrointestinal tract in genetically susceptible hosts. Pediatric onset IBD represents ≥ 25% of all IBD diagnoses and often presents with intestinal stricturing, perianal disease, and failed response to conventional treatments. NOD2 was the first and is the most replicated locus associated with adult IBD, to date. However, its role in pediatric onset IBD is not well understood. We performed whole-exome sequencing on a cohort of 1,183 patients with pediatric onset IBD (ages 0-18.5 years). We identified 92 probands with biallelic rare and low frequency NOD2 variants accounting for approximately 8% of our cohort, suggesting a Mendelian inheritance pattern of disease. Additionally, we investigated the contribution of recessive inheritance of NOD2 alleles in adult IBD patients from a large clinical population cohort. We found that recessive inheritance of NOD2 variants explains ~ 7% of cases in this adult IBD cohort, including ~ 10% of CD cases, confirming the observations from our pediatric IBD cohort. Exploration of EHR data showed that several of these adult IBD patients obtained their initial IBD diagnosis before 18 years of age, consistent with early onset disease. While it has been previously reported that carriers of more than one NOD2 risk alleles have increased susceptibility to Crohn's Disease (CD), our data formally demonstrate that recessive inheritance of NOD2 alleles is a mechanistic driver of early onset IBD, specifically CD, likely due to loss of NOD2 protein function. Collectively, our findings show that recessive inheritance of rare and low frequency deleterious NOD2 variants account for 7-10% of CD cases and implicate NOD2 as a Mendelian disease gene for early onset Crohn's Disease.


Assuntos
Colite Ulcerativa/genética , Doença de Crohn/genética , Mutação , Proteína Adaptadora de Sinalização NOD2/genética , Adolescente , Adulto , Idade de Início , Criança , Pré-Escolar , Colite Ulcerativa/metabolismo , Doença de Crohn/metabolismo , Feminino , Humanos , Lactente , Recém-Nascido , Masculino
15.
Nature ; 586(7831): 749-756, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33087929

RESUMO

The UK Biobank is a prospective study of 502,543 individuals, combining extensive phenotypic and genotypic data with streamlined access for researchers around the world1. Here we describe the release of exome-sequence data for the first 49,960 study participants, revealing approximately 4 million coding variants (of which around 98.6% have a frequency of less than 1%). The data include 198,269 autosomal predicted loss-of-function (LOF) variants, a more than 14-fold increase compared to the imputed sequence. Nearly all genes (more than 97%) had at least one carrier with a LOF variant, and most genes (more than 69%) had at least ten carriers with a LOF variant. We illustrate the power of characterizing LOF variants in this population through association analyses across 1,730 phenotypes. In addition to replicating established associations, we found novel LOF variants with large effects on disease traits, including PIEZO1 on varicose veins, COL6A1 on corneal resistance, MEPE on bone density, and IQGAP2 and GMPR on blood cell traits. We further demonstrate the value of exome sequencing by surveying the prevalence of pathogenic variants of clinical importance, and show that 2% of this population has a medically actionable variant. Furthermore, we characterize the penetrance of cancer in carriers of pathogenic BRCA1 and BRCA2 variants. Exome sequences from the first 49,960 participants highlight the promise of genome sequencing in large population-based studies and are now accessible to the scientific community.


Assuntos
Bases de Dados Genéticas , Sequenciamento do Exoma , Exoma/genética , Mutação com Perda de Função/genética , Fenótipo , Idoso , Densidade Óssea/genética , Colágeno Tipo VI/genética , Demografia , Feminino , Genes BRCA1 , Genes BRCA2 , Genótipo , Humanos , Canais Iônicos/genética , Masculino , Pessoa de Meia-Idade , Neoplasias/genética , Penetrância , Fragmentos de Peptídeos/genética , Reino Unido , Varizes/genética , Proteínas Ativadoras de ras GTPase/genética
16.
Aging Cell ; 19(10): e13216, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32860726

RESUMO

Centenarians (exceptionally long-lived individuals-ELLI) are a unique segment of the population, exhibiting long human lifespan and healthspan, despite generally practicing similar lifestyle habits as their peers. We tested disease-associated mutation burden in ELLI genomes by determining the burden of pathogenic variants reported in the ClinVar and HGMD databases using data from whole exome sequencing (WES) conducted in a cohort of ELLI, their offspring, and control individuals without antecedents of familial longevity (n = 1879), all descendent from the founder population of Ashkenazi Jews. The burden of pathogenic variants did not differ between the three groups. Additional analyses of variants subtypes and variant effect predictor (VEP) biotype frequencies did not reveal a decrease of pathogenic or loss-of-function (LoF) variants in ELLI and offspring compared to the control group. Case-control pathogenic variants enrichment analyses conducted in ELLI and controls also did not identify significant differences in any of the variants between the groups and polygenic risk scores failed to provide a predictive model. Interestingly, cancer and Alzheimer's disease-associated variants were significantly depleted in ELLI compared to controls, suggesting slower accumulation of mutation. That said, polygenic risk score analysis failed to find any predictive variants among the functional variants tested. The high similarity in the burden of pathogenic variation between ELLI and individuals without familial longevity supports the notion that extension of lifespan and healthspan in ELLI is not a consequence of pathogenic variant depletion but rather a result of other genomic, epigenomic, or potentially nongenomic properties.


Assuntos
Longevidade/genética , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Feminino , Variação Genética , Humanos , Masculino
17.
Clin Pharmacol Ther ; 108(5): 1067-1077, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32472697

RESUMO

Antiplatelet response to clopidogrel shows wide variation, and poor response is correlated with adverse clinical outcomes. CYP2C19 loss-of-function alleles play an important role in this response, but account for only a small proportion of variability in response to clopidogrel. An aim of the International Clopidogrel Pharmacogenomics Consortium (ICPC) is to identify other genetic determinants of clopidogrel pharmacodynamics and clinical response. A genomewide association study (GWAS) was performed using DNA from 2,750 European ancestry individuals, using adenosine diphosphate-induced platelet reactivity and major cardiovascular and cerebrovascular events as outcome parameters. GWAS for platelet reactivity revealed a strong signal for CYP2C19*2 (P value = 1.67e-33). After correction for CYP2C19*2 no other single-nucleotide polymorphism reached genomewide significance. GWAS for a combined clinical end point of cardiovascular death, myocardial infarction, or stroke (5.0% event rate), or a combined end point of cardiovascular death or myocardial infarction (4.7% event rate) showed no significant results, although in coronary artery disease, percutaneous coronary intervention, and acute coronary syndrome subgroups, mutations in SCOS5P1, CDC42BPA, and CTRAC1 showed genomewide significance (lowest P values: 1.07e-09, 4.53e-08, and 2.60e-10, respectively). CYP2C19*2 is the strongest genetic determinant of on-clopidogrel platelet reactivity. We identified three novel associations in clinical outcome subgroups, suggestive for each of these outcomes.


Assuntos
Plaquetas/efeitos dos fármacos , Doenças Cardiovasculares/prevenção & controle , Clopidogrel/uso terapêutico , Doença da Artéria Coronariana/terapia , Citocromo P-450 CYP2C19/genética , Intervenção Coronária Percutânea , Variantes Farmacogenômicos , Inibidores da Agregação Plaquetária/uso terapêutico , Polimorfismo de Nucleotídeo Único , Idoso , Plaquetas/metabolismo , Doenças Cardiovasculares/sangue , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/mortalidade , Clopidogrel/efeitos adversos , Doença da Artéria Coronariana/mortalidade , Citocromo P-450 CYP2C19/metabolismo , Feminino , Estudo de Associação Genômica Ampla , Humanos , Masculino , Pessoa de Meia-Idade , Intervenção Coronária Percutânea/efeitos adversos , Intervenção Coronária Percutânea/mortalidade , Farmacogenética , Inibidores da Agregação Plaquetária/efeitos adversos , Medição de Risco , Fatores de Risco , Resultado do Tratamento
18.
J Med Genet ; 57(7): 500-504, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-30858171

RESUMO

BACKGROUND: Chromosomal instability, as reflected by structural or copy-number changes, is a known cancer characteristic but are rarely observed in healthy tissue. Mutations in DNA repair genes disrupt the maintenance of DNA integrity and predispose to hereditary cancer syndromes. OBJECTIVE: To clinically characterise and genetically diagnose two reportedly unrelated patients with unique cancer syndromes, including multiorgan tumourogenesis (patient 1) and early-onset acute myeloid leukaemia (patient 2), both displaying unique peripheral blood karyotypes. METHODS: Genetic analysis in patient 1 included TruSight One panel and whole-exome sequencing, while patient 2 was diagnosed by FoundationOne Heme genomic analysis; Sanger sequencing was used for mutation confirmation in both patients. Karyotype analysis was performed on peripheral blood, bone marrow and other available tissues. RESULTS: Both patients were found homozygous for CHEK2 c.499G>A; p.Gly167Arg and exhibited multiple different chromosomal translocations in 30%-60% peripheral blood lymphocytes. This karyotype phenotype was not observed in other tested tissues or in an ovarian cancer patient with a different homozygous missense mutation in CHEK2 (c.1283C>T; p.Ser428Phe). CONCLUSIONS: The multiple chromosomal translocations in patient lymphocytes highlight the role of CHK2 in DNA repair. We suggest that homozygosity for p.Gly167Arg increases patients' susceptibility to non-accurate correction of DNA breaks and possibly explains their increased susceptibility to either multiple primary tumours during their lifetime or early-onset tumourigenesis.


Assuntos
Quinase do Ponto de Checagem 2/genética , Predisposição Genética para Doença , Neoplasias/genética , Translocação Genética/genética , Adulto , Idoso , Quinase do Ponto de Checagem 2/ultraestrutura , Feminino , Homozigoto , Humanos , Cariótipo , Masculino , Pessoa de Meia-Idade , Neoplasias/patologia , Linhagem , Conformação Proteica
19.
Eur Heart J Cardiovasc Pharmacother ; 6(4): 203-210, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31504375

RESUMO

AIMS: Clopidogrel is prescribed for the prevention of atherothrombotic events. While investigations have identified genetic determinants of inter-individual variability in on-treatment platelet inhibition (e.g. CYP2C19*2), evidence that these variants have clinical utility to predict major adverse cardiovascular events (CVEs) remains controversial. METHODS AND RESULTS: We assessed the impact of 31 candidate gene polymorphisms on adenosine diphosphate (ADP)-stimulated platelet reactivity in 3391 clopidogrel-treated coronary artery disease patients of the International Clopidogrel Pharmacogenomics Consortium (ICPC). The influence of these polymorphisms on CVEs was tested in 2134 ICPC patients (N = 129 events) in whom clinical event data were available. Several variants were associated with on-treatment ADP-stimulated platelet reactivity (CYP2C19*2, P = 8.8 × 10-54; CES1 G143E, P = 1.3 × 10-16; CYP2C19*17, P = 9.5 × 10-10; CYP2B6 1294 + 53 C > T, P = 3.0 × 10-4; CYP2B6 516 G > T, P = 1.0 × 10-3; CYP2C9*2, P = 1.2 × 10-3; and CYP2C9*3, P = 1.5 × 10-3). While no individual variant was associated with CVEs, generation of a pharmacogenomic polygenic response score (PgxRS) revealed that patients who carried a greater number of alleles that associated with increased on-treatment platelet reactivity were more likely to experience CVEs (ß = 0.17, SE 0.06, P = 0.01) and cardiovascular-related death (ß = 0.43, SE 0.16, P = 0.007). Patients who carried eight or more risk alleles were significantly more likely to experience CVEs [odds ratio (OR) = 1.78, 95% confidence interval (CI) 1.14-2.76, P = 0.01] and cardiovascular death (OR = 4.39, 95% CI 1.35-14.27, P = 0.01) compared to patients who carried six or fewer of these alleles. CONCLUSION: Several polymorphisms impact clopidogrel response and PgxRS is a predictor of cardiovascular outcomes. Additional investigations that identify novel determinants of clopidogrel response and validating polygenic models may facilitate future precision medicine strategies.


Assuntos
Clopidogrel/uso terapêutico , Doença da Artéria Coronariana/terapia , Técnicas de Apoio para a Decisão , Intervenção Coronária Percutânea , Variantes Farmacogenômicos , Inibidores da Agregação Plaquetária/uso terapêutico , Agregação Plaquetária/efeitos dos fármacos , Polimorfismo de Nucleotídeo Único , Idoso , Isquemia Encefálica/mortalidade , Isquemia Encefálica/prevenção & controle , Clopidogrel/efeitos adversos , Doença da Artéria Coronariana/sangue , Doença da Artéria Coronariana/diagnóstico , Doença da Artéria Coronariana/mortalidade , Trombose Coronária/mortalidade , Trombose Coronária/prevenção & controle , Europa (Continente) , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Infarto do Miocárdio/mortalidade , Infarto do Miocárdio/prevenção & controle , Intervenção Coronária Percutânea/efeitos adversos , Intervenção Coronária Percutânea/instrumentação , Intervenção Coronária Percutânea/mortalidade , Agregação Plaquetária/genética , Inibidores da Agregação Plaquetária/efeitos adversos , Valor Preditivo dos Testes , Medição de Risco , Fatores de Risco , Stents , Acidente Vascular Cerebral/mortalidade , Acidente Vascular Cerebral/prevenção & controle , Resultado do Tratamento
20.
J Med Genet ; 57(7): 505-508, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31501241

RESUMO

Biallelic mutations in any of the four mismatch repair genes MSH2, MSH6, MLH1 and PMS2 result in one of the most aggressive childhood cancer predisposition syndromes, termed constitutional mismatch repair deficiency (CMMRD) syndrome. In addition to a very high tumour risk, the CMMRD phenotype is often characterised by the presence of signs reminiscent of neurofibromatosis type 1. Although paediatric systemic lupus erythematosus (pSLE) has been reported so far in three patients with CMMRD, it has not been considered a diagnostic feature of the syndrome. We report here two additional female patients with pSLE and CMMRD due to biallelic pathogenic variants in MSH6 Hence, there are a total of five out of approximately 200 (2.5%) currently reported patients with CMMRD that also have pSLE, suggesting pSLE should raise the suspicion of a diagnosis of CMMRD, especially if supported by additional indicative features.


Assuntos
Neoplasias Encefálicas/genética , Neoplasias Colorretais/genética , Proteínas de Ligação a DNA/genética , Lúpus Eritematoso Sistêmico/genética , Síndromes Neoplásicas Hereditárias/genética , Neurofibromatose 1/genética , Neoplasias Encefálicas/complicações , Neoplasias Encefálicas/patologia , Criança , Pré-Escolar , Neoplasias Colorretais/complicações , Neoplasias Colorretais/patologia , Reparo de Erro de Pareamento de DNA/genética , Feminino , Humanos , Lúpus Eritematoso Sistêmico/complicações , Lúpus Eritematoso Sistêmico/patologia , Mutação , Síndromes Neoplásicas Hereditárias/complicações , Síndromes Neoplásicas Hereditárias/patologia , Neurofibromatose 1/complicações , Neurofibromatose 1/patologia , Pediatria , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA