Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Mol Oncol ; 17(10): 2109-2125, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37086156

RESUMO

The androgen receptor (AR) is an established orchestrator of cell metabolism in prostate cancer (PCa), notably by inducing an oxidative mitochondrial program. Intriguingly, AR regulates cytoplasmic isocitrate dehydrogenase 1 (IDH1), but not its mitochondrial counterparts IDH2 and IDH3. Here, we aimed to understand the functional role of IDH1 in PCa. Mouse models, in vitro human PCa cell lines, and human patient-derived organoids (PDOs) were used to study the expression and activity of IDH enzymes in the normal prostate and PCa. Genetic and pharmacological inhibition of IDH1 was then combined with extracellular flux analyses and gas chromatography-mass spectrometry for metabolomic analyses and cancer cell proliferation in vitro and in vivo. In PCa cells, more than 90% of the total IDH activity is mediated through IDH1 rather than its mitochondrial counterparts. This profile seems to originate from the specialized prostate metabolic program, as observed using mouse prostate and PDOs. Pharmacological and genetic inhibition of IDH1 impaired mitochondrial respiration, suggesting that this cytoplasmic enzyme contributes to the mitochondrial tricarboxylic acid cycle (TCA) in PCa. Mass spectrometry-based metabolomics confirmed this hypothesis, showing that inhibition of IDH1 impairs carbon flux into the TCA cycle. Consequently, inhibition of IDH1 decreased PCa cell proliferation in vitro and in vivo. These results demonstrate that PCa cells have a hybrid cytoplasmic-mitochondrial TCA cycle that depends on IDH1. This metabolic enzyme represents a metabolic vulnerability of PCa cells and a potential new therapeutic target.


Assuntos
Ciclo do Ácido Cítrico , Neoplasias da Próstata , Masculino , Camundongos , Animais , Humanos , Isocitrato Desidrogenase/genética , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo , Mitocôndrias/metabolismo , Citosol/metabolismo
2.
Ther Innov Regul Sci ; 57(4): 875-885, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37072651

RESUMO

Project Orbis was initiated in May 2019 by the Oncology Center of Excellence to facilitate faster patient access to innovative cancer therapies by providing a framework for concurrent submissions and review of oncology products among international partners. Since its inception, Australia's Therapeutic Goods Administration (TGA), Canada's Health Canada (HC), Singapore's Health Sciences Authority (HSA), Switzerland's Swissmedic (SMC), Brazil's National Health Surveillance Agency (ANVISA), United Kingdom's Medicines and Healthcare Products Regulatory Agency (MHRA), and most recently Israel's Ministry of Health (IMoH) Medical Technologies, Health Information, Innovation and Research (MTIIR) Directorate, have joined Project Orbis. While each country has its own expedited review pathways to bring promising therapies to patients, there are some similarities and differences in pathways and timelines. FDA's fast-track designation and MHRA's marketing authorization under exceptional circumstances (MAEC) allow non-clinical and limited clinical evidence to support approval under these programs. HC's Extraordinary Use New Drug (EUND) pathway allows granting exceptional use authorization with limited clinical evidence. ANVISA, HSA, MTIIR, and TGA do not have standard pathways that allow non-clinical evidence and limited clinical evidence. While there is no definite regulatory pathway for HSA, the current framework for approval does allow flexibility in the type of data (non-clinical or clinical) required to demonstrate the benefit-risk profile of a product. HSA may register a product if the agency is satisfied that the overall benefit outweighs the risk. All Project Orbis Partner (POP) countries have similar programs to the FDA accelerated approval program except ANVISA. Although HSA and MTIIR do not have defined pathways for accelerated approval programs, there are opportunities to request accelerated approval per these agencies. All POP countries have pathways like the FDA priority review except MHRA. Priority review timelines for new drugs range from 120 to 264 calendar days (cd). Standard review timelines for new drugs range from 180 to 365 cd.


Assuntos
Medicina , Neoplasias , Estados Unidos , Humanos , Aprovação de Drogas , United States Food and Drug Administration , Canadá
3.
Nat Commun ; 11(1): 6378, 2020 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-33311503

RESUMO

Homeotherms maintain a stable internal body temperature despite changing environments. During energy deficiency, some species can cease to defend their body temperature and enter a hypothermic and hypometabolic state known as torpor. Recent advances have revealed the medial preoptic area (MPA) as a key site for the regulation of torpor in mice. The MPA is estrogen-sensitive and estrogens also have potent effects on both temperature and metabolism. Here, we demonstrate that estrogen-sensitive neurons in the MPA can coordinate hypothermia and hypometabolism in mice. Selectively activating estrogen-sensitive MPA neurons was sufficient to drive a coordinated depression of metabolic rate and body temperature similar to torpor, as measured by body temperature, physical activity, indirect calorimetry, heart rate, and brain activity. Inducing torpor with a prolonged fast revealed larger and more variable calcium transients from estrogen-sensitive MPA neurons during bouts of hypothermia. Finally, whereas selective ablation of estrogen-sensitive MPA neurons demonstrated that these neurons are required for the full expression of fasting-induced torpor in both female and male mice, their effects on thermoregulation and torpor bout initiation exhibit differences across sex. Together, these findings suggest a role for estrogen-sensitive MPA neurons in directing the thermoregulatory and metabolic responses to energy deficiency.


Assuntos
Temperatura Corporal/fisiologia , Estrogênios/metabolismo , Neurônios/fisiologia , Área Pré-Óptica/metabolismo , Torpor/fisiologia , Animais , Temperatura Corporal/genética , Regulação da Temperatura Corporal/fisiologia , Metabolismo Energético/fisiologia , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Jejum , Feminino , Hipotermia/genética , Hipotermia/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
4.
Clin Cancer Res ; 26(24): 6412-6416, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33037016

RESUMO

In 2019, the FDA Oncology Center of Excellence launched Project Orbis, a global collaborative review program to facilitate faster patient access to innovative cancer therapies across multiple countries. Project Orbis aims for concurrent submission, review, and regulatory action for high-impact clinically significant marketing applications among the participating partner countries. Current Project Orbis partners (POP) include the regulatory health authorities (RHA) of Australia, Brazil, Canada, Singapore, and Switzerland. Project Orbis leverages the existing scientific and regulatory partnerships between the various RHA under mutual confidentiality agreements. While FDA serves as the primary coordinator for application selection and review, each country remains fully independent on their final regulatory decision. In the first year of Project Orbis (June 2019 to June 2020), a total of 60 oncology marketing applications were received, representing 16 unique projects, and resulting in 38 approvals. New molecular entities, also known as new active substances, comprised 28% of the received marketing applications. The median time gap between FDA and Orbis submission dates was 0.6 months with a range of -0.8 to 9.0 months. Across the program, the median time-to-approval was similar between FDA (4.2 months, range 0.9-6.9, N = 18) and the POP (4.4 months, range 1.7-6.8, N = 20). Participating countries have signified a strong commitment for continuation and growth of the program. Project Orbis expansion considerations include the addition of more countries and management of more complex applications.


Assuntos
Doença , Aprovação de Drogas/legislação & jurisprudência , Descoberta de Drogas/organização & administração , Saúde Global , Órgãos Governamentais/legislação & jurisprudência , Colaboração Intersetorial , Vigilância de Produtos Comercializados/estatística & dados numéricos , Humanos
5.
Nat Metab ; 2(4): 351-363, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32377634

RESUMO

Estrogen receptor a (ERa) signaling in the ventromedial hypothalamus (VMH) contributes to energy homeostasis by modulating physical activity and thermogenesis. However, the precise neuronal populations involved remain undefined. Here, we describe six neuronal populations in the mouse VMH by using single-cell RNA transcriptomics and in situ hybridization. ERa is enriched in populations showing sex biased expression of reprimo (Rprm), tachykinin 1 (Tac1), and prodynorphin (Pdyn). Female biased expression of Tac1 and Rprm is patterned by ERa-dependent repression during male development, whereas male biased expression of Pdyn is maintained by circulating testicular hormone in adulthood. Chemogenetic activation of ERa positive VMH neurons stimulates heat generation and movement in both sexes. However, silencing Rprm gene function increases core temperature selectively in females and ectopic Rprm expression in males is associated with reduced core temperature. Together these findings reveal a role for Rprm in temperature regulation and ERa in the masculinization of neuron populations that underlie energy expenditure.


Assuntos
Metabolismo Energético , Receptor alfa de Estrogênio/metabolismo , Hipotálamo/metabolismo , Caracteres Sexuais , Animais , Feminino , Corantes Fluorescentes/química , Marcadores Genéticos , Hipotálamo/citologia , Masculino , Camundongos , Neurônios/metabolismo
6.
Mol Metab ; 30: 30-47, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31767179

RESUMO

OBJECTIVE: Lipocalin-2 (LCN2) is a secreted protein involved in innate immunity and has also been associated with several cardiometabolic traits in both mouse and human studies. However, the causal relationship of LCN2 to these traits is unclear, and most studies have examined only males. METHODS: Using adeno-associated viral vectors we expressed LCN2 in either adipose or liver in a tissue specific manner on the background of a whole-body Lcn2 knockout or wildtype mice. Metabolic phenotypes including body weight, body composition, plasma and liver lipids, glucose homeostasis, insulin resistance, mitochondrial phenotyping, and metabolic cage studies were monitored. RESULTS: We studied the genetics of LCN2 expression and associated clinical traits in both males and females in a panel of 100 inbred strains of mice (HMDP). The natural variation in Lcn2 expression across the HMDP exhibits high heritability, and genetic mapping suggests that it is regulated in part by Lipin1 gene variation. The correlation analyses revealed striking tissue dependent sex differences in obesity, insulin resistance, hepatic steatosis, and dyslipidemia. To understand the causal relationships, we examined the effects of expression of LCN2 selectively in liver or adipose. On a Lcn2-null background, LCN2 expression in white adipose promoted metabolic disturbances in females but not males. It acted in an autocrine/paracrine manner, resulting in mitochondrial dysfunction and an upregulation of inflammatory and fibrotic genes. On the other hand, on a null background, expression of LCN2 in liver had no discernible impact on the traits examined despite increasing the levels of circulating LCN2 more than adipose LCN2 expression. The mechanisms underlying the sex-specific action of LCN2 are unclear, but our results indicate that adipose LCN2 negatively regulates its receptor, LRP2 (or megalin), and its repressor, ERα, in a female-specific manner and that the effects of LCN2 on metabolic traits are mediated in part by LRP2. CONCLUSIONS: Following up on our population-based studies, we demonstrate that LCN2 acts in a highly sex- and tissue-specific manner in mice. Our results have important implications for human studies, emphasizing the importance of sex and the tissue source of LCN2.


Assuntos
Tecido Adiposo/metabolismo , Lipocalina-2/metabolismo , Adiposidade , Animais , Composição Corporal , Peso Corporal , Feminino , Glucose/análise , Homeostase , Resistência à Insulina , Lipídeos/análise , Lipocalina-2/genética , Lipocalina-2/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Camundongos Knockout , Obesidade/metabolismo , Fatores Sexuais
7.
Cell Metab ; 27(4): 869-885.e6, 2018 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-29617645

RESUMO

Mitochondria associate with lipid droplets (LDs) in fat-oxidizing tissues, but the functional role of these peridroplet mitochondria (PDM) is unknown. Microscopic observation of interscapular brown adipose tissue reveals that PDM have unique protein composition and cristae structure and remain adherent to the LD in the tissue homogenate. We developed an approach to isolate PDM based on their adherence to LDs. Comparison of purified PDM to cytoplasmic mitochondria reveals that (1) PDM have increased pyruvate oxidation, electron transport, and ATP synthesis capacities; (2) PDM have reduced ß-oxidation capacity and depart from LDs upon activation of brown adipose tissue thermogenesis and ß-oxidation; (3) PDM support LD expansion as Perilipin5-induced recruitment of mitochondria to LDs increases ATP synthase-dependent triacylglyceride synthesis; and (4) PDM maintain a distinct protein composition due to uniquely low fusion-fission dynamics. We conclude that PDM represent a segregated mitochondrial population with unique structure and function that supports triacylglyceride synthesis.


Assuntos
Adipócitos/metabolismo , Tecido Adiposo Marrom/metabolismo , Gotículas Lipídicas/metabolismo , Mitocôndrias/metabolismo , Trifosfato de Adenosina/metabolismo , Adipócitos/citologia , Animais , Transporte de Elétrons , Metabolismo Energético , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Metabolismo dos Lipídeos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Dinâmica Mitocondrial , Proteínas Mitocondriais/metabolismo , Proteínas Musculares/metabolismo , Oxirredução , Ácido Pirúvico/metabolismo , Termogênese
8.
Diabetologia ; 59(3): 592-603, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26733005

RESUMO

AIMS/HYPOTHESIS: The mammalian target of rapamycin complex 1 (mTORC1)/p70 ribosomal S6 kinase (S6K)1 pathway is overactivated in obesity, leading to inhibition of phosphoinositide 3-kinase (PI3K)/Akt signalling and insulin resistance. However, chronic mTORC1 inhibition by rapamycin impairs glucose homeostasis because of robust induction of liver gluconeogenesis. Here, we compared the effect of rapamycin with that of the selective S6K1 inhibitor, PF-4708671, on glucose metabolism in vitro and in vivo. METHODS: We used L6 myocytes and FAO hepatocytes to explore the effect of PF-4708671 on the regulation of glucose uptake, glucose production and insulin signalling. We also treated high-fat (HF)-fed obese mice for 7 days with PF-4708671 in comparison with rapamycin to assess glucose tolerance, insulin resistance and insulin signalling in vivo. RESULTS: Chronic rapamycin treatment induced insulin resistance and impaired glucose metabolism in hepatic and muscle cells. Conversely, chronic S6K1 inhibition with PF-4708671 reduced glucose production in hepatocytes and enhanced glucose uptake in myocytes. Whereas rapamycin treatment inhibited Akt phosphorylation, PF-4708671 increased Akt phosphorylation in both cell lines. These opposite effects of the mTORC1 and S6K1 inhibitors were also observed in vivo. Indeed, while rapamycin treatment induced glucose intolerance and failed to improve Akt phosphorylation in liver and muscle of HF-fed mice, PF-4708671 treatment improved glucose tolerance and increased Akt phosphorylation in metabolic tissues of these obese mice. CONCLUSIONS/INTERPRETATION: Chronic S6K1 inhibition by PF-4708671 improves glucose homeostasis in obese mice through enhanced Akt activation in liver and muscle. Our results suggest that specific S6K1 blockade is a valid pharmacological approach to improve glucose disposal in obese diabetic individuals.


Assuntos
Glucose/metabolismo , Obesidade/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Quinases S6 Ribossômicas/metabolismo , Animais , Metabolismo dos Carboidratos/efeitos dos fármacos , Linhagem Celular , Imidazóis/farmacologia , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos Obesos , Complexos Multiproteicos/metabolismo , Obesidade/etiologia , Piperazinas/farmacologia , Ratos , Proteínas Quinases S6 Ribossômicas/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/metabolismo
9.
Mol Oncol ; 9(7): 1484-500, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25963741

RESUMO

Retinoids are an important component of neuroblastoma therapy at the stage of minimal residual disease, yet 40-50% of patients treated with 13-cis-retinoic acid (13-cis-RA) still relapse, indicating the need for more effective retinoid therapy. Vorinostat, or Suberoylanilide hydroxamic acid (SAHA), is a potent inhibitor of histone deacetylase (HDAC) classes I & II and has antitumor activity in vitro and in vivo. Fenretinide (4-HPR) is a synthetic retinoid which acts on cancer cells through both nuclear retinoid receptor and non-receptor mechanisms. In this study, we found that the combination of 4-HPR + SAHA exhibited potent cytotoxic effects on neuroblastoma cells, much more effective than 13-cis-RA + SAHA. The 4-HPR + SAHA combination induced caspase-dependent apoptosis through activation of caspase 3, reduced colony formation and cell migration in vitro, and tumorigenicity in vivo. The 4-HPR and SAHA combination significantly increased mRNA expression of thymosin-beta-4 (Tß4) and decreased mRNA expression of retinoic acid receptor α (RARα). Importantly, the up-regulation of Tß4 and down-regulation of RARα were both necessary for the 4-HPR + SAHA cytotoxic effect on neuroblastoma cells. Moreover, Tß4 knockdown in neuroblastoma cells increased cell migration and blocked the effect of 4-HPR + SAHA on cell migration and focal adhesion formation. In primary human neuroblastoma tumor tissues, low expression of Tß4 was associated with metastatic disease and predicted poor patient prognosis. Our findings demonstrate that Tß4 is a novel therapeutic target in neuroblastoma, and that 4-HPR + SAHA is a potential therapy for the disease.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neuroblastoma/tratamento farmacológico , Timosina/metabolismo , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Fenretinida/administração & dosagem , Humanos , Ácidos Hidroxâmicos/administração & dosagem , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Timosina/genética , Vorinostat
10.
Cancer Res ; 75(2): 415-25, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25414139

RESUMO

ßIII-tubulin (encoded by TUBB3) expression is associated with therapeutic resistance and aggressive disease in non-small cell lung cancer (NSCLC), but the basis for its pathogenic influence is not understood. Functional and differential proteomics revealed that ßIII-tubulin regulates expression of proteins associated with malignant growth and metastases. In particular, the adhesion-associated tumor suppressor maspin was differentially regulated by ßIII-tubulin. Functionally, ßIII-tubulin suppression altered cell morphology, reduced tumor spheroid outgrowth, and increased sensitivity to anoikis. Mechanistically, the PTEN/AKT signaling axis was defined as a critical pathway regulated by ßIII-tubulin in NSCLC cells. ßIII-Tubulin blockage in vivo reduced tumor incidence and growth. Overall, our findings revealed how ßIII-tubulin influences tumor growth in NSCLC, defining new biologic functions and mechanism of action of ßIII-tubulin in tumorigenesis.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Tubulina (Proteína)/metabolismo , Animais , Anoikis/fisiologia , Carcinogênese/metabolismo , Carcinogênese/patologia , Carcinoma Pulmonar de Células não Pequenas/enzimologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Processos de Crescimento Celular/fisiologia , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Xenoenxertos , Humanos , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Metástase Neoplásica , Serpinas/biossíntese , Transdução de Sinais , Esferoides Celulares
11.
Hepatology ; 59(5): 1803-15, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24327268

RESUMO

UNLABELLED: Hepatocyte-specific Shp1 knockout mice (Ptpn6(H-KO)) are protected from hepatic insulin resistance evoked by high-fat diet (HFD) feeding for 8 weeks. Unexpectedly, we report herein that Ptpn6(H-KO) mice fed an HFD for up to 16 weeks are still protected from insulin resistance, but are more prone to hepatic steatosis, as compared with their HFD-fed Ptpn6(f/f) counterparts. The livers from HFD-fed Ptpn6(H-KO) mice displayed 1) augmented lipogenesis, marked by increased expression of several hepatic genes involved in fatty acid biosynthesis, 2) elevated postprandial fatty acid uptake, and 3) significantly reduced lipid export with enhanced degradation of apolipoprotein B (ApoB). Despite more extensive hepatic steatosis, the inflammatory profile of the HFD-fed Ptpn6(H-KO) liver was similar (8 weeks) or even improved (16 weeks) as compared to their HFD-fed Ptpn6(f/f) littermates, along with reduced hepatocellular damage as revealed by serum levels of hepatic enzymes. Interestingly, comparative microarray analysis revealed a significant up-regulation of peroxisome proliferator-activated receptor gamma (PPARγ) gene expression, confirmed by quantitative polymerase chain reaction. Elevated PPARγ nuclear activity also was observed and found to be directly regulated by Shp1 in a cell-autonomous manner. CONCLUSION: These findings highlight a novel role for hepatocyte Shp1 in the regulation of PPARγ and hepatic lipid metabolism. Shp1 deficiency prevents the development of severe hepatic inflammation and hepatocellular damage in steatotic livers, presenting hepatocyte Shp1 as a potential novel mediator of nonalcoholic fatty liver diseases in obesity.


Assuntos
Fígado Gorduroso/etiologia , Fígado/metabolismo , Obesidade/complicações , PPAR gama/fisiologia , Proteína Tirosina Fosfatase não Receptora Tipo 6/fisiologia , Animais , Dieta Hiperlipídica , Ácidos Graxos/metabolismo , Resistência à Insulina , Lipogênese , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica
12.
Mol Cancer Res ; 12(2): 264-73, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24337070

RESUMO

UNLABELLED: Metastasizing tumor cells must transmigrate the dense extracellular matrix that surrounds most organs. The use of three-dimensional (3D) collagen gels has revealed that many cancer cells can switch between different modes of invasion that are characterized by distinct morphologies (e.g., rounded vs. elongated). The adhesion protein NEDD9 has the potential to regulate the switch between elongated and rounded morphologies; therefore, its role was interrogated in the invasion switch of glioblastoma and neuroblastoma tumors that similarly derive from populations of neural crest cells. Interestingly, siRNA-mediated depletion of NEDD9 failed to induce cell rounding in glioma or neuroblastoma cells, contrasting the effects that have been described in other tumor model systems. Given that Rac1 GTPase has been suggested to mediate the switch between elongated and rounded invasion, the functionality of the Rac1 morphology switch was evaluated in the glioma and neuroblastoma cells. Using both dominant-negative Rac1 and Rac1-specific siRNA, the presence of this morphologic switch was confirmed in the neuroblastoma, but not in the glioma cells. However, in the absence of a morphologic change following NEDD9 depletion, a significant decrease in the cellular migration rate was observed. Thus, the data reveal that NEDD9 can regulate 3D migration speed independent of the Rac1 morphology switch. IMPLICATIONS: NEDD9 targeting is therapeutically viable as it does not stimulate adaptive changes in glioma and neuroblastoma invasion.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Movimento Celular , Glioblastoma/patologia , Neuroblastoma/patologia , Neuropeptídeos/metabolismo , Fosfoproteínas/metabolismo , Microambiente Tumoral , Proteínas rac1 de Ligação ao GTP/metabolismo , Linhagem Celular Tumoral , Matriz Extracelular/metabolismo , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Neuroblastoma/genética , Neuroblastoma/metabolismo , Neuropeptídeos/genética , RNA Interferente Pequeno/genética , Proteínas rac1 de Ligação ao GTP/genética
13.
J Biol Chem ; 288(43): 31165-76, 2013 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-24036112

RESUMO

We previously demonstrated that the mTORC1/S6K1 pathway is activated by insulin and nutrient overload (e.g. amino acids (AA)), which leads to the inhibition of the PI3K/Akt pathway via the inhibitory serine phosphorylation of IRS-1, notably on serine 1101 (Ser-1101). However, even in the absence of AA, insulin can still promote IRS-1 Ser-1101 phosphorylation by other kinases that remain to be fully characterized. Here, we describe a new negative regulator of IRS-1, the p90 ribosomal S6 kinase (RSK). Computational analyses revealed that Ser-1101 within IRS-1 falls into the consensus motif of RSK. Moreover, recombinant RSK phosphorylated IRS-1 C-terminal fragment on Ser-1101, which was prevented by mutations of this site or when a kinase-inactive mutant of RSK was used. Using antibodies directed toward the phosphorylation sites located in the activation segment of RSK (Ser-221 or Ser-380), we found that insulin activates RSK in L6 myocytes in the absence of AA overload. Inhibition of RSK using either the pharmacological inhibitor BI-D1870 or after adenoviral expression of a dominant negative RSK1 mutant (RSK1-DN) showed that RSK selectively phosphorylates IRS-1 on Ser-1101. Accordingly, expression of the RSK1-DN mutant in L6 myocytes and FAO hepatic cells improved insulin action on glucose uptake and glucose production, respectively. Furthermore, RSK1 inhibition prevented insulin resistance in L6 myocytes chronically exposed to high glucose and high insulin. These results show that RSK is a novel regulator of insulin signaling and glucose metabolism and a potential mediator of insulin resistance, notably through the negative phosphorylation of IRS-1 on Ser-1101.


Assuntos
Glucose/metabolismo , Insulina/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Transdução de Sinais/fisiologia , Motivos de Aminoácidos , Substituição de Aminoácidos , Glucose/genética , Células Hep G2 , Humanos , Insulina/genética , Proteínas Substratos do Receptor de Insulina/genética , Proteínas Substratos do Receptor de Insulina/metabolismo , Células Musculares/citologia , Células Musculares/metabolismo , Mutação de Sentido Incorreto , Fosforilação/fisiologia , Proteínas Quinases S6 Ribossômicas 90-kDa/genética
14.
FASEB J ; 25(12): 4423-33, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21908715

RESUMO

Cell migration plays a crucial role in numerous cellular functions, and alterations in the regulation of cell migration are required for invasive transformation of a tumor cell. While the mechanistic process of actin-based migration has been well documented, little is known as to the specific function of the nonmuscle actin isoforms in mammalian cells. Here, we present a comprehensive examination of γ-actin's role in cell migration using an RNAi approach. The partial suppression of γ-actin expression in SH-EP neuroblastoma cells resulted in a significant decrease in wound healing and transwell migration. Similarly, the knockdown of γ-actin significantly reduced speed of motility and severely affected the cell's ability to explore, which was, in part, due to a loss of cell polarity. Moreover, there was a significant increase in the size and number of paxillin-containing focal adhesions, coupled with a significant decrease in phosphorylated paxillin in γ-actin-knockdown cells. In addition, there was a significant increase in the phosphorylation of cofilin and myosin regulatory light chain, suggesting an overactivated Rho-associated kinase (ROCK) signaling pathway in γ-actin-knockdown cells. The alterations in the phosphorylation of paxillin and myosin regulatory light chain were unique to γ-actin and not ß-actin knockdown. Inhibition of the ROCK pathway with the inhibitor Y-27632 restored the ability of γ-actin-knockdown cells to migrate. This study demonstrates γ-actin as a potential upstream regulator of ROCK mediated cell migration.


Assuntos
Actinas/metabolismo , Movimento Celular/fisiologia , Quinases Associadas a rho/metabolismo , Actinas/antagonistas & inibidores , Actinas/genética , Amidas/farmacologia , Sequência de Bases , Linhagem Celular , Polaridade Celular/fisiologia , Adesões Focais/fisiologia , Técnicas de Silenciamento de Genes , Humanos , Modelos Biológicos , Cadeias Leves de Miosina/metabolismo , Paxilina/metabolismo , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Piridinas/farmacologia , Interferência de RNA , RNA Interferente Pequeno/genética , Transdução de Sinais , Cicatrização/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA