Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
NPJ Regen Med ; 9(1): 13, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519518

RESUMO

Neural progenitor cells (NPCs) derived from human pluripotent stem cells(hPSCs) provide major cell sources for repairing damaged neural circuitry and enabling axonal regeneration after spinal cord injury (SCI). However, the injury niche and inadequate intrinsic factors in the adult spinal cord restrict the therapeutic potential of transplanted NPCs. The Sonic Hedgehog protein (Shh) has crucial roles in neurodevelopment by promoting the formation of motorneurons and oligodendrocytes as well as its recently described neuroprotective features in response to the injury, indicating its essential role in neural homeostasis and tissue repair. In this study, we demonstrate that elevated SHH signaling in hNPCs by inhibiting its negative regulator, SUFU, enhanced cell survival and promoted robust neuronal differentiation with extensive axonal outgrowth, counteracting the harmful effects of the injured niche. Importantly, SUFU inhibition in NPCs exert non-cell autonomous effects on promoting survival and neurogenesis of endogenous cells and modulating the microenvironment by reducing suppressive barriers around lesion sites. The combined beneficial effects of SUFU inhibition in hNPCs resulted in the effective reconstruction of neuronal connectivity with the host and corticospinal regeneration, significantly improving neurobehavioral recovery in recipient animals. These results demonstrate that SUFU inhibition confers hNPCs with potent therapeutic potential to overcome extrinsic and intrinsic barriers in transplantation treatments for SCI.

2.
Cells ; 12(11)2023 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-37296600

RESUMO

The in vitro derivation of Schwann cells from human bone marrow stromal cells (hBMSCs) opens avenues for autologous transplantation to achieve remyelination therapy for post-traumatic neural regeneration. Towards this end, we exploited human induced pluripotent stem-cell-derived sensory neurons to direct Schwann-cell-like cells derived from among the hBMSC-neurosphere cells into lineage-committed Schwann cells (hBMSC-dSCs). These cells were seeded into synthetic conduits for bridging critical gaps in a rat model of sciatic nerve injury. With improvement in gait by 12-week post-bridging, evoked signals were also detectable across the bridged nerve. Confocal microscopy revealed axially aligned axons in association with MBP-positive myelin layers across the bridge in contrast to null in non-seeded controls. Myelinating hBMSC-dSCs within the conduit were positive for both MBP and human nucleus marker HuN. We then implanted hBMSC-dSCs into the contused thoracic cord of rats. By 12-week post-implantation, significant improvement in hindlimb motor function was detectable if chondroitinase ABC was co-delivered to the injured site; such cord segments showed axons myelinated by hBMSC-dSCs. Results support translation into a protocol by which lineage-committed hBMSC-dSCs become available for motor function recovery after traumatic injury to both peripheral and central nervous systems.


Assuntos
Bainha de Mielina , Células de Schwann , Humanos , Ratos , Animais , Diferenciação Celular , Bainha de Mielina/fisiologia , Axônios/fisiologia , Células Receptoras Sensoriais
3.
Adv Sci (Weinh) ; 10(20): e2205804, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37296073

RESUMO

Neural stem cells (NSCs) derived from human pluripotent stem cells (hPSCs) are considered a major cell source for reconstructing damaged neural circuitry and enabling axonal regeneration. However, the microenvironment at the site of spinal cord injury (SCI) and inadequate intrinsic factors limit the therapeutic potential of transplanted NSCs. Here, it is shown that half dose of SOX9 in hPSCs-derived NSCs (hNSCs) results in robust neuronal differentiation bias toward motor neuron lineage. The enhanced neurogenic potency is partly attributed to the reduction of glycolysis. These neurogenic and metabolic properties retain after transplantation of hNSCs with reduced SOX9 expression in a contusive SCI rat model without the need for growth factor-enriched matrices. Importantly, the grafts exhibit excellent integration properties, predominantly differentiate into motor neurons, reduce glial scar matrix accumulation to facilitate long-distance axon growth and neuronal connectivity with the host as well as dramatically improve locomotor and somatosensory function in recipient animals. These results demonstrate that hNSCs with half SOX9 gene dosage can overcome extrinsic and intrinsic barriers, representing a powerful therapeutic potential for transplantation treatments for SCI.


Assuntos
Células-Tronco Neurais , Traumatismos da Medula Espinal , Humanos , Ratos , Animais , Células-Tronco Neurais/metabolismo , Traumatismos da Medula Espinal/genética , Traumatismos da Medula Espinal/terapia , Traumatismos da Medula Espinal/metabolismo , Neurônios/metabolismo , Neurogênese , Cicatrização , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo
4.
Cells ; 10(8)2021 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-34440935

RESUMO

Transplantation of oligodendrocyte precursors (OPs) is potentially therapeutic for myelin disorders but a safe and accessible cell source remains to be identified. Here we report a two-step protocol for derivation of highly enriched populations of OPs from bone marrow stromal cells of young adult rats (aMSCs). Neural progenitors among the aMSCs were expanded in non-adherent sphere-forming cultures and subsequently directed along the OP lineage with the use of glial-inducing growth factors. Immunocytochemical and flow cytometric analyses of these cells confirmed OP-like expression of Olig2, PDGFRα, NG2, and Sox10. OPs so derived formed compact myelin both in vitro, as in co-culture with purified neurons, and in vivo, following transplantation into the corpus callosum of neonatal shiverer mice. Not only did the density of myelinated axons in the corpus callosum of recipient shiverer mice reach levels comparable to those in age-matched wild-type mice, but the mean lifespan of recipient shiverer mice also far exceeded those of non-recipient shiverer mice. Our results thus promise progress in harnessing the OP-generating potential of aMSCs towards cell therapy for myelin disorders.


Assuntos
Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Células Precursoras de Oligodendrócitos/citologia , Células Precursoras de Oligodendrócitos/metabolismo , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Proliferação de Células/fisiologia , Criopreservação , Citometria de Fluxo , Imuno-Histoquímica , Bainha de Mielina/metabolismo , Ratos , Ratos Sprague-Dawley , Remielinização/fisiologia
5.
Eur J Neurosci ; 52(5): 3306-3321, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32460437

RESUMO

The phenotypic instability of adult tissue-derived Schwann cell-like cells (SCLCs) as revealed upon withdrawal of glia-inducing culture supplements limits their clinical utility for cell therapy and disease modelling. We previously overcame this limitation by co-culturing bone marrow-derived SCLCs with neurons purified from developing rat and subsequently human sensory neurons such that direct contact between cell types accomplished the cell-intrinsic switch to the Schwann cell fate. Here, our search for juxtacrine instructive signals found both Notch ligands and neuregulin-1 type III localized on the surface of DRG neurons via live cell immunocytochemistry. Bypassing ligand-induced release of the Notch intracellular domain (NICD) by transient transfection of SCLCs with the pAdlox/V5-His-NICD construct was shown to upregulate ErbB2/3. Interaction of ErbB2/3 with neuregulin-1 type III (NRG1 type III) as presented on neurons then mediated the switch to the Schwann cell fate as demonstrated by expression of S100ß/p75/ Sox10/Krox20. In contrast, treatment of cocultures with γ-secretase inhibitor perturbed Notch signalling in SCLCs and consequently deterred both upregulation of ErbB2/3 and the transition to the Schwann cell fate. Taken together, juxtacrine signalling via Notch is key to the upregulation of ErbB receptors for neuregulin-driven commitment of SCLCs to the Schwann cell fate.


Assuntos
Medula Óssea , Células de Schwann , Animais , Diferenciação Celular , Células Cultivadas , Técnicas de Cocultura , Neuregulina-1 , Ratos , Receptor ErbB-2 , Transdução de Sinais
6.
Stem Cell Reports ; 9(4): 1097-1108, 2017 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-28890164

RESUMO

Our ultimate goal of in vitro derivation of Schwann cells (SCs) from adult bone marrow stromal cells (BMSCs) is such that they may be used autologously to assist post-traumatic nerve regeneration. Existing protocols for derivation of SC-like cells from BMSCs fall short in the stability of the acquired phenotype and the functional capacity to myelinate axons. Our experiments indicated that neuro-ectodermal progenitor cells among the human hBMSCs could be selectively expanded and then induced to differentiate into SC-like cells. Co-culture of the SC-like cells with embryonic dorsal root ganglion neurons facilitated contact-mediated signaling that accomplished the switch to fate-committed SCs. Microarray analysis and in vitro myelination provided evidence that the human BMSC-derived SCs were functionally mature. This was reinforced by repair and myelination phenotypes observable in vivo with the derived SCs seeded into a nerve guide as an implant across a critical gap in a rat model of sciatic nerve injury.


Assuntos
Diferenciação Celular , Células-Tronco Mesenquimais/citologia , Células de Schwann/citologia , Axônios/metabolismo , Biomarcadores , Células Cultivadas , Gânglios Espinais/citologia , Gânglios Espinais/metabolismo , Perfilação da Expressão Gênica , Humanos , Imunofenotipagem , Células-Tronco Mesenquimais/metabolismo , Bainha de Mielina/genética , Bainha de Mielina/metabolismo , Fatores de Crescimento Neural/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Neuritos/metabolismo , Neurogênese , Neurônios/citologia , Neurônios/metabolismo , Fenótipo , Células de Schwann/metabolismo
7.
J Vis Exp ; (124)2017 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-28654046

RESUMO

This manuscript describes a means to enrich for neural progenitors from the marrow stromal cell (MSC) population and thereafter to direct them to the mature Schwann cell fate. We subjected rat and human MSCs to transient hypoxic conditions (1% oxygen for 16 h) followed by expansion as neurospheres upon low-attachment substratum with epidermal growth factor (EGF)/basic fibroblast growth factor (bFGF) supplementation. Neurospheres were seeded onto poly-D-lysine/laminin-coated tissue culture plastic and cultured in a gliogenic cocktail containing ß-Heregulin, bFGF, and platelet-derived growth factor (PDGF) to generate Schwann cell-like cells (SCLCs). SCLCs were directed to fate commitment via coculture for 2 weeks with purified dorsal root ganglia (DRG) neurons obtained from E14-15 pregnant Sprague Dawley rats. Mature Schwann cells demonstrate persistence in S100ß/p75 expression and can form myelin segments. Cells generated in this manner have potential applications in autologous cell transplantation following spinal cord injury, as well as in disease modeling.


Assuntos
Células da Medula Óssea/citologia , Diferenciação Celular/fisiologia , Células de Schwann/citologia , Células-Tronco/citologia , Animais , Células da Medula Óssea/metabolismo , Hipóxia Celular , Células Cultivadas , Técnicas de Cocultura , Gânglios Espinais/citologia , Humanos , Bainha de Mielina/metabolismo , Neurogênese/fisiologia , Neurônios/citologia , Ratos , Ratos Sprague-Dawley , Células de Schwann/metabolismo , Células-Tronco/metabolismo
8.
Stem Cells Transl Med ; 6(2): 369-381, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28191772

RESUMO

Strategies that exploit induced pluripotent stem cells (iPSCs) to derive neurons have relied on cocktails of cytokines and growth factors to bias cell-signaling events in the course of fate choice. These are often costly and inefficient, involving multiple steps. In this study, we took an alternative approach and selected 5 small-molecule inhibitors of key signaling pathways in an 8-day program to induce differentiation of human iPSCs into sensory neurons, reaching ≥80% yield in terms of marker proteins. Continuing culture in maintenance medium resulted in neuronal networks immunopositive for synaptic vesicle markers and vesicular glutamate transporters suggestive of excitatory neurotransmission. Subpopulations of the derived neurons were electrically excitable, showing tetrodotoxin-sensitive action potentials in patch-clamp experiments. Coculture of the derived neurons with rat Schwann cells under myelinating conditions resulted in upregulated levels of neuronal neuregulin 1 type III in conjunction with the phosphorylated receptors ErbB2 and ErbB3, consistent with amenability of the neuritic network to myelination. As surrogates of embryonic dorsal root ganglia neurons, the derived sensory neurons provided contact-dependent cues to commit bone marrow-derived Schwann cell-like cells to the Schwann cell fate. Our rapid and efficient induction protocol promises not only controlled differentiation of human iPSCs into sensory neurons, but also utility in the translation to a protocol whereby human bone marrow-derived Schwann cells become available for autologous transplantation and remyelination therapy. Stem Cells Translational Medicine 2017;6:369-381.


Assuntos
Diferenciação Celular , Linhagem da Célula , Células-Tronco Pluripotentes Induzidas/fisiologia , Células-Tronco Neurais/fisiologia , Remielinização , Células de Schwann/fisiologia , Células Receptoras Sensoriais/fisiologia , Potenciais de Ação , Animais , Biomarcadores/metabolismo , Linhagem Celular , Técnicas de Cocultura , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/transplante , Rede Nervosa/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/transplante , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Doenças Neurodegenerativas/fisiopatologia , Doenças Neurodegenerativas/cirurgia , Fenótipo , Ratos , Células de Schwann/metabolismo , Células de Schwann/transplante , Células Receptoras Sensoriais/metabolismo , Células Receptoras Sensoriais/transplante , Transdução de Sinais , Transplante de Células-Tronco/métodos
9.
Stem Cell Res Ther ; 7(1): 146, 2016 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-27717376

RESUMO

BACKGROUND: Bone marrow stromal cells (BMSCs) are attractive as a source of neural progenitors for ex vivo generation of neurons and glia. Limited numbers of this subpopulation, however, hinder translation into autologous cell-based therapy. Here, we demonstrate rapid and efficient conditioning with hypoxia to enrich for these neural progenitor cells prior to further expansion in neurosphere culture. METHOD: Adherent cultures of BMSCs (rat/human) were subjected to 1 % oxygen for 24 h and then subcultured as neurospheres with epidermal growth factor (EGF) and basic fibroblast growth factor supplementation. Neurospheres and cell progeny were monitored immunocytochemically for marker expression. To generate Schwann cell-like cells, neurospheres were plated out and exposed to gliogenic medium. The resulting cells were co-cultured with purified dorsal root ganglia (rat) neurons and then tested for commitment to the Schwann cell fate. Fate-committed Schwann cells were subjected to in vitro myelination assay. RESULTS: Transient hypoxic treatment increased the size and number of neurospheres generated from both rat and human BMSCs. This effect was EGF-dependent and attenuated with the EGF receptor inhibitor erlotinib. Hypoxia did not affect the capacity of neurospheres to generate neuron- or glia-like precursors. Human Schwann cell-like cells generated from hypoxia-treated BMSCs demonstrated expression of S100ß /p75 and capacity for myelination in vitro. CONCLUSION: Enhancing the yield of neural progenitor cells with hypoxic preconditioning of BMSCs in vitro but without inherent risks of genetic manipulation provides a platform for upscaling production of neural cell derivatives for clinical application in cell-based therapy.


Assuntos
Hipóxia/fisiopatologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Neurais/citologia , Neurônios/citologia , Células-Tronco/citologia , Animais , Técnicas de Cultura de Células/métodos , Diferenciação Celular/fisiologia , Células Cultivadas , Técnicas de Cocultura/métodos , Fator 2 de Crescimento de Fibroblastos/metabolismo , Gânglios Espinais/citologia , Gânglios Espinais/metabolismo , Humanos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Neurais/metabolismo , Neurogênese/fisiologia , Neuroglia/citologia , Neuroglia/metabolismo , Neurônios/metabolismo , Ratos , Células de Schwann/citologia , Células de Schwann/metabolismo , Células-Tronco/metabolismo
10.
Brain Struct Funct ; 221(1): 217-38, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25304399

RESUMO

The recognition of head orientation in the adult involves multi-level integration of inputs within the central vestibular circuitry. How the different inputs are recruited during postnatal development remains unclear. We hypothesize that glutamatergic transmission at the vestibular nucleus contributes to developmental registration of head orientations along the vestibulo-olivary pathway. To investigate the maturation profile by which head rotational signals are registered in the brainstem, we used sinusoidal rotations on the orthogonal planes of the three pairs of semicircular canals. Fos expression was used as readout of neurons responsive to the rotational stimulus. Neurons in the vestibular nucleus and prepositus hypoglossal nucleus responded to all rotations as early as P4 and reached adult numbers by P21. In the reticular formation and inferior olive, neurons also responded to horizontal rotations as early as P4 but to vertical rotations not until P21 and P25, respectively. Neuronal subpopulations that distinguish between rotations activating the orthogonally oriented vertical canals were identifiable in the medial and spinal vestibular nuclei by P14 and in the inferior olivary subnuclei IOß and IOK by P25. Neonatal perturbation of glutamate transmission in the vestibular nucleus was sufficient to derange formation of this distribution in the inferior olive. This is the first demonstration that developmental refinement of glutamatergic synapses in the central vestibular circuitry is essential for developmental registration of head rotational signals in the brainstem.


Assuntos
Potenciais Pós-Sinápticos Excitadores , Ácido Glutâmico/fisiologia , Neurônios/fisiologia , Núcleo Olivar/fisiologia , Rotação , Canais Semicirculares/fisiologia , Núcleos Vestibulares/fisiologia , Animais , Maleato de Dizocilpina/administração & dosagem , Antagonistas de Aminoácidos Excitatórios/administração & dosagem , Feminino , Masculino , Vias Neurais/fisiologia , Neurônios/metabolismo , Núcleo Olivar/crescimento & desenvolvimento , Núcleo Olivar/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Formação Reticular/metabolismo , Formação Reticular/fisiologia , Canais Semicirculares/crescimento & desenvolvimento , Núcleos Vestibulares/crescimento & desenvolvimento , Núcleos Vestibulares/metabolismo , Vestíbulo do Labirinto/lesões
11.
Int J Biochem Cell Biol ; 61: 53-62, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25681686

RESUMO

Although expression quantitative trait locus, eQTL, serves as an explicit indicator of gene-gene associations, challenges remain to disentangle the mechanisms by which genetic variations alter gene expression. Here we combined eQTL and molecular analyses to identify an association between two seemingly non-associated genes in brain expression data from BXD inbred mice, namely Ptpn21 and Nrg3. Using biotinylated receptor tracking and immunoprecipitation analyses, we determined that PTPN21 de-phosphorylates the upstream receptor tyrosine kinase ErbB4 leading to the up-regulation of its downstream signaling. Conversely, kinase-dead ErbB4 (K751R) or phosphatase-dead PTPN21 (C1108S) mutants impede PTPN21-dependent signaling. Furthermore, PTPN21 also induced Elk-1 activation in embryonic cortical neurons and a novel Elk-1 binding motif was identified in a region located 1919bp upstream of the NRG3 initiation codon. This enables PTPN21 to promote NRG3 expression through Elk-1, which provides a biochemical mechanism for the PTPN21-NRG3 association identified by eQTL. Biologically, PTPN21 positively influences cortical neuronal survival and, similar to Elk-1, it also enhances neuritic length. Our combined approaches show for the first time, a link between NRG3 and PTPN21 within a signaling cascade. This may explain why these two seemingly unrelated genes have previously been identified as risk genes for schizophrenia.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neuritos/metabolismo , Neurônios/metabolismo , Proteínas Tirosina Fosfatases não Receptoras/metabolismo , Receptor ErbB-4/metabolismo , Animais , Sobrevivência Celular/fisiologia , Córtex Cerebral/citologia , Córtex Cerebral/metabolismo , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/biossíntese , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Neurregulinas/biossíntese , Neurregulinas/genética , Neurregulinas/metabolismo , Neurônios/citologia , Proteínas Tirosina Fosfatases não Receptoras/genética , Locos de Características Quantitativas , Receptor ErbB-4/genética , Transdução de Sinais , Transfecção
12.
J Comp Neurol ; 521(3): 612-25, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22806574

RESUMO

We examined the maturation expression profile of tyrosine kinase B (TrkB) receptor in rat vestibular nuclear neurons that were activated by sinusoidal linear acceleration along the horizontal or vertical axis. The otolithic origin of Fos expression in these neurons was confirmed with labyrinthectomized controls and normal controls, which showed only sporadically scattered Fos-labeled neurons in the vestibular nucleus. In P4-6 test rats, no Fos-labeled neurons were found in the vestibular nucleus, but the medial and spinal vestibular neurons showed weak immunoreactivity for TrkB. The intensity of TrkB immunoreactivity in vestibular nuclear neurons progressively increased in the second postnatal week but remained low in adults. From P7 onward, TrkB-expressing neurons responded to horizontal or vertical otolithic stimulation with Fos expression. The number of Fos-labeled vestibular nuclear neurons expressing TrkB increased with age, from 13-43% in P7 rats to 85-90% in adult rats. Our results therefore suggest that TrkB/neurotrophin signaling plays a dominant role in modulating vestibular nuclear neurons for the coding of gravity-related horizontal head movements and for the regulation of vestibular-related behavior during postnatal development.


Assuntos
Sensação Gravitacional/fisiologia , Movimentos da Cabeça/fisiologia , Neurônios/metabolismo , Membrana dos Otólitos/inervação , Receptor trkB/metabolismo , Núcleos Vestibulares/metabolismo , Aceleração , Fatores Etários , Animais , Animais Recém-Nascidos , Feminino , Masculino , Membrana dos Otólitos/crescimento & desenvolvimento , Membrana dos Otólitos/fisiologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Sprague-Dawley , Núcleos Vestibulares/citologia , Núcleos Vestibulares/crescimento & desenvolvimento , Vestíbulo do Labirinto/inervação , Vestíbulo do Labirinto/fisiologia , Vestíbulo do Labirinto/cirurgia
13.
Biomaterials ; 32(3): 787-96, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20950852

RESUMO

Autologous nerve grafts have been the 'gold standard' for treatment of peripheral nerve defects that exceed the critical gap length. To address issues of limited availability of donor nerves and donor site morbidity, we have fabricated chitosan conduits and seeded them with bone marrow stromal cell (BMSC)-derived Schwann cells as an alternative. The derived Schwann cells used were checked for fate commitment. The conduits were tested for efficacy in bridging the critical gap length of 12 mm in sciatic nerves of adult rats. By three months post-operation, mid-shank circumference, nerve conduction velocity, average regenerated myelin area, and myelinated axon count, in nerves bridged with BMSC-derived Schwann cells were similar to those treated with sciatic nerve-derived Schwann cells (p > 0.05) but significantly higher than those bridged with PBS-filled conduits (p < 0.05). Evidence is thus provided in support of the use of chitosan conduits seeded with BMSC-derived Schwann cells to treat critical defects in peripheral nerves. This provides the basis to pursue BMSC as an autologous source of Schwann cells for transplantation therapy in larger animal species.


Assuntos
Células da Medula Óssea/citologia , Quitosana/química , Regeneração Tecidual Guiada/métodos , Células-Tronco Mesenquimais/citologia , Regeneração Nervosa/fisiologia , Nervo Isquiático/citologia , Engenharia Tecidual/métodos , Animais , Células Cultivadas , Masculino , Ratos , Ratos Sprague-Dawley , Células de Schwann
14.
J Comp Neurol ; 501(4): 509-25, 2007 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-17278128

RESUMO

To investigate the corticofugal modulation of acoustic information ascending through the auditory pathway of the rat, immunohistochemical techniques were used to study the functional expression of Fos protein in neurons. With auditory stimulation at different frequencies, Fos expression in the medial geniculate body (MGB), inferior colliculus (IC), superior olivary complex, and cochlear nucleus was examined, and the extent of Fos expression on the two sides was compared. Strikingly, we found densely Fos-labeled neurons in all divisions of the MGB after both presentation of an auditory stimulus and administration of a gamma-aminobutyric acid type A (GABA(A)) antagonist (bicuculline methobromide; BIM) to the auditory cortex. The location of Fos-labeled neurons in the ventral division (MGv) after acoustic stimulation at different frequencies was in agreement with the known tonotopic organization. That no Fos-labeled neurons were found in the MGv with acoustic stimuli alone suggests that the transmission of ascending thalamocortical information is critically governed by corticofugal modulation. The dorsal (DCIC) and external cortices (ECIC) of the IC ipsilateral to the BIM-injected cortex showed a significantly higher number of Fos-labeled neurons than the contralateral IC. However, no difference in the number of Fos-labeled neurons was found between the central nucleus of the IC on either side, indicating that direct corticofugal modulation occurs only in the ECIC and DCIC. Further investigations are needed to assess the functional implications of the morphological differences observed between the descending corticofugal projections to the thalamus and the IC.


Assuntos
Estimulação Acústica/métodos , Vias Auditivas/efeitos da radiação , Regulação da Expressão Gênica/fisiologia , Proteínas Oncogênicas v-fos/metabolismo , Animais , Córtex Auditivo/efeitos dos fármacos , Córtex Auditivo/metabolismo , Córtex Auditivo/efeitos da radiação , Vias Auditivas/citologia , Vias Auditivas/metabolismo , Bicuculina/farmacologia , Mapeamento Encefálico , Contagem de Células/métodos , Relação Dose-Resposta à Radiação , Lateralidade Funcional , Antagonistas GABAérgicos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos da radiação , Imuno-Histoquímica/métodos , Colículos Inferiores/metabolismo , Masculino , Neurônios/metabolismo , Análise Numérica Assistida por Computador , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA